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ABSTRACT 

 

 

 

 

 Membrane filtration for microalgae harvesting has been hampered by bio-

fouling. In this research work, feasibility of microalgae harvesting using good anti 

fouling polyethersulfone (PES) membranes was examined. The main objective of the 

study is to develop a high-performance membrane with anti-fouling effect for 

microalgae harvesting. The antifouling PES membranes were fabricated using PES, 

multiwall carbon nanotubes (MWCNT) and two different additives i) lithium 

bromide (LiBr) ii) lithium chloride (LiCl) in dimethylacetamide. PES/MWCNT is 

the control membrane. The membranes were prepared via two methods; non-solvent 

induced phase separation (NIPS) and thermally induced phase separation (TIPS). The 

membrane performances were evaluated in terms of membrane flux, molecular 

weight cut-off and fouling performances. The results show that the morphology of 

the hybrid PES/MWCNT/LiCl and PES/MWCNT/LiBr membranes were very much 

influenced by the phase separation method. Lithium salts helped to increase 

membrane porosity. Flux rates of the membranes were improved dramatically with 

increasing amount of additives when prepared using TIPS. Both NIPS and TIPS 

membranes can separate 100% of the microalgae. In terms of fouling propensity, 

TIPS membrane with LiCl exhibited more than 80% flux recovery while TIPS 

membrane with LiBr showed 100% flux recovery which exhibits excellent anti-

fouling property. The membrane fabricated with 1 wt% MWCNT, 5 wt% LiBr and 

18 wt% PES via TIPS process possessed an excellent filtration performance and anti-

fouling effect. 5.5 g/l Nannochloropsis sp. have been fully retained using the 

fabricated membrane with average flux 28.9 L/m
2
h. Furthermore, the membrane 

demonstrated excellent anti-fouling effect owing to its higher membrane 

hydrophilicity (33.76
o
). Thus, the fabricated membrane can help to improve 

sustainability in algae-based production. 
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ABSTRAK 

 

 

 

 

 Penurasan membran untuk penuaian mikroalga telah terhalang oleh 

biokotoron. Di dalam kajian ini, kebolehan penuaian mikroalga menggunakan 

antikotoran membran polietersulfon (PES) yang baik telah dikaji. Objektif utama 

kajian ini ialah untuk menghasilkan sebuah membran berprestasi tinggi dengan kesan 

antikotoran untuk penuaian mikroalga. Antikotoran membran PES telah dibuat 

menggunakan PES, karbon nanotiub dinding berbilang (MWCNT) dan dua bahan 

tambah berlainan i) litium bromida (LiBr) ii) litium klorida (LiCl) dalam 

dimetilasetamid. PES/MWCNT adalah membran kawalan. Membran telah dihasilkan 

melalui dua kaedah; fasa permisahan bukan-pelarut teraruh (NIPS) dan fasa 

permisahan haba teraruh (TIPS). Prestasi membran telah dinilai dari segi fluks 

membran, potongan berat molekul dan prestasi kotoran. Keputusan menunjukkan 

bahawa morfologi hibrid membran PES/MWCNT/LiCl dan PES/MWCNT/LiBr 

sangat dipengaruhi oleh kaedah fasa pemisahan. Garam litium telah membantu untuk 

meningkatkan keliangan membran. Kadar fluks membran bertambah baik secara 

dramatik dengan penambahan jumlah bahan tambah apabila menggunakan TIPS. 

Kedua-dua membran NIPS dan TIPS boleh memisahkan mikroalga 100%. Dari segi 

kecenderungan untuk kotor, membran TIPS dengan LiCl mempamerkan lebih 80% 

perolehan fluks manakala membran TIPS dengan LiBr menunjukkan 100% 

perolehan fluks iaitu mempamerkan kecemerlangan sifat antikotoran. Membran yang 

diperbuat dengan 1 wt% MWCNT, 5 wt% LiBr dan 18 wt% PES melalui proses 

TIPS mempunyai prestasi penurasan dan kesan antikotoran yang cemerlang. 5.5 g/l 

Nannochloropsis sp. telah sepenuhnya ditahan menggunakan membran yang dibuat 

dengan purata fluks 28.9 L/m
2
h. Tambahan pula, membran tersebut menunjukkan 

kesan antikotoran yang cemerlang kerana ketinggian hidrofilik membran (33.76
o
). 

