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Abstract. Student academic performance is an important factor that affect the achievement of 

an educational institution. Educational Data Mining (EDM) is a data mining process that is 

applied to explore educational data that can produce information related to student academic 

performance. The knowledge produced from the data mining process is used by the educational 

institutions to improve their teaching processes, which aim to improve student academic 

performance results. In this paper, a method based on Genetic Algorithm (GA) feature 

selection technique with classification method is proposed in order to predict student academic 

performance. Almost all previous feature selection techniques apply local search technique 

throughout the process, so the optimal solution is quite difficult to achieve. Therefore, GA is 

apply as a technique of features selection with ensemble classification method in order to 

improve classification accuracy value of student academic performance prediction, as well as it 

can be used for datasets with high dimensional and imbalanced class. In this paper, the data 

used for experiments comes from Kaggle repository datasets which consists of three main 

categories: behaviour, academic, and demographic. The performances evaluation used to 

evaluate the proposed method is the Area Under the Curve (AUC). Based on the results 

obtained from the experiments, shows that the proposed method  makes an impressive result in 

the predictions of student academic performance. 

1. Introduction 

In recent years, student academic performance prediction has become very important for higher 

education institutions [1]. Student academic performance is related to fruitfulness in the education 

process, students who have high academic performance will certainly have a greater chance of 

completing their studies well [2]. Because of this, prediction of student academic performance is an 

effective way that aims to prevent and treat academic success. However, to predict student academic 

performance is not an easy thing to do, because many factors can influence student academic 

performance, such as demographics, academic background, and behaviour. Therefore, the application 

of Educational Data Mining (EDM) is a way to overcome this problem [3]. Predicting student 

academic performance using data mining techniques still has problems related to accuracy for 

predicting student academic performance. Where, there is no consensus on the comparison of student 

academic performance predictions using the data mining classification method. This indicates there is 

no difference in performance that can be detected and there is no specific method that does the best for 
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student academic performance prediction. In addition, factors that affecting results of classification 

performance are the high dimensions of the dataset and imbalanced class [4, 5]. 

In the data mining domain, feature selection is intend to overcome the high dimensional of dataset 

[6, 7]. The problem of high data dimensions is done by reducing the dimensions of the features in the 

datasets. The reduction of data dimensions aims to improve machine-learning performance. 

Application of feature selection for datasets with N and M dimensions (features), feature selection 

aims to reduce M to M 'and M' ≤ M [7]. Majority of traditional features selection algorithms work by 

selecting features that range between sub-optimal and almost optimal regions. Therefore, the most 

optimal solution is quite difficult to obtain using this algorithm[8]. Genetic Algorithms work in a 

reasonable period by conducting global searches with the aim of finding solutions to the full search 

space, thus the results obtained significantly can improve performance to find high-quality solutions 

[9]. This study proposed method by combining Genetic Algorithms with Random Forest (RF) methods 

to increase the value of accuracy of student academic performance predictions. In the others hand, 

regarding learning problem from highly imbalanced datasets. Imbalanced class often appear in the real 

world where data distribution is not balanced. Generally in the case of datasets with two classes, it is 

assumed that the minority class is a positive class while the majority of the class is a negative class [7, 

10]. Often, minority classes have a very low frequency compared to other classes. When a traditional 

classifier is used in a dataset, the classifier predicts it entirely as negative (majority class). Our 

proposed method aims to deal with feature selection problems and imbalanced class.  

2. Material and methods 

This study utilize we use student academic performance dataset from Kaggle repository. Attributes 

and general description are shown in Table I [11]. This data collection contains 480 student academic 

performance data, 16 attributes with multi-class labels, to be specific class in three intervals: high, 

medium and low. Attributes are categorized into three categories: demographic, academic and 

behavioral categories. 

 

Table 1. Attributes and descriptions of dataset 

 

No Attributes Category Attributes Description 

1 

Demographic 

Category 

Nationality  Nationality 

2 Gender  Male or Female 

3 POB  Birthplace 

4 Parent responsible for 

student 

Status parent 

5 

Academic 

Category 

Educational Levels               Levels of school 

6 Grade Levels Student class group 

7 Section ID Register classroom 

8 Semester Academic year 

9 Topic Subject course 

10 Student Absence Days  Attendance 

11 

Behavioral 

Category 

Parent Answering 

Survey  

Parent participation on survey 

12 Parent School 

Satisfaction 

Level satisfaction of parent 

13 Discussion Activity 

Student interaction 
14 Active visiting resources 

15 Raised hand on class 

16 Seeing announcements 
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The proposed method is a combination of GA feature selection and RF classification for student 

academic performance prediction. This proposed method compromise with high dimensional dataset 

and class imbalanced problem in terms to achieve high accuracy value for student academic 

performance prediction. Optimization features selection based on GA is involves high dimensional 

datasets and Random Forest classifier is employed to deal with the class imbalance problem. Figure 1 

shown the proposed method for student performance prediction. 

