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Abstract. This study focuses on the synthesis of cockscomb-like fibrous silica beta zeolite 

(FSBEA) and its application in CO methanation to produce substituted natural gas (SNG). 

FSBEA was synthesized by microemulsion technique using commercial beta zeolite-seeds and 

characterized by FESEM, XRD, N2 physisorption and FTIR spectroscopy. The results showed 

that the FSBEA had a unique cockscomb-like morphology with particle size 400-800 nm, 

enhanced interparticle porosity and high BET surface area of 532 m2/g, which offers more 

adsorption sites for the CO and H2 molecules to enhance CO methanation activity. Catalytic 

performance results revealed that FSBEA demonstrated higher CO conversion (71%), selectivity 

(64%), the yield of CH4 (46%) and the rate of CH4 formation (0.0375 µmol-CH4/m2s) than 

commercial based BEA. Besides, FSBEA expressed high thermal stability up to 45 h during CO 

methanation at 450 оC. Therefore, this study offers an attractive and sustainable route for SNG 

over FSBEA that may be used as a clean and alternate energy source for fossil fuels. 

1.  Introduction 

Among the fossil fuels, natural gas has more potential due to its ready availability, slag, and smoke-free 

composition, low sooting tendency, and high calorific value. Natural gas is the fastest-growing energy 

source of the world [1-2].  Recently, the production of substituted natural gas (SNG) has attracted much 

attention due to exhaustion and the rising price of natural gas, particularly in those regions which are 

deficient in natural gas and rich with coal reservoirs such as China [3]. SNG has many applications. It 

can be used in gas turbines, gas engines, and the transportation sector, such as in vehicles. SNG can be 

distributed by the existing gas pipeline and storage tanks [4-5]. SNG gas has been produced from coal, 

renewable biomass via syngas (H2+CO). The process consists of the coal gasification chamber, acid gas 

removal chamber, CO methanation chamber, and thermal power station for supplying steam and power.  

Among them, CO methanation is one of the most crucial steps during the production of SNG. It is also 

known as the Sabatier reaction, discovered by Sabatier since 1902. CO methanation also used to remove 

the trace amount of CO from H2-rich feed gas, which used in fuel cells later and NH3 synthesis process 

as well as Fischer-Tropsch synthesis [6-7]. 

However, CO methanation is a highly exothermic reaction; one of the serious problems of this 

reaction is a significant loss of catalytic activity with time due to coke deposition and metal sintering. 

To address these issues, several studies have been conducted on the development of appropriate CO 
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methanation catalysts using various type of metal including Mo, Fe, Ni, Co, Pt, Rh and Ru on different 

supports (Al2O3, SiO2, TiO2, ZrO2 or mixed oxides) [8]. However, the challenges related to the best 

choice of an efficient and suitable catalyst have still remained, especially supported material. Zeolite 

based materials have attracted much attention from researchers. Particularly, in the field of 

heterogeneous catalysis. Furthermore, zeolites are used in various reactions as active supports such as 

isomerization, cracking, alkylation and aromatization of hydrocarbons due to unique properties own 

their high activity, shape selectivity, ion exchanging properties and special pore structure. However, 

zeolites have some limitations as well that affect their catalytic performance [9- 11]. Due to the limited 

size of the channels, cavities and the lack of interconnectivity. Particularly, mordenite, ZSM-5, Y zeolite, 

and beta zeolite that own relatively microporous nature and diffusion limitation problem in many 

catalytic reactions, which lead to coke formation and catalyst deactivation [12].  Development of 

mesopores in microporous zeolites has provided the best solution to overcome diffusion limitation and 

pore blockage that conventional zeolites face [13].  

A prodigious initiative was taken by Polshettiwar et al. in 2010 in the field of fibrous material. The 

first fibrous material KCC-1 was synthesized with high surface area and better accessibility of active 

site [14]. Later, in several studies, KCC-1 was used in various reactions, such as CO2 methanation [15], 

isomerization [16]. The microemulsion technique was used to develop silica-based fibrous materials 

[17]. Fibrous silica ZSM-5 was initially synthesized by Firmansyah et al. in 2016 that was used for 

cumene hydrocracking [18]. Fibrous based-zeolites are believed to have much potential in enhancing 

the catalytic performance of isomerization, [19], CO methanation [20], and petrochemical processes 

[21]. Thus, the employment of fibrous zeolite may improve the catalytic performance of CO 

methanation. Therefore, as an extension of this study, we prepared Cockscomb-like fibrous silica BEA 

zeolite (FSBEA), which may possess high surface area, high pore volume to enhance CO methanation 

activity. It may possess a higher number of oxygen vacancies and unpaired electrons that leads to an 

increase in the catalytic activity. 