Oleh itu, membran yang dibuat dapat membantu untuk membaiki kelestarian 

pengeluaran berasaskan alga. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Overview 

 

 

Membrane filtration has emerged as a promising tool for many separation 

processes. This is because it is easy in operation, requires only low operating 

pressure and temperature and does not require any chemical addition. The concept of 

membrane filtration is molecular sieving through membrane pores which can be 

divided into nanofiltration, reverse osmosis, microfiltration (MF) and ultrafiltration 

(UF). A membrane itself is a thin permeable or semipermeable layer that only allows 

specific molecules to pass through it according to it pore sizes. A desirable 

membrane filtration process is one with high selectivity and flux and possesses good 

antifouling properties. The efficiency of membranes is always determined based on 

their flux, the percentage of rejection, concentration factor and volume reduction 

factor.  

 

 

A membrane can be prepared either from polymers, ceramic or metal. 

Basically, ceramic membranes have better permeability and rejection (Lee and Cho, 

2004). Ceramic membranes such as titanium dioxide (TiO2), zirconium dioxide 

(ZrO2), aluminium oxide (Al2O3) and silicon dioxide (SiO2) possess higher fluxes 

and lower fouling (Hoffs et al., 2011). However, filtration using ceramic membranes 

is rarely applied in water filtration compared to polymeric membrane. This is 

because ceramic membranes require high initial installation and production cost 

compared to polymeric membrane besides they are brittle that they need to be 

handled carefully.  
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In order to meet the economic feasibility, the price of ceramic membrane 

module at least need to be less than 4.25 times of polymeric membrane’s price (Park 

et al, 2014). At present, the excellent characteristic of polymer membranes made the 

polymer as the biggest competitor to the ceramic membrane. Various polymers have 

been used to make membranes including polyvinylidene fluoride (PVDF), 

polyethersulfone (PES), and cellulose acetate (CA). The PES membrane main 

attraction is its properties in chemical stabilities, mechanical strength and membrane-

forming properties. Pristine PES membrane is hydrophobic and has problem in 

permeation and fouling when is used (Susanto and Ulbricht, 2009). Thus additives 

are always being introduced to the PES polymer to fabricate a membrane that is 

hydrophilic.  

 

 

Normally, non-solvent hydrophilic polymer additives such as polyvinyl 

polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG) are added in PES casting 

solution to increase hydrophilicity. They also acted as pore-former agents to the PES 

membrane and help to create spongelike or fingerlike structures in the membrane 

sub-layer. Polyvinyl alcohol (PVA) is also another common additives added in PES 

membrane fabrication due to its excellent hydrophilicity. Since PVA is unstable in 

organic solvent, it was usually grafted and cross-linked on the PES membrane 

surface (Liu, Kim and Kim, 2008; Guo et al., 2008). The additives give the 

advantage to the PES membrane in terms of high flux rate.  

 

 

However, the non-solvent additives are soluble in water and there are 

possibilities for the additives to leach out during immersion in the coagulation bath 

and resulted in adverse effects on membrane structure and hydrophilicity (Ahmad et 

al., 2013). In order to overcome the mentioned issues, inorganic salts additives such 

as lithium bromide (LiBr) and lithium chloride (LiCl) were introduced in polymer 

casting. The significant effect of inorganic additives in polymer membrane is not 

only on improvement of membrane hydrophilicity but in membrane rejection rate. 

PES membrane with inorganic salt additive gives greater association with PES 

moieties and reduction in polymer chain mobility.  

 



3 

 

These additives make slow polymer precipitation due to weak non-

solvent/solvent exchange and lead to a dense membrane with small pore size (Idris, 

Ahmed and Limin, 2010).  The smaller the pore size, the greater the selectivity of the 

membrane which means the membrane molecular cut-off is improved and high 

rejection achieved. Nowadays, blending of PES with inorganic nanoparticles has 

attracted research interests because of the promising membrane results. The 

emerging technologies in nanoparticles industry have produced variety of 

nanoparticles such as alumina oxide (Al2O3), zinc oxide (ZnO), titanium oxide 

(TiO2) and carbon nanotubes (CNT) nanoparticles.  

