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ABSTRACT 

Peanut skin, which contains a high level of catechin, is removed as waste in 

peanut industry. Catechin is well-known for its antioxidant activity.  In this study, 

modified supercritical carbon dioxide (SC-CO2) extraction assisted by ethanol was 

performed to extract catechin from peanut skin. Modified SC-CO2 extraction was 

carried out at various experimental conditions. The effects of pressure, temperature 

and ratio of modifier on the extraction yield, catechin and antioxidant activity were 

investigated by using the response surface methodology (RSM). Three established 

solubility models, including the Chrastil, the Del Valle Aguilera and Adachi Lu 

models were applied to describe the solubility behaviour. However, the formulation 

of a new solubility-based model is needed to adapt the presence of ethanol as a 

modifier. There were two new models, namely Well-Mix (W-M) and Unwell-Mix 

(U-M) models, proposed in this study with the assumption of significant solubility 

enhancement being promoted by the addition of ethanol. Furthermore, the capability 

of W-M and U-M models were examined by fitting the published solubility data of 

Areca catechu, Rosehips and Avocado seeds. The maximum extraction yield 

(15.34%), catechin concentration (156.40 µg/gextract) antioxidant activity (95.99%) 

were obtained at 25.24 MPa, 60.83°C and 6.95 v/v% of modifier, respectively. It is 

proven that the effect of pressure and ratio of modifier were the significant factors 

required to achieve high yield extract, whereas the temperature and ratio of modifier 

effect gave the significant impact to obtain high catechin concentration and 

antioxidant activity. The W-M model offered the best fitting among all the models to 

correlate the solubility data of peanut skin extract with the lowest percentage of 

average absolute relative deviation (%AARD) of 4.20% and high coefficient of 

determination (R2) of 0.976 achieved. The coefficient values of 𝑘1(𝐶𝑂2) and 𝑘2(𝐸𝑡−𝑂𝐻) 

were 0.716 and 0.076, respectively. It is hence believed that the solvation power of 

SC-CO2 was higher than ethanol to increase the solubility of peanut skin extract. 

Furthermore, the endothermic reaction was reported, where the solubility of solute 

increased with the temperature. It is also confirmed that the new models (W-M and 

U-M) demonstrate a good capability to fit the solubility data of Areca catechu, 

Rosehips and Avocado seeds as low average percentage of AARD (<15%) and high 

R2 (> 0.8) were reported. The results of this study reveal that peanut skin is a 

potential source for pharmaceutical compounds and the new models could predict 

successfully the solubility of the solid solute in SC-CO2 with the addition of 

modifier. 
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ABSTRAK 

Kulit kacang yang mengandungi kandungan katekin yang tinggi, dibuang 

sebagai sisa dalam industri kacang. Katekin terkenal dengan aktiviti antioksidanya. 

Dalam kajian ini, pengekstrakan karbon dioksida superkritikal terubahsuai (SC-CO2) 

berbantu etanol dilakukan untuk mengekstrak katekin daripada kulit kacang. 

Pengekstrakan SC-CO2 terubahsuai dijalankan pada keadaan eksperimen yang 

pelbagai. Kesan tekanan, suhu dan nisbah pengubah suai terhadap hasil ekstrakan, 

katekin dan aktiviti antioksidan yang tinggi dikaji dengan menggunakan Kaedah 

Tindak balas Permukaan (RSM). Tiga model keterlarutan yang sudah mantap 

termasuk model Chrastil, Del Valle Aguilera dan Adachi Lu digunakan untuk 

menjelaskan tingkah laku keterlarutan. Walau bagaimanapun, rumusan model 

berasaskan kelarutan yang baharu diperlukan untuk menyesuaikan kehadiran etanol 

sebagai pengubah. Terdapat dua model baharu iaitu model Well-Mix (W-M) dan 

model Unwell-Mix (U-M), yang dicadangkan dalam kajian ini dengan andaian 

peningkatan keterlarutan yang ketara digalakkan dengan penambahan etanol. Selain 

itu, keupayaan model W-M dan U-M dikaji dengan memadankan data keterlarutan 

Areca catechu, biji Rosehips dan biji Avokado yang diterbitkan. Hasil pengekstrakan 

maksimum (15.34%), kepekatan katekin (156.40 μg / gekstrak) dan aktiviti antioksida 