 

 
Figure 1. Proposed method of student academic performance prediction 

 

This experiment uses the fifth generation i7 CPU 1.8GHz, 12GB RAM and Windows 10 64 bit 

operating system. In conducting this experiment, six classifiers are compared, which are: Decision 

Tree (DT), Artificial Neural Network (ANN), Random Forest, Voting, Bagging and Boosting compare 

the performance of classification models within the field of student academic performance prediction.  

The experiment runs six classifiers where each classifiers are validated using x-fold cross 

validation to validate training and testing data. As shown in Table 2, this validation method divides the 

dataset into ten subsets and repeats ten times. In each round, a set of sections is taken to be used as a 

set of tests and the other sets are combined to become a training set. The final result obtained from 

average value of all round errors. X-fold cross validation included each instance nine times in the 

training set and at least once in the test set. Usually, x-fold cross validation is used because it can 

reduce computing time while maintaining the accuracy of estimates [12].  

 

Table 2. X-fold cross validation 

 

n-validation Dataset Partition 

1           

2           

3           

4           

5           

6           

7           

8           

9           
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10           
To evaluate the performance of the six classifiers methods used, measurements of this research 

utilize a six metrics: Geometric Mean (G-Mean), Precision, True Negative Rate (TNR), True Positive 

Rate (TPR), F1-Score and Area Under Curve (AUC) to compare the performance of classifiers. This 

evaluation metrics are calculated using confusion matrix as shown in Table 3.  

 

Table 3. Confusion matrix 

 

  Actual Class 

  Positive Negative 

Predicted Condition 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

 

G-mean is one of the most comprehensive measurements to evaluate the performance of 

classification algorithms especially in class imbalance problems in the dataset. Equation 1 can obtain 

G-Mean values. Precision values refer to the number of positive category data that correctly classify 

divided by the total data classified as positive. Equation 2 can obtain precision. Furthermore, TPR 

Equation 3 shows how many percent of the positive category data is correctly classified. TNR is the 

number of correctly classified class instances that do not belong to the class divided by the total data 

classified as negative. AUC values refer to how accurate the system can classify data correctly. In 

other words, the value of AUC is a comparison between data that is correctly classified with the whole 

data.  

 
 

G − Mean = √𝑇𝑃𝑅. 𝑇𝑁𝑅 (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

TPR =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

AUC =
1

2
(

𝑇𝑃

𝑇𝑃+𝐹𝑁
+  

𝑇𝑁

𝑇𝑁+𝐹𝑃
) (6) 

 

 

3. Results and discussion 

In the initial experiment, all classifiers were executed one by one validated using x-cross fold 

validation with a dataset of 16 attributes and 480 student performance data. The results of experiments 

with six classification algorithms are show in Table 4. In this table shows the results of the correct 

classification percentage for multi classes: Geometric Mean (G-Mean), Precision, TPR, TNR, F1 

Score and AUC. The results of the experimental values, generally obtained values with high AUC 

(greater than 73.90%) and TNR greater than 81.80% but TPR was 65.70% lower and G-Mean lower 
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73.44%. The best algorithm in terms of TPR and Accuracy is RF (78.12% and 83.07% respectively), 

which are high levels for predicting student performance. However, it is interesting to TNR, where RF 

gets the best result of 88.03% and G-Mean of 82.93, as well as Bagging and Boosting get the best 

TNR and G-Mean (86.60%, 80.73 and 86.26, 80.51%, respectively). RF classifiers obtain high TNR 

with high AUC, as a result they are an accurate but comprehensive classification model to predict 

student performance with the right trade-off regarding accuracy versus interpretation.  