2.  Experimental 

2.1.  Catalyst preparation 

Cockscomb-like fibrous silica beta zeolite (FSBEA) support was synthesized by microwave-assisted 

hydrothermal approach.  4.42 g of urea and 6.2 g of cetyltrimethylammonium bromide (CTAB) were 

dissolved in 163 mL of distilled water. The solution mixture was stirred for 20 min at room temperature 

to ensure complete mixing. Toluene (170 mL) and butanol (6.5 mL) were added to aqueous mixture 

solution, followed by stirring for 30 min at room temperature. Beta zeolite seeds (130 g) were added in 

the solution and stirred for another 20 min. Then tetraethyl orthosilicate (TEOS, 13.15 mL) was added 

to the mixture and transferred into a Teflon bottle and was stirred for 3 h at room temperature. Afterward, 

the Teflon bottle containing a milky solution was subjected in an oven at 120 οC pre-aging. After 6 h it 

was removed from the oven and centrifuged, washed with acetone and dry it at 120 оC for overnight by 

placing in the oven.  Furthermore, the attained white solid was crushed and calcined in a furnace at 550 
οC for 6 h to yield the cockscomb-like fibrous silica beta zeolite (FSBEA) support. BEA and FSBEA 

symbols were used for commercial and as-synthesized catalysts, respectively. 

2.2.  Characterization 

Both samples were studied by The X-rays powder diffractometer (Bruker Advance D840 kV) using Cu 

Kα as a source of radiation in the range of a 2θ angle (5-85°)  with the wavelength of 1.544 Å using 0.1 

scan rate. Fourier-transform infrared (FTIR) spectroscopy was employed using KBr on both samples in 

scan range of 400-4000 cm-1 on an Agilent FTIR spectrometer (Carry 640).  Microscopic surface 

morphology for both catalysts were analyzed by field emission scanning (FESEM). The N2 

physisorption analysis was performed by Beckman Coulter SA 3100 equipment using N2 adsorption-

desorption to investigate the Brunauer-Emmett-Teller (BET) surface area, total pore volume at -196 οC. 

In addition, pore size distribution was measured through non-local density functional theory (NLDFT) 
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method.  The catalysts were evacuated first at 300 оC for 1 h before being subjected to the adsorption-

desorption of N2.  

 

2.3. Catalytic performance  

To perform CO methanation, a fixed-bed quartz reactor employed. Before to run the reaction, each 

catalyst of 0.2 g was heated in presence of air for 1 h at 500 οC and reduced in H2 steam of 10 mL/min 

for 3 h at same temperature. The temperature was adjusted to the 150 οC. The feed gases (CO and H2) 

were injected to fixed bed quartz reactor using 1:5 mass ratio at 0.1 MPa. A gas chromatograph (GC; 

6090N Agilent Gas Chromatograph) was connected to thermal conductivity detector (TCD) to measure 

the composition of the outlet gases during catalytic performance. The following formulae were used to 

measure the products, in form of the CO conversion, selectivity and rate of formation and yield of 

methane: 

 

XCO (%)   = 
MC𝐻4    +M C𝑂2

MCO + MC𝐻4  +M C𝑂2 
×100                                                                                             (1)      

 

SC𝐻4  (%) = 
MC𝐻4   

MC𝐻4  +MC𝑂2  
×100                                                                                                       (2)     

 

 SCO2
 (%) =  

MC𝑂2
 

MC𝐻4  + MC𝑂2  
×100                                                                                                    (3)      

 

 YC𝐻4  (%) = 
XCO  ×SC𝐻4  

100
                                                                                                                (4)     

 

YCO2
 (%) =  

XCO  ×SCO2

100
                                                                                                                  (5)           

 

 Rate of C𝐻4 formation (mmol m-2 s-1=  
nC𝐻4

  

W𝑐𝑎𝑡 × s
                                                                           (6) 