(95.99%) masing-masing diperoleh pada 25.24 MPa, 60.83°C dan 6.95 v/v% 

pengubah suai. Telah terbukti bahawa kesan tekanan dan nisbah pengubah  suai 

adalah faktor penting yang diperlukan untuk mencapai hasil ekstrak, sedangkan 

kesan suhu dan nisbah pengubah memberikan kesan yang ketara untuk mendapatkan 

kepekatan katekin tinggi dan aktiviti antioksidan. Model W-M menawarkan padanan 

terbaik di antara semua model untuk mengaitkan data keterlarutan ekstrak kulit 

kacang dengan peratusan rendah purata mutlak sisihan relatif (%AARD) pada 4.20% 

dan pekali penentuan (R2) tinggi pada 0.976 yang diperoleh. Nilai pekali 𝑘1(𝐶𝑂2) dan 

𝑘2(𝐸𝑡−𝑂𝐻)  masing-masing adalah 0.716 dan 0.076. Oleh itu, dipercayai bahawa 

kekuatan pensolvatan SC-CO2 adalah lebih tinggi daripada etanol untuk peningkatan 

kelarutan kulit kacang. Tambahan pula, reaksi endotermik dilaporkan, dengan 

keterlarutan larutan meningkat dengan suhu. Disahkan juga bahawa model-model 

baharu (W-M dan U-M) menunjukkan keupayaan yang baik untuk menyesuaikan 

data keterlarutan Areca catechu, biji Rosehips dan biji Avokado sebagai purata 

rendah %AARD (<15%) dan R2 tinggi (> 0.8) yang dilaporkan. Hasil kajian ini 

menunjukkan bahawa kulit kacang merupakan sumber yang berpotensi untuk 

sebatian farmaseutikal dan model baru dapat meramalkan kelarutan larutan pepejal 

dalam SC-CO2 dengan tambahan pengubah suai dengan jayanya. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Peanut (Arachis hypogaea) is commonly grown in tropical and subtropical 

zones as a commodity that potentially supports farming economies of both small-

scale holders and large-scale commercial producers. The global annual production of 

peanuts is reported to be 46 million tons per year on average. Peanut contains 21 to 

36.4% of protein, 18% of carbohydrates and 36 to 54% fat (Bindhya and Anita, 

2015). Peanuts are employed as raw materials in various food manufacturing 

industries, including peanut butter, roasted peanut snacks, peanut oil and peanut 

confections industries (Yu et al., 2006). However, Peanut skin is usually removed as 

residue or by product before peanut consumptions to avoid astringent taste problem 

There is an average skin residue of 3% generated from peanut production annually 

(Elsorady and Ali, 2018). Peanut skin has low economic benefit and is commonly 

discarded or sold at low price for animal feed and plant fertilizer (Hoang et al., 

2008). 

Many recent studies have confirmed that peanut skin contains a wide 

diversity of bioactive compounds such as phenolic acids, tocopherols and flavonols 

which remarkably possess food and pharmaceutical values (Franco et al., 2018). One 

of the bioactive compounds presents in peanut skin is catechin. It is a type of 

flavanol, which possesses two benzene rings with five hydroxyl groups attached. 

Catechin is polar in nature due to its molecular structure. It exists abundantly in 

onion, cocoa, grape skin and tea. This is remarkably comparable with one of the 

notable catechin sources such as Areca Catechu and spearmints, which contains 

0.0716 and 0.14 mgcatechin/gsample, respectively (Bimakr et al., 2011; Ruslan et al., 

2015). Catechin is recognized for its health benefits to human bodies including anti-

inflammatory, anti-HIV, anti-depressant, and anti-hypertensive properties. It takes 
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second place in exhibiting antioxidant activity in comparison with other natural 

antioxidant compounds (Katalinić et al., 2004). 

To date, conventional extraction methods such as maceration and Soxhlet 

extraction are used to extract peanut skin (Nepote et al., 2002). Supercritical carbon 

dioxide (SC-CO2) extraction is a modern and green technology to extract bioactive 

compounds from plants and herbs as it eases the public worry about the presence of 

toxic solvent for consumption. This extraction process uses non-toxic solvent (CO2) 

and operates at low temperature which helps to prevent the degradation of thermo 

labile compounds. The key feature of SC-CO2 extraction is the ability of 

manipulating the dissolving power of CO2 towards targeted compounds by the 

appropriate selection of pressure and temperature. SC-CO2 extraction also offers the 

major advantage in term of producing high purity and high selectivity extract. 

