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ABSTRACT 

Most of TRIGA research reactors has successfully converted the 

instrumentation and control (I&C) system from analog-based to digital-based. The 

digital I&C system is capable to monitor and control variables and parameters as well 

as to react to the design safety limits and conditions. In this study, the methodology on 

monitoring three of the core safety-related parameters was developed using the 

Adaptive Neuro-Fuzzy Inference System (ANFIS) method at Reactor TRIGA 

PUSPATI (RTP). There were two parts involved which were parameter prediction and 

deviation calculation. Each parameter was generated with 12 -14 fuzzy inference 

system (FIS) models according to input-partitioning types. The generated model then 

underwent the training and testing phases to identify the good fit models which can be 

calculated based on three statistical calculations which are correlation coefficient (R2), 

mean absolute error (MAE) and root mean square error (RMSE) to be further validated 

using a novel dataset. The second part of this study was carried out by constructing the 

algorithm to calculate the relative error between the predicted parameters and the 

design safety limit. For validation, the novel RTP dataset was used to select only one 

good fit model with an optimum input-partitioning method to represent the ANFIS 

model for parameter prediction in the monitoring system. In fuel temperature reactivity 

coefficient (FTC) validation, the results show that the Model 12 with fuzzy c-mean 

and the initial clusters centers of 3 had the lowest MAE and RMSE values which were 

0.0110 and 0.1051 respectively however the R2 values are poor; R2 at 0.0795. For the 

fuel pin power (FPP) parameters at 12 fuel rods radial locations, Model 7 and Model 

8 with subtractive clustering as the input-partitioning types and the optimal influenced 

radius values of 0.40 and 0.45 were selected to represent the FPP parameters at B04 

and the rest of the fuel rods. The results show a good accuracy in predicting FPP 

parameters as the MAE and RMSE were calculated with the lowest values on each of 

fuel rod. The predicted FPP also shows a strong R2 values of 94% on the average. The 

validation of the power peaking factor (PPF) at the hot rods determined by the 

TRIGLAV code also demonstrates a good ANFIS model with 0.45 as the optimal 

influenced radius value in subtractive clustering input-partitioning types in Model 8. 

The model results in the lowest MAE and RSME with the R2 values at 0.1844, which 

is quite low. Although the calculated R2 for FTC and PPF parameters have weak R2 

values, this statistical calculation was only used to present the relationship between the 

actual and prediction output and was not used as the primary model performance 

evaluation to conclude on the models’ accuracy and capability to predict the 

parameters. Thus, from these findings, the inclusion of FTC, FPP and PPF with 

specific optimal input-partitioning type on each ANFIS model can be implemented in 

the monitoring system for enhancing the reactor safety at TRIGA research reactors. 
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ABSTRAK 

Kebanyakkan reaktor penyelidikan TRIGA telah berjaya menukar sistem 

instrumentasi dan kawalan (I&C) dari pangkalan-analog ke pangkalan-digital.  Sistem 

I&C digital mampu memantau dan mengawal pembolehubah dan parameter serta 

bertindak balas terhadap had dan syarat keselamatan yang telah ditetapkan. Dalam 

kajian ini, kaedah untuk memantau parameter teras yang berkaitan dengan 

keselamatan teras telah dimajukan di Reaktor TRIGA PUSPATI (RTP) dengan 

mengunakan teknik sistem Inference Neuro-Fuzzy Adaptive (ANFIS). Terdapat dua 

bahagian yang terlibat dalam kaedah yang dibangunkan iaitu parameter ramalan dan 

pengiraan sisihan. Setiap parameter telah dibina dengan 12-14 model fuzzy inference 

system (FIS) berdasarkan jenis pembahagian-input. Proses latihan dan ujian terhadap 

model FIS telah dijalankan untuk mengenalpasti beberapa model yang baik melalui 

pengiraan statistik seperti pekali korelasi (R2), purata ralat mutlak (MAE) dan punca 

purata kuasa dua ralat (RMSE) untuk digunapakai dalam proses pengesahan dengan 

mengunakan set data yang novel. Bahagian kedua iaitu pembinaan algoritma untuk 

pengiraan ralat relatif diantara parameter ramalan dan had keselamatan juga telah 

dijalankan. Seterusnya, dalam pengesahan model ANFIS, data novel RTP telah 

digunakan untuk memilih hanya satu model yang sesuai dengan kaedah pembahagian-

input yang optimum untuk mewakili model ANFIS untuk meramal parameter dalam 

sistem pemantauan teras. Pengesahan untuk parameter pekali suhu reaktif bahan api 