 

 

These nanoparticles have been used in PES membrane making as additives to 

enhance membrane performances and anti-protein fouling. Nanoparticles additives 

have contributed in the membrane structure change to a fingerlike structure in 

membrane sub-layer which mainly promotes high permeation rate of the membrane 

(Sotto et al., 2011). Membrane filtration is among one of the many techniques used 

for microalgae harvesting. It is able to harvest 99-100% (harvesting efficiency) of 

microalgae as depicted in Table 1.1 and only UF and MF processes are involved in 

microalgae harvesting. 

 

 

Table 1.1 Performance of UF/MF membranes for microalgae harvesting 

 

Author Filtration 

Type 

Velocity 

(m/s) 

TMP 

(bar) 

Filtration 

Flux 

(L/m
2
h) 

Harvesting 

Efficiency 

      

Castaing et al., 2010 MF N/A 0.3 29 99% 

Castaing et al., 2011 MF N/A 0.3 108 99% 

Frappart et al., 2011 UF 1 1 >100 100% 

Bilad et al., 2013 MF N/A N/A >50 100% 

Hwang et al., 2015 UF 1 2-3 96 100% 

Hwang and Wu, 2015 MF 1 2 ≈ 105 100% 

Note: N/A= information not available 
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The application of membrane filtration in microalgae harvesting requires the 

maintenance of a pressure drop across the system to force fluid flow through a 

membrane. During the process, microalgae will deposit on  the membrane and can 

grow thicker throughout the process which later cause a pressure drop across the 

membrane and decrease filtration flux (Barros et al., 2015). This phenomenon is 

known as fouling. One of the advantages when using UF and MF techniques is the 

low required transmembrane pressure (TMP) and velocity that can reduce fouling 

propensity. This is because the high velocity and TMP that is attained via pumping 

through a highly restrictive valve can induce high shear on microalgae.  

 

 

Shear is responsible for broken cells and release of microalgae products. The 

sheared algae can cause more drastic fouling than non-sheared microalgae (Ladner, 

Vardon and Clark, 2010). Membrane filtration for microalgae harvesting is still in its 

infant stage, unlike centrifugation that has been the most common technique for 

microalgae harvesting. Centrifugation is used in lab and pilot scale production. 

Centrifugation applies high rotational and shear forces to separate microalgae but 

consumes huge amounts of energy if it is being used for vast production. Normally, 

centrifuge is adjusted to maximize capture efficiency where the energy is consumed. 

According to Barros et al. (2015), high solid capture of 94% consumed 20 kWh of 

energy and 17% of solid capture consumed only 0.80 kWh but obviously is less 

efficient.  

 

 

Meanwhile, belt filter system can be used for up-scale harvesting. A belt-

filter system separation is based on gravity drainage followed by compression of 

filtered material. However, belt filter system is only suitable for high concentration 

algae culture. A study revealed that a belt filter system  can  recover microalgae 

suspension with minimum concentration is 6 g dry wt/L because when 4 g dry wt/L 

of microalgal suspension  was used, the percent of microalgae recovered dropped 

significantly due to leakage in the filter section (Sandip, Smith and Faddis, 2015). 

Microalgae are eukaryotic unicellular organisms that can be found in saline or 

freshwater bodies.  
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There are numerous microalgae species around the world but only a handful 

such as Scenedesmus, Chlorella, Heamatocuccus and Nannochloropis algae are 

known for their useful products. Nannochloropsis is known as one of the source of 

biodiesel because of its high percentage of triglyceride yield in relation to overall 

lipid content (Brennan and Owende, 2010). Previously, animal fats and vegetable 

oils are used for biodiesel production but they are not practical due to food 

competitor issues and large area requirement. Microalgae such as  Dunaliella sp., 

Chlorella sp., and Scenedesmus sp., contain various pigments molecules like β-

carotene, chlorophyll and carotenoids that have been used as colorants in cosmetic 

and food (Shah et al., 2016) for a long time.  