SC-CO2 has the limitation of interest compounds, where it is superb for non-

polar compounds. However, it is quite challenging for extraction of polar compounds 

such as catechin. Therefore, modification of SC-CO2 is needed to break the 

limitation of the interest compounds. Addition of ethanol is one of the modifications 

of SC-CO2 where ethanol can enhance the polarity of SC-CO2 to extract the polar 

compounds. Hence, modified SC-CO2 extraction with additional of modifier is a 

promising technique for extraction of catechin as polar compound. Furthermore, the 

reason of choosing ethanol as modifier is that food grade ethanol is available in the 

market compared to others organic solvents commonly such as n-Hexane, acetone, 

methane and ethane. 

It is often impossible to determine the solute solubility behaviour 

experimentally. Many empirical models are often used to overcome this constraint 

due to their application simplicity as it does not utilize physicochemical properties 

such as critical properties, acentric factor and sublimation pressure. There are three 

types of well-known empirical models, namely Chrastil (Chrastil, 1982), Del Valle 

Aguilera (DVa) (Valle and Aguilera, 1988) and Adachi Lu (A-L) (Adachi and Lu, 

1983) models, which are commonly employed to predict the solubility behaviour of 

the solute. Chrastil model is developed based on the solvato-complex of the 
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interaction between the solute and SC-CO2 (Chrastil, 1982). The DVa model is 

meanwhile the modified Chrastil’s equation with the assumption by which 

temperature gives significant impact to encourage the solubility. On the other hand, 

A-L model is derived with the assumption claiming that density of CO2 is the 

significant parameter to enhance the solubility of solute. Therefore, there are least 

studies that the empirical models consider the effect of polar modifier as one of the 

significant parameters to enhance the solubility of solute. 

1.2 Problem Statement 

Valorisation of catechin rich peanut skin, as a potential natural source of 

antioxidants, from low value material can be economically attractive for the future 

food and pharmaceutical industries. There are currently many established extraction 

technologies used to retrieve bioactive compounds from plants and herbs. Solvent 

extraction using alcohol is the most common extraction method used. However, it 

has the major drawbacks like long extraction time, high consumption of toxic 

solvent, low extraction selectivity and decomposition of heat sensitive compounds. 

To overcome the mentioned limitations, SC-CO2 extraction is one of the promising 

alternatives that offers the high quality of extract production. CO2 is non-polar in 

nature, which make it an outstanding green solvent to extract non-polar compounds 

but not for polar compounds. The addition of a small amount of ethanol could 

significantly enhance the both extract yield and catechin with high antioxidant 

activity extract by improving the polarity of CO2. There are several parameters, such 

as temperature, pressure, flowrate of CO2, presence of modifier, extraction time, 

particle size and moisture content of feed, that affecting the yield and quality of 

extract. Therefore, the identification of the most affecting factors and the best 

operating condition to maximize the extract yield and quality should be conducted. 

In SC-CO2 extraction process, the feasibility of the extraction process can be 

evaluated by predicting the solubility behaviour of the interested solute using the 

well-known solubility models. However, the established models fail to accurately 

correlate the solubility data involving two different solvents as these models usually 
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neglect the presence of modifier. Hence, the formulation of the new solubility model 

is proposed in this study. The coefficient value generated from the new model can be 

employed to determine the solvation power of SC-CO2 and ethanol. The dominant 

solvent can hence be identified.  

1.3 Research Objectives 

The objectives of this study are: 

i. To determine the optimum operating conditions on the high yield, 

catechin and antioxidant activity from peanut skin by modified SC-CO2 

extraction. 

ii. To develop new solubility models for SC-CO2 extraction and comparison 

with the established solubility models. 

iii. To evaluate the capability of new models to fit solubility of plants extract 

in SC-CO2. 

