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ABSTRACT 

 Mixed matrix membrane (MMM) which incorporated with polymeric and 

inorganic materials has become an interest to engineers in the early twenty due to its 

potential in advancing the gas separation properties of the polymeric-based 

membrane. The main objective of this study is to establish an effective approach for 

mixing and dispersing carbon nanotube (CNT) into the matrix of polyetherimide 

(PEI) to obtain MMM with optimized gas separation performance efficiency. The 

changes in gas permeability and selectivity of the fabricated flatsheet MMM was 

correlated with three different functionalizations on CNT. It was found that 

aminopropyl-triethoxysilane treated CNT homogeneously dispersed CNT in the 

polymer solution and gave the best separation on CO2 molecules. The result found 

that MMM exhibited CO2/CH4 selectivity of 30.59, which is significantly higher than 

the intrinsic value of PEI ever reported (common PEI CO2/CH4 selectivity = 29.66). 

Next, using the polymeric solution formulation with the optimum filler loading, 

hollow fiber (HF) MMM was tailored. The spinning parameters such as extrusion 

rate and air gap distance during dry phase inversion were optimized. It was found 

that the produced asymmetric membrane exhibited high permeance and selectivity. 

The average CO2 permeance obtained was 67.72 GPU with CO2/CH4 selectivity of 

58.89. Additionally, increasing the shear rate by a higher extrusion rate resulted in a 

membrane with higher selectivity. Moreover, the selectivity of all the MMM 

fabricated surpassed 80% of the recognized intrinsic value, implying that the 

membrane produced in the study can be considered as defect-free membrane. The 

best HF MMM was obtained by incorporating 0.5wt% CNT into dope containing 

25wt% PEI and extruding the dope at 4 cm
3
/min using air gap of 300 mm. The 

optimal HF MMM showed 28 times increment in permeance of pure gas CO2 and 2 

times higher selectivity of CO2/CH4, compared to that of neat PEI. A comparative 

study with other PEI MMM revealed that CNT with proper functionalization and 

fabrication technique indeed could impart a strong influence in improving the matrix 

properties for further in-depth development. 
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ABSTRAK 

 Membran campuran matrik (MMM) yang digabungkan antara bahan polimer 

dan bahan bukan organik telah menjadi tumpuan para jurutera pada awal abad kedua 

puluh disebabkan potensinya untuk memperhebatkan ciri-ciri membran pemisahan 

gas yang berasaskan polimer. Tujuan utama kajian ini adalah untuk membangunkan 

satu pendekatan pencampuran dan penyerakkan tiub karbon nano (CNT) dalam 

matrik polieterimida (PEI) bagi memperolehi MMM yang mengoptimumkan 

kecekapan prestasi pemisahan gas.  Perubahan-perubahan terhadap ketelapan dan 

kememilihan MMM kepingan rata yang telah direka bentuk telah dikaitkan dengan 

tiga kaedah fungsian yang berlainan ke atas CNT. Didapati bahawa CNT yang 

dirawati oleh aminopropil-trietoksisilana diserak secara sekata dalam larutan polimer 

dan memberikan pemisahan molekul CO2 yang terbaik. Keputusan menunjukkan 

bahawa MMM mempamerkan kememilihan CO2/CH4 sebanyak 30.59 yang secara 

ketara lebih tinggi berbanding nilai intrinsik PEI yang pernah dilaporkan (kebiasaan 

kememilihan CO2/CH4 PEI = 29.66). Seterusnya, dengan menggunakan perumusan 

larutan polimer dengan muatan pengisi yang optimum, MMM gentian geronggong 

(HF) telah dihasilkan. Parameter pintalan seperti kadar penyemperitan dan jarak 

ruang udara ketika penyongsangan fasa kering dioptimumkan. Didapati bahawa 

membran asimitri yang terhasil mempamerkan telapan dan kememilihan yang tinggi. 