 

 

Meanwhile, Haematococcus pluvialis contains astaxanthin. Astaxanthin is 

used in cosmetics products, food supplements and pharmaceutical industries because 

of its free radical scavenging capacity and powerful antioxidant activity (Khanra et 

al., 2018). Since microalgae holds economic value in various applications, they are 

sometimes cultivated indoor. Harvesting of cultivated microalgae is necessary so as 

to obtain their biomass before further processing them into valuable products.  

 

 

 

 

1.2 Problem Statements 

 

 

Filtration has been found satisfactory at recovering many type of microalgae 

cell. However its performance has been hampered by rapid bio-fouling (Zhang and 

Fu, 2018). The main foulants can be classified as algae cell, algae debris and 

extracellular polymeric substances (EPS). Fouling in microalgae filtration is mainly 

due to the formation of a cake layer of algae cell on the membrane surface (Marbelia 

et al., 2016). The EPS which is usually in soluble form and loosely bound will tightly 

bind with the algae cell and become part of the bio-fouling layer (Chang, Lee and 

Lee, 2019). The presence of EPS is always associated with slimy features due to the 

algae biofilm.  

 



6 

 

In nature, the biofilms are the main form of microbial life and they are 

important to ensure the algae survive in a hostile, nutrient-limited and rough aqueous 

environment (Upadhyayula and Gadhamshetty, 2010). After fouling of algae 

membrane cleaning is required in order to provide the membrane with adequate flux 

and separation. Generally, membrane cleaning can be divided into two types; 

physical and chemical cleaning. Physical cleaning includes backwash, forward 

flushing, back-flushing and back-pulsing which imposes shear forces on the 

membrane surface to loosen and dislodge the foulant. Generally, most membrane 

systems have backpulse/backwash device to minimize fouling by cleaning the 

membrane intermittent in between filtration period and rest period.  

 

 

Especially in cross-flow filtrations where fast fouling can be observed thus 

periodic washing is a must. However, the adverse effect form frequent cleaning is 

less working time which lowered the filtration efficiency (Bhave et al., 2012;Chen et 

al., 2012). If the backwash frequency is too low, resistance due to fouling can 

become higher, which can also result in a low flux (Kwon et al., 2014). Furthermore, 

some membrane cannot withstand backwashing especially the flat panel membrane 

(Baerdemaeker et al., 2013). Chemical cleaning method has been the popular method 

to remove algae foulant in many studies (Zhang et al., 2010; Ríos et al., 2012; Monte 

et al., 2018; Gerardo et al., 2015; Bilad et al., 2012).  

 

 

Normally, sodium hypochlorite (NaClO) and citric acid in various 

concentrations were normally pumped into the membrane module. After each 

cleaning, membranes were flushed with water. However, this method can shorten the 

life-span of the membrane itself. Thus regular membrane cleaning may not be the 

first option. Since 2010, a significant focus on application of auxiliary in membrane 

configuration for combating fouling has been found. The strategy to reduce fouling 

has focused on increasing the feed flow by installing vibrator, rotating disk, stirrer 

and blower. All of the added equipment is about configuration improvement and this 

means that less attention was given on membrane modification.  
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Additional, a review study by Liao et al. (2018) suggests that very few 

studies have been accomplished to optimize the properties of membrane for 

microalgae harvesting.  Castaing et al. (2010) applied hollow fiber submerged 

filtration system with aeration effect for Heterocapsa triquetra harvesting. A blower 

was set at the bottom of the hollow fiber membrane to generate bubbles and it was 

found to slow down the fouling occurrence. Critical flux achieved for the harvesting 

was 29 L/m
2
h after 180 min of filtration under 0.3 bar TMP. Frappart et al. (2011) 

applied a rotating disk in cross-flow membrane to create dynamic movement during 

filtration and found that the permeation flux increased by two folds. However broken 

cells were observed recirculating through the throttling valve.  