 

Table 4. Performance classifiers without genetic algorithm feature selection 

Classifiers G-Mean Precision TPR TNR F1 Score AUC 

DT 74.40 65.68 67.67 81.80 66.66 74.73 

ANN 77.53 75.45 71.05 84.60 73.18 77.82 

RF 82.93 78.75 78.12 88.03 78.43 83.07 

Voting 73.44 75.19 65.70 82.10 70.12 73.90 

Bagging 80.73 77.13 75.26 86.60 76.18 80.93 

Boosting 80.51 75.26 75.14 86.26 75.20 80.70 

 

In the next experiment, GA employed for features selection that executed for all the classifiers 

using x-fold cross validation. The results obtained after re-executing the 10 classification algorithms 

using x-fold cross validation are summarized in Table 5. The improved model for each classifier is 

highlighted width boldfaced print. To analyse and compare this table with the previous experiment, 

based on observation for each classifiers has improvement values obtained in all the evaluation 

measures, and some of them obtain the new best maximum values in almost all measures. 

Further, the best overall results are those obtained by GA with RF models, which achieved a 

TNR 89.33% and a G-Mean 84.93%; these are the best results from all the experiments. It is therefore 

the classification model, which provides the most accurate and interesting result for prediction student 

performance. As shown in Table 5, all classifiers that implemented GA outperform the original 

method. It indicate that the GA based feature selection is effective to improve classification accuracy. 

 

Table 5. Performance classifiers with genetic algorithm feature selection 

Classifiers G-Mean Precision TPR TNR F1 Score AUC 

GA+DT 81.05 75.37 75.76 86.70 75.56 81.23 

GA+ANN 81.98 78.59 76.81 87.50 77.67 82.15 

GA+RF 84.93 81.64 80.74 89.33 81.18 85.03 

GA+Voting 79.98 79.29 74.03 86.40 76.57 80.22 

GA+Bagging 82.25 79.53 77.13 87.70 78.31 82.41 

GA+Boosting 83.01 79.37 78.13 88.20 78.74 83.16 

 

Finally, in order to verify whether a significant difference between the proposed method with GA 

and a method without GA, the results of both methods are compared. This study performed the 

statistical t-Test for every classifier pair of both on student performance data set. In statistical 

significance, testing the P value is the probability of obtaining a test statistic at least as significance as 

the one that was actually observed, assuming that the null hypothesis is true. If P value is less than the 

predetermined significance level (α), indicating that the observed result would be highly unlikely 

under the null hypothesis. In this case, value of the statistical significance level (α) to be 0.05. It means 

that no statistically significant difference if P value > 0.05. The result is shown in Table 6, there are 

two classifiers (DT, ANN and RF) that have significant difference (P value < 0.05), the results have 

indicated that those of the rest classifiers (Voting, Bagging and Boosting) have no significant 

difference (P value > 0.05). The integration between GA and classifier achieved higher classification 

accuracy for most classifiers. Therefore, based on the results of research conducted shows the 

proposed method makes an impressive improvement in prediction performance.  

 



FIRST 2019

Journal of Physics: Conference Series 1500 (2020) 012110

IOP Publishing

doi:10.1088/1742-6596/1500/1/012110

6

 
 
 
 
 
 

 

 

 

Table 6. T test with/without genetic algorithm feature selection 

Classifiers P value T-test Conclusion 

DT 0.005 Significant P value < 0.05  

ANN 0.025 Significant P value < 0.05  

RF 0.304 No Significant P value > 0.05  

Voting 0.193 No Significant P value > 0.05  

Bagging 0.323 No Significant P value > 0.05  

Boosting 0.237 No Significant P value > 0.05  

 

Based on the results of the experiment, showing results methods that integrate genetic algorithms 

and random forest classification for student academic performance predictions get higher classification 

accuracy values. Genetic algorithms are applied to deal with high dimensional dataset problems, and 

RF classification overcomes the problem of class imbalanced. This research performed six 

classification techniques that were applied to student performance datasets from Kaggle data 

repository. Based on this, it can be concluded that the application of GA as a feature selection can 

improve predictive performance for all classifiers. 

For future research, it will be related to the comparison of the methods proposed with other 

metaheuristic optimizations using optimization features selection techniques along with techniques 

such as PSO or optimization of ant colonies with other ensemble method techniques. 

4. Conclusions 
In this study, we have conducted experiments using six classifiers with feature selection techniques 

using genetic algorithms to predict student academic performance. Our experiments use public dataset 

for student performance from Kaggle repository. The experiments carried out were validated using x-

cross fold validation and measured the results of validation through calculations using a confusion 

matrix. Genetic algorithm is applied to deal with the high dimensional dataset problem, and six 

classifiers technique is employed to alleviate the class imbalance problem. Therefore, we conclude 

that GA feature selection with Random Forest classifier method makes an impressive improvement for 

student academic performance prediction. Further research in our study will conduct experiment using 

other optimization techniques with different classification algorithms that aim to produce reliable 

models with high accuracy predictions. 
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