Purata telapan CO2 purata yang didapati adalah sebanyak 67.72 GPU dengan 

kememilhan CO2/CH4 sebanyak 58.89. Selain itu, peningkatan kadar ricih melalui 

peningkatan kadar penyemperitan telah menghasilkan membran yang mempunyai 

kememilihan yang lebih tinggi. Tambahan pula, kememilihan semua hasilan MMM 

yang melangkaui 80% nilai intrinsik yang diakui, menunjukkan bahawa membran 

yang dihasilkan dalam kajian ini berada dalam lingkungan membran tidak 

berkecacatan. MMM HF yang terbaik telah diperolehi melalui penggabungan 

0.5wt% CNT dalam larutan polimer yang mengandungi 25wt% PEI dan 

menyemperit larutan polimer pada 4cm
3
/min dengan menggunakan jarak ruang udara 

sebanyak 300mm. MMM HF yang optimal menunjuk peningkatan 28 kali ganda 

pada telapan gas tulen CO2 dan 2 kali ganda dalam kememilihan CO2/CH4, 

berbanding kepada PEI tulen. Kajian perbandingan dengan PEI MMM yang lain 

telah mendedahkan bahawa CNT dalam fungsian yang tepat dan teknik hasilan 

sesungguhnya memberi pengaruh yang kuat dalam meningkatkan sifat-sifat matrik 

dan harus dibangunkan secara mendalam. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Membrane-based separation has experienced rapid growth in the last decade. 

Several breakthroughs have been made in membrane-based separation processes to 

outperform the conventional technologies in many important industrial processes 

(Favvas et al., 2017). Membrane process normally does not involve phase changes 

hence is more energy efficient compared to processes such as distillation. Membrane 

technology is also attractive with its operational continuity and simplicity. A 

membrane is generally defined as a thin layer of semipermeable barrier that only 

permits the passage of certain molecules while hindering other undesired molecules 

from crossing. The performance of membrane is of the major concern of a membrane 

process. A highly selective membrane allows efficient separation. Currently, 

membrane processes have been broadly applied in gas separation, water purification 

and energy generation (Han and Ho, 2018; Yin dan Deng, 2015) 

 

 

Gas separation and purification are important chemical processes. Gas 

separation has been conventionally accomplished through cryogenic distillation, 

adsorption and absorption (Porcheron et al., 2011; Sreedhar et al., 2017). Despite 

their technological maturity, they still suffer from several disadvantages such as 

energy extensive and complicated operations. Gas separation based on membrane 

technology provides a green, economical and reliable mean for practical industrial 

applications. Particularly, the attractive features of membrane technology in terms of 

energy efficiency and simplicity compared to conventional methods have made it an 

attractive approach for a wide range of applications such as acidic gas removal, 

oxygen enrichment and methane gas purification (Liang et al., 2019). For example, 

compared to amine absorption that has been commonly used in petrochemical 

industries, membrane process does not require chemical in its operation, hence the 
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operational cost of the process can be lower (Koros and Fleming, 1993). Issue such 

as solvent loss during operation can also be avoided. Furthermore, membrane is also 

a favourable option for platform operation owing to its compactness. The modular 

and minimum monitoring requirement also can meet the stringent offshore site-

specific demands. 

 

 

Tailoring membranes with better separation characteristics for specific 

industrial applications in important for its practicability and sustainability. The major 

requirement of a commercially attractive gas separation membranes are high 

permeability and selectivity as well as mechanically, chemically and thermally stable. 

For decades, polymeric membranes have been favourably used in gas separation due 

to the high throughout as well as ease of handling and processing compared to its 

inorganic counterpart (Brinkmann et al.,1993). Polymeric membranes can be further 

classified into glassy and rubbery polymer. In terms of their transport properties, 

rubbery polymers normally have higher diffusion coefficients but lower solubility 

coefficients compared to glassy polymers. Currently, many polymeric membranes 

have been successfully used in practical industrial processes such as air separation 

and purification (Dalane et al., 2017). Polymeric membranes are well recognized 

with their high flexibility in term of the synthetic composition. The chemistry of 

polymers can be easily tailored during pre or post-fabrication processes. However, 

one of the drawbacks of polymeric membranes designed for gas separation is the 

trade-off between the permeability and selectivity as demonstrated by Robeson based 

on the upper bound curves (Robeson, 2008). As the result, the polymeric membranes 

usually exhibit lower gas selectivity compared to inorganic membranes.  

 

 

Besides the Robeson’s trade-off, polymeric membranes also suffer from poor 

chemical and thermal resistance particularly towards corrosive solvents. Aging and 

plasticization are also critical issues related to sustainability of polymeric membranes. 

Aging is a phenomenon where the polymer chains rearrange themselves over time to 

achieve a more stable configuration (Rowe et al., 2009). Aging leads to the matrix 

densification and loss of membrane productivity. On the other hand, plasticization 

refers to the swelling of polymers upon their exposure to polarizable gases such as 

CO2 at high pressure (Du et al., 2011). The detrimental effects of plasticization are 
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related to the remarkable loss in the membrane selectivity. Mechanical strength of 

polymeric membranes is also another great concern for industrial applications as 

most processes require stable operation at high pressure.  