 

 

Bilad et al. (2013) performed a flat sheet submerged filtration for harvesting 

Phaeodactylum tricornutum and Chlorella vulgaris. The filtration system was 

equipped with vibrator machine. The vibrations generated from the vibrator machine 

were from magnetic repulsion. The vibration was only subjected to the area of the 

membrane. The critical flux achieved was slightly higher than achieved by Castaing 

et al. (2010) which were above 50 L/m
2
h. Thus, the vibrated system is better than 

aerated system. Nurra et al. (2014) had performed microalgae harvesting using 

vibrated filtration system in pilot scale. A pilot plant with six photo bioreactors with 

a total capacity of 53,000 L are developed for cultivation, harvesting, cell disruption 

and lipid extraction.  

 

 

The harvesting process is performed using a membrane vibrating set-up from 

New Logic Research Inc., model VSEP Series LP. Results from membrane filtration 

achieved microalgae filtration at 28.5 L/m
2
/h/bar using a PES with a molecular 

weight cut-off of 7000 Da. To support microalgae biomass demand, centrifugation 

was used in parallel with membrane filtration to harvest microalgae. In the 

centrifugation process a total of 28,100 L was treated in 11 batches. Each batch 

duration was 3 hours approximately at a recirculating flow rate of 1000 L/h. The total 

concentrated volume obtained was 20.3 L and the total dry biomass obtained was 

2.64 kg.  
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Kim et al. (2014) used cross-flow electro-filtration system as a step to anti-

fouling harvesting. A platinum plate has been placed on the opposite side of the 

electro-membrane with 5 mm distance to cause water electrolysis during filtration 

and served as the counter anode. The electro-membrane used caused electrical 

repulsion between the membrane surface and microalgae cell and fouling decreased 

which was indicated by the high concentration factor achieved. Kim et al. (2015) and 

Hwang and Wu (2015) performed microalgae harvesting using a cross-flow cell 

equipped with rotating disk. The rotation from the rotating disk can generate sheer 

stress on membrane surface to mitigate the algae fouling. However, these systems are 

expensive due to current energy and limiting space in the rotating disk system.  

 

 

Recently, Ye et al. (2018) combined the use of stirrer with forward osmosis 

(FO) type of filtration. The result achieved was not impressive as Bilad et al. (2013) 

with 23.3 L/m
2
h. However, the membrane fouling was reversible by simple hydraulic 

flushing which made the pure water flux remained more than 97% of original pure 

water flux. Amazing impact of vibration on membrane filtration was also recorded in 

a recent study by Zhao et al. (2018). A uniform shearing vibration was applied by 

using a simple shaker and it is not same as other vibration machines with the variable 

shear rate. The purpose was to produce more stable shear action on the membrane. 

The membrane fouling had a remarkable decline only with little power increment (2 

Hz) and at a low frequency of 5 Hz.  

 

 

Furthermore, according to Kim et al. (2019) rotating disks, vibration, and 

bubbling was not appropriate for hollow fiber membrane. Thus, Kim et al. (2019) 

introduced the use of a turbulent jet. The turbulent jet module has its own design 

with a perforated cylinder at the center of the module to create turbulent jets. The 

perforated cylinder consists of 40 holes and the diameter and length is 0.3 mm and 

200 mm, respectively. Each hole acts as an inlet port located very close to the 

membrane. The turbulent jet worked by generating a locally high velocity and shear 

stress near the membrane. The turbulent jets directly impinging on the membrane 

surface in the radial directions while removing foulant.  
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Hence, a study on development of membrane with good properties to combat 

algae fouling is an opportunity. Drexler and Yeh (2014) mentioned that continuous 

research in polymer science or interfacial phenomena would help develop membrane 

that are better able to resist fouling. Previously, Hwang et al. (2015) studies the 

effects of hydrophilic additives Pluronic F-127 on PVDF membrane and found 100% 

of algae retention with permeation flux of 96 L/m
2
h that was larger by approximately 

50% than a commercial hydrophilic membrane. Thus, the purpose of this research 

work is to contribute in the development of a new membrane with a combination of 

additives which able to reduce fouling issue in membrane filtration for microalgae 

harvesting.  

 

 

PES is the chosen base polymer since it has high chemical and thermal 

stability. It is known for its good membrane forming properties that makes it one of 

the most popular polymers in producing membrane for water filtration application. 