(FTC) mendapati Model 12 dengan fuzzy c-mean serta 3 pusat kluster mempunyai nilai 

MAE dan RMSE yang terendah iaitu 0.0110 dan 0.1051 tetapi mempunyai nilai R2 

yang lemah iaitu 0.0795. Untuk parameter kuasa pin bahan api (FPP) di 12 lokasi radial 

rod bahan api, Model 7 dan Model 8 dengan subtractive clustering sebagai jenis 

pembahagian-input dan nilai optimum pengaruh jejari iaitu 0.40 dan 0.45 telah dipilih 

untuk mewakili parameter FPP di B04 dan rod bahan api yang selebihnya. Hasil 

dapatan kajian menunjukan ramalan FPP parameter yang baik kerana MAE dan RMSE 

dikira dengan nilai terendah untuk setiap rod bahan api. Ramalan FPP ini juga 

menunjukkan nilai R2 yang tinggi iaitu 94% secara purata. Pengesahan bagi parameter 

faktor memuncak kuasa (PPF) di rod bahan api yang panas yang telah ditentukan oleh 

kod TRIGLAV juga menunjukkan pembahagian-input subtractive clustering dan 

optimum jejari iaitu 0.45 pada Model 8 sebagai model ANFIS yang terbaik. Nilai MAE 

dan RMSE juga rendah tetapi mempunyai nilai R2 yang lemah iaitu 0.1844. Walaupun 

R2 untuk ramalan parameter FTC dan PPF mempunyai nilai yang lemah, pengiraan 

statistik ini hanya menunjukkan hubungan diantara parameter ramalan dan sebenar 

serta tidak digunakan sebagai penilaian prestasi model yang utama untuk membuat 

kesimpulan mengenai ketepatan dan keupayaan model untuk meramal parameter. Oleh 

itu, berdasarkan hasil kajian ini, kemasukan FTC, FPP dan PPF dengan optimum 

pembahagian-input yang khusus pada setiap model ANFIS boleh dilaksanakan dalam 

sistem pengawasan untuk meningkatkan keselamatan reaktor di reaktor penyelidikan 

TRIGA. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

A nuclear research reactor can be defined as a reactor for generating and 

utilization of various types of radiations for training, research, and other purposes 

(IAEA, 2005). The common designs of research reactors are pool-type, tank-type, and 

tank-in-pool type reactors. Training, Research, Isotopes, General Atomics (TRIGA) 

reactors are one of the pool-type design that has the unique fuel element (UZrHx) and 

can be operated either at steady state or in a safe pulse mode to a very high power level 

in a fraction of second (IAEA, 2016a). According to the IAEA (2006), every research 

reactor should be equipped with the highest safety standards to ensure people and the 

environment surrounding the reactor's area are protected and safe from any radiation 

hazards. Most of the research reactors have small potential hazards towards the 

radiological consequences to the public compared with power reactors. However, the 

reactor may pose a greater potential hazard to the site worker and operating personnel 

(Adorni et al., 2007). 

 Therefore, research reactors should be installed with a system that is capable 

to monitor and record the reactor’s behavior to maintain the reactor’s safety. This can 

be done by monitoring the operational and safety parameters using process signals 

with the detection of any deviation that occurred during the reactor operations to 

ensure the reactor’s integrity and to protect the personnel from any radiation hazard. 

The system that specifically monitors the reactor core behavior continuously is the 

core monitoring system which is capable of providing the core status (Zagrebaev et 

al., 2017). Besides, the core monitoring system also helps in responding to the plant 

operation’s requirement and can be utilized for various purposes such as in nuclear 

fuel cycle strategies, fuel design, and safety analysis (Jozef & Radim, 2014). 
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In TRIGA reactors, the core monitoring system works by transmitting the 

instrumentation signals directly from the core to the Data Acquisition and Signal 

Processing (DAQ) System and Control Console System which are connected to the 

independent control system computer via high-speed ethernet link to display the real-

time operational and safety parameters on the reactor data display and reactor graphic 

display in the control room (General Atomics, 2015). Most of the parameters that are 

monitored for the core status have instrumentation such as thermocouples to monitor 

the fuel temperature and pool temperature, wide range fission chamber for neutron flux 

monitoring, wide-range logarithmic instrument for continuous indication of reactor 

power from source level to full power, and others.  