 

 

In order to address the abovementioned issues, inorganic-organic composite 

membranes, which is more commonly known as mixed matrix membrane (MMM) 

has been developed. MMM is fabricated by dispersing inorganic particles into the 

polymer matrix (Wang et al., 2018; Liang el al., 2017). These inorganic particles, 

which are normally in nano-sized, act as the filler to enhance some properties that 

cannot be attained by polymeric membrane alone. For instance, MMM has been 

evidenced to provide the high mechanical strength and ease processing of polymeric 

membranes, and also simultaneously render excellent separation performance owing 

to the presence of the inorganic fillers. MMM is also known as a straightforward 

approach to tackle the Robeson trade-off issue as the MMM combines the 

advantages of both polymer and inorganic entities. As a result, MMM has been the 

major focus of research and development of gas separation membranes. 

 

 

The advancement in material sciences particularly in nanomaterial 

development have allowed a wide selection of nanomaterials to be selected for 

MMM fabrication. Currently, various classes of nanomaterials have been explored as 

the inorganic phase in MMMs. Some of the commonly used are silica Chen et al., 

2018), carbon nanotubes (CNTs) (Ismail et al., 2009), zeolite, graphene oxide (GO) 

(Zhou et al., 2017) and metal organic framework (MOF) (Li et al.,2014). Depending 

on the shape, size, dimension and unique features of these nanomaterials, they can 

impart some desired properties to the resultant MMMs. These nanomaterials can be 

incorporated directly during the membrane fabrication or introduced on the 

membrane surface through post-fabrication modification. These nanomaterials play 

different roles when they are used as nanofillers in MMM.  

 

 

Among the mentioned inorganic fillers, CNT is one of the most studied 

nanomaterials due to its attractive properties for gas separation. Structurally, CNT 

consist of the rolling of graphene sheets into cylindrical form. The inner structure of 

CNT offers a frictionless channel for the fast transport of molecules (Wong et 
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al.,2019). Due to this special feature, CNT has been identified as a promising filler to 

enhance the permeability of the resultant MMM. The high theoretical mechanical 

strength of CNT is also another attractive feature of nanofiller. When incorporated 

into polymeric matrix, it has been evidenced that CNT can improve the Young’s 

modules and tensile strength of the resultant MMM.  

 

 

One of the main challenges to produce defect-free MMM is to improve the 

dispersibility of the inorganic fillers in the polymer dope during the fabrication of 

MMM (Li et al.,2005). The well dispersed fillers can render good compatibility with 

the polymer matrix. This feature is of great importance to reduce the likelihood of the 

formation of undesired voids at the filler-polymer interface. These voids have been 

associated with the deterioration of the MMM performance particularly in term of 

gas selectivity. Currently, one of the most applied strategies to tackle this issues is to 

introduce functional groups to the surface of the inorganic fillers. Various chemical 

and physical modifications have been well established to achieve the goal (Zhang et 

al., 2019). Some of these modifications include oxidation using air and oxidizing 

reagents, aminations as well as polymer and surfactant wrapping. Depending on the 

nature of the reagents and the conditions of the modification reactions, different 

types of functional groups can be effectively introduced to the surface of the 

nanomaterials.  

 

 

 

 

1.2 Problem Statement 

 

 

Polymer membranes have been commercially used for a wide range of gas 

separation applications in both laboratories and industries. However, conventionally 

polymeric membranes suffer from the typical permeability-selectivity trade off where 

the increase of productivity is obtained with the expense of selectivity. In order to 

address this issue, MMM that consists of the dispersion of inorganic fillers within 

polymer matrix has been developed. CNTs has been recognized as one of the most 

promising fillers to enhance the performance of MMM due to its ability to improve 

the gas permeability rendered by the smooth and frictionless tubular structure. 
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Nevertheless, the main challenge in incorporating CNTs into polymer matrix is the 

poor dispersion issue related to the van der Waals forces that cause entanglements of 

the nanotubes. This phenomenon has consequently resulted in the formation of voids 

at the filler-polymer interface and unfavourably caused the loss of selectivity. 

Additionally, the mechanical strength and chemical stability are also found to 

deteriorated with the formation of these voids. In order to tackle this challenge, 

functionization of CNTs are performed. Acid oxidation, surfactant wrapping and 

silane functionalization are several effective approaches to simultaneously purify and 

introduce desired functional groups on the surface of CNTs, hence reduce 

agglomeration and improve the dispersion of CNT. In this study, the MWCNT 

treatment based on strong acid oxidation, non-covalent modification with Triton 

X100 and functionalization with 3-aminopropyltriethoxysilane (APTES) were 

attempted to compare their effectiveness to facilitate good dispersion for MMM 

fabrication. 

