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ABSTRACT 

The employment of the Theory of Critical Distances (TCD) in the research of fatigue 

damage in concretes is a fairly recent development. TCD is primarily used to characterise 

fatigue and fracture behaviours of concrete. Previous research have discussed on the 

accuracy of TCD application in concrete under high-cycle fatigue conditions. The research 

tested the TCD formulation on two batches of concrete mix differs in terms of their water-

cement ratio. In comparison, the accuracy of TCD is proven judging exceptionally small 

errors that occurred between the theoretical and tested outcomes for both batches. However, 

although TCD is proven to be accurate, the percentage errors display severe inconsistency 

when being compared side-by-side between two batches of concrete. Thus, TCD seems to be 

susceptible to the change of water-cement ratio. It is beneficial to comprehend that fatigue 

and fracture assessment method like TCD relies chiefly on the tensile characteristics. 

Unfortunately, the effects of water-cement ratio has been overlooked since the resulted 

difference in tensile strength is commonly small and often considered insignificant for 

concrete. Moreover, there are no documented standard procedures on fatigue test in plain 

concretes, and thus the studies of fatigue and fracture in concrete become stumbled and slow. 

Accordingly, the theoretical establishment of linking the static behaviours, which are surely 

less cumbersome to characterise, to those of fatigue is necessary. Therefore, this research 

aims to study in detail the numerical characterisation of cracks in concrete governed by 

water-cement ratio through a proposed linkage relationship between the static and fatigue 

condition. Three important outputs were obtained to achieve the aim of this research. First 

objective is to conduct the fatigue testing in analysing the fatigue properties in concrete. 

Secondly, a unified linkage is formulated using Buckingham’s Pi technique for achieving the 

third objective. Thirdly, a closed-form TCD formulation covering the variation of the water-

cement ratio is then proposed. Since fatigue testing method of concrete has no officially 

developed, both ACI 215-75R and RILEM TC 89-FMT were utilised complimentarily. For 

static testing of the concrete’s tensile properties, the methodology presented by Xiao Zhi Hu 

was adopted. A three-point bending test configuration is utilised onto plain concrete beam 

following the static and fatigue respective methodologies since both testing configuration are 

similar. ABAQUS computational engineering software is used to formulate TCD covering 

the variation of the water-cement ratio. By proving mathematically the linkage between 

static and fatigue parameters of concrete, it may cause TCD formulation remained unstable 

towards different water-cement ratio in concrete mix more intelligible. From the analysis of 

fatigue property in concrete, the increasing fatigue limit of 2.883 MPa, 3.022 MPa, and 

3.903 MPa with the increment of water-cement ratio 0.3, 0.4, and 0.5 respectively is 

significant and non-linear. Hence, fatigue limit of concrete is not simply obtained by 

converting it from static strength by a single magnitude. Using Buckingham’s Pi, the 

connection between static and fatigue properties is revealed in terms of Π1 and Π2. The Π1 

and Π2 represent a group of static and fatigue properties of concrete respectively. The link 

established shows that Π2 is equal to approximately half of Π1. Yet, individual linkage 

between parameters remained for future research. Consequently, the research has solved the 

issue by incorporating water-cement ratio in TCD by introducing equations in the form of 

polynomial which is KIc = 0.7826ft – 309.935Wc
4
 + 495.999Wc

3
 – 289.485Wc

2
 + 72.31Wc – 

8.5516 and Power Law KIc = 0.77 ft − 2.3Wc
0.102

. Both of the equations are identical but in 

different forms. The equations formed are related to TCD and incurring water-cement ratio 

elements. Hence, provide better understanding of how TCD can be utilised for fatigue 

analysis on concrete structure. 
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ABSTRAK 

Penggunaan Teori Jarak Genting (TCD) adalah suatu perkembangan terkini dalam 

penyelidikan kegagalan konkrit disebabkan oleh kelesuan. Pada dasarnya, TCD digunakan untuk 

mengenalpasti ciri-ciri tabiat konkrit yang mengalami kelesuan dan keretakan. Kejituan 

penggunaan TCD pada konkrit yang mengalami kelesuan kitaran tertinggi pernah 

diperbincangkan dalam kajian-kajian lepas, di mana dua campuran konkrit yang berbeza nisbah 

air-simennya telah diuji untuk mengkaji pembentukan TCD. Hasil kajian tersebut mendapati 

kejituan TCD yang didapati melalui dua kaedah iaitu pengiraan berdasarkan persamaan secara 

teori dan ujikaji makmal terbukti wujud ralat dalam peratusan yang rendah. Ralat tersebut adalah 

bukti yang jelas bahawa tahap kepersisan di antara kedua-dua campuran konkrit tersebut adalah 

lemah. Hasil kajian tersebut memberi gambaran jelas yang menunjukkan bahawa TCD sangat 

dipengaruhi oleh nisbah air-simen konkrit. Kaedah pentaksiran kelesuan dan keretakan konkrit 