1.4 Scopes of the Study 

The scopes of this study include: 

i. Preliminary studies were needed to fix the selected variables. The 

preliminary operating conditions of extraction were pressure (10 and 

30 MPa), temperature (40 and 70 °C) and the flow rate of carbon 

dioxide (2 to 4 mL/min) with 4 hours extraction time. 

ii. The quantification of catechin was determined using High-

Performance Liquid Chromatography (HPLC) by overlaying the peak 

area obtained with the catechin standard.  
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iii. Antioxidant activities of the extract were analysed by using 2,2-

Diphenyl-1- picrylhydrazyl (DPPH) method. 

iv. The operating conditions for extraction were pressure (10 to 30 MPa), 

temperature (40 to 70 °C) and the ratio of modifier (2.5 to 7.5%). 

Response surface methodology is used to determine the best condition 

and the most significant parameters. 

v. The result of multiple response optimisation of the peanut skin 

extraction was compared by Soxhlet extraction with different solvents 

such as ethanol, water and n-hexane in term of the yield extract, 

antioxidant activity and catechin concentration. The temperature 

condition was based on the boiling temperature point of each solvent. 

vi. Formulation of new density-based model was developed from Chrastil 

model. The main assumption was the final product extraction was 

homogeneous or heterogeneous phase. Therefore, the coefficient 

values of new models were established to determine the solubility 

behaviour. 

vii. The new models were compared with other established solubility 

models (DVa, Chrastil and Adachi Lu). The best fitting of solubility 

data was based on the low percentage of average absolute relative 

deviation (%AARD) and high coefficient of determination (R2).  

viii. The proposed new models were applied to fit another established 

solubility data of plants (Areca catechu, avocado seeds and rosehips 

seeds). The new models were evaluated based on the (%AARD) and 

(R2) between solubility data and the model to determine the capability 

of the new models fitted another solubility plant extract 
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1.5 Significance of Study 

There are two critical points in the significance of the study. First, the 

optimum conditions of modified SC-CO2 to obtain the high yield, catechin and 

antioxidant activity. Furthermore, the two new models are established through this 

study to determine the solubility behaviour of plant extract in SC-CO2 and ethanol. 

Besides, the models can examine the solvation power of SC-CO2 and ethanol in the 

extraction process. Therefore, the dominance of solvents between SC-CO2 and 

ethanol can be determined.  

1.6 Limitations of the Study 

The limitation of this study is that the maximum operating pressure has been 

restricted to 30 MPa, while the temperature was 70 oC. Although, the melting point 

of catechin is 175 °C, the catechin will degrade at temperature 70 °C (Ruslan et al., 

2018). This is due to the thermo labile effect of catechin. Yesil-Celiktas et al. (2008) 

also found that degradation in catechin was observed when treated at 80 °C. 

Furthermore, the ratio of modifier was restricted to 7.5% due to the prevention the 

changing supercritical phase to subcritical phase (Machmudah et al., 2006).   

1.7 Thesis Outline 

This thesis is organised in five chapters. Chapter 1 begins with the 

introduction of this research project along with a brief introduction of supercritical 

fluid extraction, catechin as the bioactive compound of Arachis hyphogea skin and 

various models. This chapter also includes the problem statements that motivated this 

research, the objectives, scopes and significance of this research. 
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Chapter 2 presents an overview of the pharmacology properties of the peanut 

(Arachis hyphogea) skin. This chapter also describes the fundamental theory of 

supercritical fluid extraction, chemical and physical properties. It also presents the 

selection of extraction conditions and solvents, and a review of the previous research 

related to the topic of interest. The response surface methodology (RSM) and 

modelling of SC-CO2 extraction are also reviewed in this chapter. 

Chapter 3 describes the detailed methodology to achieve the research 

objectives. The experimental work for the extraction process, compound analysis and 

biological analysis are mentioned as a guideline for this research. The design of 

experiments is also presented in this chapter. The explanation of the formulation of 

the new solubility model is also explained in this chapter. 

Chapter 4 is discussed in two different parts. The first part presented the 

findings through experimental work including the effects of operating conditions on 

the extracted yield and catechin concentration. The mathematical models of 

solubility behaviour are discussed in the latter part. 

Finally, Chapter 5 highlights the conclusions and recommendations of the 

work. The conclusions are summarised based on the results and discussion in 

Chapter 4. The recommendations presented suggest guidance and improvement for 

future work related to the modified SC-CO2 extraction and peanut skin. 
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