However, there are supplementary parameters that are related to the core safety 

which cannot be measured directly using instrumentations and require complex 

derived calculation. The limitation excludes these core safety-related parameters from 

being monitored during reactor operations. Besides, these parameters are frequently 

calculated using a computational method such as Monte Carlo N-particles code 

(MCNP), CITATION code, TRIGLAV code and others which usually consume a great 

amount of computational time and cost. To overcome these problems, several studies 

that have successfully introduced and implemented the application of the soft 

computing technique to estimate and predict the core safety-related parameters. 

Besides, the soft computing technique has also been implemented successfully in 

various nuclear field by using fuzzy logic, fuzzy inference system (FIS), artificial 

neural network (ANN) and evolutionary algorithm in reactor power control, reactor 

surveillance and diagnostic, fault detection system, nuclear fuel management and 

others that are related to reactor safety improvement for efficient reactor operations 

(Jayalal et al., 2014; Muzzamil & Ali, 2013). ANN is one of the soft computing types 

that has been reported and used widely in nuclear fields.  Recently, a lot of researches 

have proved the ability of the ANN to estimate and predict the derived parameters such 

as power peaking factors, thermal margin, and effective multiplication factors (Mazrou 

& Hamadouche, 2004; Montes et al., 2009; Na et al., 2004; Amany et al., 2015).  

Therefore, the goal of this study is to develop a new methodology on 

monitoring the core safety-related parameters by using the combination of two soft 
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computing techniques (FIS and ANN) which is an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) to upgrade the current core monitoring system for safe and efficient 

reactor operations in TRIGA research reactors. The developed methodology consists 

of two parts where the first part is for the parameter prediction using the ANFIS 

method and the second part is for the comparison between the predicted parameter and 

the established safety limit value as stated in the Safety Analysis Report (SAR). The 

validation will be conducted by using the novel operational reactor data while the 

accuracy and the performance of the method will be evaluated using statistical analysis 

approaches.  

1.2 Problem Statement 

Reactor TRIGA PUSPATI (RTP) is the only TRIGA research reactor that is 

available in Malaysia and has been operated safely for more than 30 years without any 

incident as stated in the unusual event reporting categories (Julia et al., 2011). 

According to Lanyau et al. (2012), the reactor was in the progress to upgrade the 

reactor power from low to high power due to the demand for increasing the neutron 

flux for diversifying the reactor utilization. In Farid et al. (2019), the RTP has been 

successfully upgraded to enhance the reactor’s safety based on five strategic programs. 

One of the five programs is the upgrading of the instrumentation and control (I&C) 

system at the reactor console from analog-based to digital-based. However, there are 

only five safety and operational parameters that are available and monitored on the 

digital RPS to represent the reactor status. The parameters include fuel temperature, 

pool water level, reactor percent power, wide range neutron monitoring system and 

reactor period. Besides, only reactor percent power and fuel temperature parameters 

are displayed directly from the instrumentation to the reactor console.  

Although the reactor has been operated safely at low power with only five basic 

parameters being monitored as recommended in IAEA (2016a), it is necessary to 

include the core safety-related parameters in the core monitoring system to improve 

the safety of the reactor, personnel, and the environment when the reactor is ready to 

be operated at high power. The core safety-related parameters such as temperature 
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reactivity coefficient, fuel pin power, and power peaking factors have high influential 

towards the reactor’s safety which are frequently calculated using computational code 

like MCNP and TRIGLAV in RTP reactor. Since these parameters require high 

computational cost and time, the parameters are excluded to be monitored in the RPS 

of RTP.  In this study, the development of the new methodology to monitor these core 

safety-related parameters will be conducted by the prediction method by using the soft 

computing technique which is ANFIS. 

Besides that, the application of ANFIS for parameter prediction in the nuclear 

research reactor is limited. Most of the previous studies used the application of ANN 

to estimate the core parameters as reported in Jiang et al. (2008), Hedayat et al. (2009) 

Schlünz et al. (2015) and Amany et al. (2015). Thus, in this study, the exploration of 

the ANFIS method is carried out extensively by developing the ANFIS model and the 

deviation algorithm construction in order to upgrade the core monitoring system in 

RTP. 