 

In these equations, XCO is the CO conversion, SC𝐻4  is the selectivity, 𝑌C𝐻4
  is the methane yield and M 

is the number of moles of CO, CH4 and CO2. W is the weight of catalysts and s is time in second  

3.  Results and discussions 

3.1.  Morphological, crystallinity and textural studies 

Figure 1 presents the microscopic study of both commercial BEA zeolite and as-synthesised FSBEA. It 

shows that FSBEA was synthesised successfully from commercial BEA. It is worth noting that clusters 

of irregular particles (Figure 1A) were changed to unique and well-developed nanospheres (400-800 

nm) analogous to well-ordered cockscomb-like morphology of FSBEA (Figure 1B). It looks similar to 

the KCC-1 structure that was synthesized first time by Polshettiwar et al. in 2010 [14]. This tremendous 

configuration of FSBEA could be effective later, leading to improved surface area and pore size for 

enhanced CO methanation. 
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Figure 1. FESEM images of (A) BEA and (B) FSBEA. 

 

Figure 2A displays the XRD diffractogram of the commercial BEA and FSBEA catalysts. Several 

peaks were noticed at 2θ =  7.8°, 21.5°, 27.2°, 29.9°, and 43.6°. It should be noted that the characteristic 

peaks of FSBEA were similar to the peaks of BEA, which reflected as-synthesized FSBEA without any 

significant change (JCPDS file No. 00-004-0477) [21]. However, in the case of FSBEA, a substantial 

loss of crystallinity was observed, particularly at 2θ = 7.8° and 21.5°, which implied the growth of silica 

spices around the core-shell of BEA. A similar phenomenon was noticed in fibrous silica beta zeolite 

(FSB) [21], protonated fibrous silica@BEA zeolite [19] and fibrous silica ZSM-5, where the XRD 

intensity decreased due to high silica growth over the core-shell [18]. 

Figure 2B shows the FTIR spectra in the range of 1600-400 cm−1 region. A series of vibrational bands 

appeared at 1230 cm-1, 1084 cm-1, 960 cm−1, 790 cm-1 and 574 cm-1, 524 cm-1 and 460 cm−1. The first 

four bands (1230 cm-1, 1084 cm-1,790 cm-1  and 460 cm−1 ) expressed to external and internal asymmetric 

stretching, symmetric and bending vibrations of T-O-T in the framework, respectively [21]. The band 

at 960 cm−1 is ascribed to the external SinOH group [25]. The bands 574 cm−1 and 524 cm−1 indicated 

the presence of 5- and 6-membered rings of the zeolite [26]. These results confirmed the successful 

synthesis of FSBEA without any significant change.  
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Figure 2. (A) XRD diffractogram and (B) FTIR spectra of BEA and FSBEA. 

 

Figure 3 illustrates the N2 physisorption isotherms of BEA and FSBEA catalysts. Both samples revealed 

Type IV isotherms with the H3 hysteresis loop. According to the IUPAC classification, this is the 

characteristic of mesoporous materials [22]. It is worth noting that N2 adsorption at lower (P/Po = 0 - 

0.2) indicated the presence of micropores. Whereas, N2 adsorption at higher relative pressure (P/Po = 

0.8 -1.0) presented mesopores [24]. In addition, the N2 adsorption in FSBEA at P/Po = 0.3-0.4 and P/Po 

= 0.9 were due to intra- and interparticle porosity, respectively [23]. As a result of FSBEA, it showed a 

higher surface area of 532 m2/g) as compared to commercial BEA (407 m2/g), listed in table 1. The 

narrow range pore size distribution derived by NLDFT showed a sharp peak in the range of 4 nm to 

7.2 nm and 20 nm to 25 nm corresponded to the presence of mesopore in FSBEA. It might be due to the 

self-assembly of surfactant. Whereas, the small peaks due to mesopores formed by the distance between  

the silica lamellar structures [19, 23]. These observations are highly in line with the FESEM results. 
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Figure 3. N2 adsorption-desorption isotherms and NLDFT pore size distribution of (A) 

BEA and (B) FSBEA. 

 

Table 1. physicochemical properties of the catalyts. 