Besides that, it is also one of membrane material that is commonly used in protein 

separation (Celik et al., 2011). In this study, the PES will be blended with 

functionalized multiwall carbon nanotube (MWCNT) and lithium salts. MWCNT is a 

unique nanoparticle due to its electrical properties that makes it different from other 

nanoparticle (Bonard et al., 2002). The electrical property is mainly due to the extra 

negative electron charge it consists which can benefit to polymer.  

 

 

The lithium salts consist of lithium bromide (LiBr) and lithium chloride 

(LiCl) will be combined together with MWCNT to study their hybrid effects. The 

hybrid effect of lithium salts and MWCNT is the novel part in this research. The 

lithium salts alone has been known to increase the performance of membranes pure 

water permeation rate and rejection rate (Idris et al., 2010).  
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1.3 Objectives of the Study 

 

 

The main objective of the study is to develop a high-performance membrane 

with anti-fouling effect for microalgae harvesting by using polyethersulfone (PES) as 

the base polymer and functionalized multiwall carbon nanotubes (MWCNT) and 

lithium salts as additives. PES/MWCNT is the control membrane. In order to achieve 

the main objective, the following objectives need to be addressed; 

 

 

1) To synthesize membrane with different concentrations of functionalized 

MWCNT and different lithium salts; LiBr and LiCl in PES polymer using two 

different phase inversion techniques; thermally induce phase separation (TIPS) and 

non-solvent induced phase separation (NIPS). 

 

 

2) To evaluate the hybrid effect of functionalized MWCNT and lithium salts on 

PES membrane performance in terms of flux, molecular weight cut-off (MWCO) and 

rejection rate. 

 

 

3)  To use the membrane for harvesting Nannochloropsis sp. and determine the 

extent of bio-fouling of the fabricated membranes. 

 

 

 

 

1.4 Scope of the Study 

 

 

The scope of the study mainly focuses on the development of anti-fouling 

PES membrane to be used in microalgae harvesting.  

 

 

I. Preparation of various PES membranes with two different additive of lithium 

salts (LiCl and LiBr) and MWCNT varied from 1-5wt% via blending and 

phase inversion techniques. Pristine membrane PES/MWCNT was also be 

prepared as the benchmark.  
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II. Two types of phase inversion were used to form the membranes; non-solvent 

induced phase separation (NIPS) and thermally induced phase separation 

(TIPS).  

 

 

III. The fourier transform infrared spectroscopy (FTIR) and field emission 

scanning electron microscopy (FESEM) were used to characterize the 

fabricated membranes.  

 

 

IV. The surface roughness and hydrophilic property of the membranes were 

determined using atomic force microscope (AFM) and contact angle 

measurements respectively. 

 

 

V. The performance of fabricated membranes was initially evaluated in terms of 

MWCO, rejection rate, pure water and fluxes because these are the important 

parameters deciding the separation performance and was compared with the 

control membrane. 

 

 

VI. The membranes performances were then evaluated for microalgae harvesting 

and then anti-fouling properties were then evaluated.  

 

 

VII. The fouling propensity of the fabricated membrane were determined in term 

of reversible fouling (Fr) and irreversible fouling (Fir ). Only membrane that 

shows better anti-fouling was evaluated for harvesting efficiency. The 

microalgae harvesting efficiency was determined using volume reduction 

factor (VRF) and concentration factor (CF).  

 

 

VIII. Microalgae genus Nannochloropsis that has been receiving much research 

interest due to its ability to synthesize lipids for biodiesel production has been 

used as algae model.   
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1.5 Significance of the Study 

 

 

 The work herein intends to demonstrate the synergistic effect of combining 

MWCNT with LiBr/LiCl as additives to improve the membrane property and at the 

same time prevent fouling. This antifouling behavior developed was demonstrated by 

its ability to harvest microalgae successfully and at the same time be reused again 

without losing its initial properties. The novel PES membrane formulated with both 

LiBr and functionalized MWCNT not only producing membrane with excellent anti-

fouling behavior but also possess high permeation rate and durability.  

 

 

The TIPS method used was able to produce membrane with excellent 

hydrophilic characteristic with zero irreversible fouling ratio that translates to 100% 

flux recovery. Thus, this study able to demonstrates novel membrane fabrication for 

better anti-fouling property for microalgae harvesting. 
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