1.3 Objectives 

The main aim of this study is to develop a new methodology for the deployment 

of the core safety-related parameters to upgrade the current RTP core monitoring 

system by using the ANFIS method. To accomplish this aim, the following specific 

objectives will be fulfilled: 

(a) To upgrade the RTP core monitoring system by using an algorithm from the 

ANFIS method for prediction on the core safety-related parameters. 

(b) To construct the deviation algorithm between the predicted parameter 

developed in (a) with the design limit value stated in the Safety Analysis Report 

(SAR) of RTP. 

(c) To verify the algorithm developed in (a) and (b) using a novel RTP dataset for 

the evaluation assessment of the developed model based on the performance 

and accuracy.  
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1.4 Scope of the Study  

As this research was focusing on the TRIGA type of research reactors, the 

reactor selected in this study was the RTP that is located in Malaysia and is under 

planning to upgrade the current reactor power to a high power reactor for various 

application especially in reactor physics, thermal-hydraulic, and others (Lanyau et al., 

2012). Since the RTP has been operating for more than 30 years, the improvement and 

replacement of various reactor components are necessary to ensure and maintain the 

reactor’s integrity and to ensure safe reactor conditions. Thus, this study proposes to 

enhance the reactor’s safety by upgrading the current core monitoring system by 

adding three important core safety parameters that typically require complex 

computation code to calculate.  

The upgrade core monitoring system developed in this study is focusing on 

monitoring the parameters that are related to reactor core safety. This study is limited 

to three parameters that have a high influence on reactor safety and efficient reactor 

operation. The selected core safety-related parameters are the fuel temperature 

reactivity coefficient (FTC), radial fuel pin power distribution (FPP), and hot rod 

power peaking factor (PPF). The FTC parameter is chosen as the TRIGA reactor has 

the unique safety feature which allows the reactors to automatically shut down the 

operation even all the control rods were removed. Thus, having the FTC parameters 

on the monitoring system can help the reactor operators, trainees, personnel, students, 

and researchers to understand better about the core status and behavior as well as for 

better reactor performances. Besides, the FPP parameters and the PPF parameters are 

also listed in the core safety parameters which are important to assure the safe reactor 

operations (Khan et al., 2015). 

These parameters (FTC, FPP, and PFF) require complex derivation calculation 

that is influenced and can be correlated by many factors from parameters that were 

measured directly. Thus, there are only three measured parameters that will be used to 

develop the ANFIS model which are the fuel temperature, the control rod (CR) 

positions, and the neutron flux. The details regarding the correlation between measured 

parameters with the selected core safety-related parameters are shown in Figure 1.1. 
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Figure 1.1 Measured parameters for ANFIS model development. 

 

 

 

1.5 Significance of the Study 

The safe and efficient operations of nuclear reactors are one of the important 

criteria to ensure the reactor integrity and safety of the human and environments. This 

study is focusing to develop a methodology based on soft computing techniques that 

are used to predict the proposed parameters to be implemented in the core monitoring 

system for upgrading the safety of RTP. Besides, the application of soft computing 

techniques has been widely used in the nuclear field and proven as a good functional 

approximation tool in the nuclear field.  

In addition, the developed methodology for upgrading the core monitoring 

system will contribute not only to the reactor’s safety but also for various purposes 

such as education and training as well as providing the reactor operators with the core 

status and knowledge regarding the reactor’s behavior during reactor operation.  

Fuel 

Temperature 

CR 

Positions 

Neutron  

flux 

 

FTC  

ANFIS Model 

 

FPP ANFIS Model 

and PPF ANFIS 

Model 



7 

 

1.6 Organization of the Thesis  

The thesis is structured as follows: the introduction of the research is presented 

sequentially in this chapter and the literature review of related study is presented in 

Chapter 2. In Chapter 3, the methodology for the ANFIS model construction, deviation 

algorithm and the procedure for validation, and verification of the developed 

methodology are presented. The results based on the model construction including the 

model training behavior, model performances evaluation as well as the constructed 

deviation algorithm followed by the validation results are documented in Chapter 4. 

Finally, the conclusion and recommendation for future works are presented in Chapter 

5.
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