 

Catalysts  Surface area a 

m2/g 

Total pore 

volume a 

cm3/g 

Mesopore volume 
b 

cm3/g 

Micropore 

volume a 

cm3/g 

FSBEA 532 1 0.91 0.09 

BEA 407 0.61 0.47 0.14 
a Determine from BET and non-local density functional theory (NLDFT) 
b Total pore volume-micropore volume by t-plot method  

 

3.2.  Catalytic performance of CO methanation activity 

Figure 4 demonstrates catalytic performance for CO methanation activity. It was noticed that both BEA 

and FSBEA catalysts demonstrated lower performance below 250 οC. It is worth noting that catalytic 

activity was improved with subsequent heating higher temperatures (350-450 οC) and reached a 

maximum value at 450 οC. FSBEA showed CO conversion 71 % and methane selectivity 64%. Whereas, 

BEA showed CO conversion 57 % and 55 % methane selectivity (Figure 4AB). Besides, in terms of the 

rate of formation of CH4, FSBEA demonstrated 0.0375 mmol m-2 s-1 higher than BEA (0.0225 mmol m-

2 s-1 figure 4C. It was observed that at a higher temperature (500 оC) catalytic activity decreased and 

chemical reactions showed the tendency to attain equilibrium (Figure 4AB). This may be due to the 

occurrence of a water gas shift reaction (WGS), which is the most common side reaction during CO 

methanation. To compare these experimental values, we calculated theoretical equilibrium lines for CO 

conversion and CH4 selectivity using the HSC Chemistry software 6.0 package at the same conditions 

of experimental catalytic performance. It should be noted that CO conversion and CH4 selectivity were 

consistent with theoretical equilibrium lines at high temperature. Which indicates that 

thermodynamically, experimental values are within the possible range. CO2 was produced as a by-
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product during WGS reaction. It was seen that an increase in temperature produces more CO2, as shown 

in figure 4E. CO methanation is generally performed in the presence of metal on support material, which 

acts as active sites to interact and adsorb the CO and H2 molecules. In this study we suggest that intra- 

and inter-particle porosity in as-synthesized catalyst FSBEA is the main key factor to enhance the CO 

methanation activity. Similar studies have been conducted on metal-free fibrous supports for CO 

methanation, where a comparative study was tabulated in table 2. Moreover, thermal stability analysis 

was conducted at 450 оC for a 65 h time span, and figure 4F specifies that BEA showed deactivation 

after 31 h, ‘where FSBEA demonstrated high thermal stability of 43 h under the same condition’. 

 

Figure 4. (A) CO conversion, (B) Selectivity of methane (C) Rate of formation of methane, and (D) 

CH4 yield, (E) CO2 yield and (F) Thermal stability at 450 οC for BEA and FSBEA.  Equilibrium line 

(dash line) calculated by HSC Chemistry 6 software.  
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Table 2. Comparison study of catalytic activities towards CO methanation. 

 

Catalysts Reaction 

Temperature 

(οC) 

CO 

conversion 

(%) 

CH4 

selectivity 

(%) 

CH4 

Yield 

(%) 

Stability 

(time/h) 

Ref. 

FSBEA 450 71 64 46 47 This study 

BEA 450 57 55 33 31 This study 

FmZSM-5 450 63 69 44 50 [20] 

Ni/α-Al2O3 450 61 68 42 50 [27] 

mZSM-5 450 62 71 43 30 [28] 

MoO3/Si-

ZrO2 

550 63 59 37 5 [29] 

4. Conclusion 

This study revealed a remarkable catalytic performance of cockscomb-like fibrous silica BEA zeolite, 

which was synthesized by the microemulsion system and characterized by FESEM, XRD, N2 

physisorption, and FTIR spectroscopy. The obtained encouraging results discovered that FSBEA had a 

high surface area, total pore volume, and mesoporosity. FSBEA showed 71 % of CO conversion, 64% 

of methane selectivity and 0.0375 mmol m-2 s-1 of formation of methane with 43 h thermal stability. 

Catalytic performance results proved that cockscomb-like morphology played a key role to enhance CO 

methanation. It is suggested that FSBEA can be an effective catalyst in heterogeneous base-catalyzed 

reactions. Particularly, in CO hydrogenation catalysts for industrial applications. It presents an attractive 

and sustainable route for production SNG, which can be used as a clean and alternate energy source for 

fossil fuels. 
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