 

 

To date, various nano-sized inorganic fillers have been explored to enhance 

the performance of MMMs for gas separation. CNT incorporated MMMs have also 

been fabricated for gas separation. Goh et al. prepared PEI-based MMM 

incorporated with surfactant modified CNT for O2/N2 separation (Goh et al., 2012). 

The study focused on the fabrication of flat sheet membranes through phase 

inversion technique. Despite the improvement observed, the CNT incorporated 

MMM in hollow fiber configurations have not been attempted. In practical 

membrane-based gas separation processes, hollow fiber membranes are more 

favourable due to their higher larger surface area per volume compared to their flat 

sheet counterpart. 

 

 

Currently, due to the ease in the lab-scale set up and preparation, most of the 

bench scale studies of MMM are still focused on flat sheet membrane fabrication. 

The optimization of the MMM hollow fiber spinning conditions have been scarcely 

reported. In fact, the spinning parameters such as air gap and dope extrusion rate 

(DER) can impart significant influence on the membrane morphology, hence the 

separation performances. Currently, there is no correlation studies have been 

performed to relate the air gap and DER with the gas separation performance of the 
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MMM hollow fiber membranes. Due to the importance of these two parameters 

during the spinning of hollow fibers, it is crucial to optimize them in order to 

maximize the performance of the MMM for gas separation.   

 

In this study, hollow fiber MMMs consists of polyetherimide (PEI) and 

multiwalled carbon nanotubes (MWCNTs) were developed for gas separation 

application. The MWCNTs were pre-treated with acid oxidation and surfactant 

wrapping in order to improve the dispersion and establish better interaction with the 

polymer chain. Various characterizations have been conducted to study the physico-

chemical properties of the MWCNTs and MWCNT/PEI MMM. Finally, the gas 

separation performance in terms of permeability and selectivity of the resultant 

MMMs were evaluated. The polymer fabrication parameters in terms of polymer 

concentration and MWCNT loading as well as the spinning conditions in terms of air 

gap and dope extrusion rate have been investigated to optimized the performance for 

gas separation. 

 

 

 

 

1.3 Objectives of Study 

 

 

 The main goal of this study is to develop gas separation PES mixed-matrix 

hollow fiber membranes that are incorporated with MWCNTs that have been 

modified through acid treatment and surfactant wrapping.  The objectives are: 

 

 

i. To synthesize and modify MWCNTs using acid oxidation, surfactant 

wrapping and silane functionalization. 

ii. To fabricate the PEI/MWCNTs MMMs containing MWCNT modified 

with different approaches through phase inversion technique. 

iii. To study the effects of MWCNT modification on the physico-chemical 

properties and gas separation performance of the MMMs 

iv. To optimize the MMM hollow fiber membrane spinning parameters in 

terms of air gap and DER. 
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1.4 Scopes of Study 

 

 

In order to achieve the objectives stated above, the following scopes of study are 

identified: 

 

 

i. Synthesis of MWCNT using catalytic chemical vapour deposition 

(CCVD) technique with ethylene as carbon source and cobalt-nickel as 

the catalyst substrate 

ii. Oxidation of as-synthesized MWCNT using 3M of concentrated 

sulphuric acid under reflux condition  

iii. Surface modification of MWCNT using non-ionic Triton X100 surfactant 

with concentration of 2.5 mg/ml at room temperature 

iv. Functionalization of MWCNT using APTES as the silane agent 

v. Characterization of as-synthesized and treated MWCNTs in terms of 

morphology, mechanical strength, presence of functional groups and 

dispersibility in aqueous solutions. 

vi. Formulation of polymer dope consists of PEI, N-Methyl-2-pyrrolidone 

(NMP), Tetrahydrofuran (THF), Ethanol (EtOH) and functionalized 

multi wall carbon nanotubes (MWCNT) 

vii.  Fabrication of flat sheet membranes and hollow fiber PEI/MWCNT 

MMM through dry-wet spinning technique 

viii. Characterization of hollow fiber PEI/MWCNT MMM in terms of 

morphology and mechanical strength 

ix. Performance evaluation in terms of gas permeability and selectivity using 

CO2 and CH4 

x. Study of the effects of MWCNT loadings (0-1.0wt%) on the properties 

and separation performance of the PEI/MWCNT MMM 

xi. Optimization of the spinning condition in terms of air gap (10-500 mm) 

and dope extrusion rate (1.2-6 cm
3
/min). 
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