seperti TCD bergantung kepada ciri-ciri kekuatan tegangannya. Malangnya, impak nisbah air-

simen setakat ini sering diabaikan kerana perbezaan ujian kekuatan tegangan konkrit yang 

terhasil kebiasanya rendah dan tidak mustahak. Lebih malang lagi apabila tiada usaha untuk 

mendokumenkan secara rasmi langkah-langkah piawai bagi ujian kelesuan konkrit, natijahnya 

penyelidikan berkenaan kelesuan dan keretakan konkrit akhirnya terbantut dan perlahan. Oleh 

yang demikian, pembentukan teori menghubungkaitkan tabiat pegun dengan kelesuan konkrit 

adalah suatu keperluan memandangkan komplikasinya yang rendah. Justeru, matlamat kajian ini 

adalah untuk mengkaji secara terperinci sifat-sifat berangka pada keretakan konkrit bergantung 

kepada nisbah air-simen dalam keadaan pegun melalui suatu cadangan hubungkait antara 

keadaan pegun dan kelesuan. Tiga hasil penting telah diperolehi untuk mencapai tujuan kajian 

ini. Objektif pertama adalah menjalankan ujian kelesuan dalam menganalisis sifat kelesuan 

konkrit. Kedua, menghasilkan hubungkait terpadu yang dirumuskan menggunakan teknik 

Buckingham’s Pi untuk mencapai objektif ketiga. Ketiga, rumusan TCD terhad yang merangkumi 

variasi nisbah air-simen kemudian dicadangkan. Oleh kerana tiada kaedah dan langkah-langkah 

piawai yang rasmi untuk menjalankan ujian kelesuan konkrit, kedua-dua ACI 215-75R dan 

RILEM TC 89-FMT digunakan untuk tujuan timbangtara. Untuk ujian sifat tegangan konkrit 

pegun, kaedah yang dikemukakan oleh Xiao Zhi Hu diamalkan. Ujian lenturan tiga titik 

dikenakan pada rasuk konkrit biasa berdasarkan perspektif kaedah pegun dan kelesuan 

memandangkan penstrukturan ujian yang serupa. Perisian komputer kejuruteraan ABAQUS telah 

digunakan untuk merumuskan TCD meliputi beberapa variasi nisbah air-simen. Pembuktian 

hubungkait faktor-faktor pegun dan kelesuan konkrit secara matematik menjadikan isu 

pembentukan rumusan TCD kekal tidak stabil jika wujud perubahan nisbah air-simen dalam 

campuran konkrit lebih menyeluruh. Daripada analisis sifat kelesuan konkrit, peningkatan had 

kelesuan sebanyak 2.883 MPa, 3.022 MPa, dan 3.903 MPa masing-masing bergantung kepada 

nisbah air-simen 0.3, 0.4, dan 0.5 adalah signifikan dan tidak berkadar langsung secara 

semulajadi. Oleh sebab itu, had kelesuan konkrit tidak hanya diperoleh semudah mengubah 

kekuatan pegun dengan suatu nilai. hubungkait antara sifat pegun dan kelesuan dengan 

menggunakan Buckingham’s Pi dinyatakan dalam bentuk Π1 dan Π2. Π1 dan Π2 masing-masing 

mewakili kumpulan sifat pegun dan kelesuan konkrit. Hubungkait yang terbentuk mempamerkan 

bahawa Π2 adalah hampir separuh dari Π1. Setakat ini, hubungkait antara faktor-faktor secara 

individu diserahkan kepada penyelidikan akan datang. Dua persamaan berjaya diterbitkan di 

mana satu persamaan di dalam bentuk polinomial iaitu   KIc = 0.7826ft – 309.935Wc
4
 + 

495.999Wc
3
 – 289.485Wc

2
 + 72.31Wc – 8.5516 dan satu lagi persamaan di dalam bentuk kuasa, 

KIc = 0.77 ft − 2.3Wc
0.102

. Kesimpulannya, kajian ini telah menyelesaikan masalah dengan 

memperkenalkan faktor berserta unsur-unsur nisbah air-simen dalam penerbitan rumusan TCD 

dengan harapan dapat menyediakan tapak bagi meningkatkan pemahaman ke tahap yang lebih 

baik tentang penggunaan TCD untuk menganalisis kelesuan pada struktur konkrit. 
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  CHAPTER 1

 

 

INTRODUCTION 

1.1 Overview   

Fatigue is a process of a material being weaken due to cyclic loading. 

Cyclic loading that cause fatigue failure is a repeated load and unloads progression 

in a period of time on a material. “The Versailles Train Crash of 1842” tragedy is 

the departure point in understanding the mechanism of fatigue. At that time, people 

did not realise that a build-up of small stress cycles could lead to a crack and 

sudden failure (1). Following the tragedy, the study related to fatigue is going on 

until now. Fatigue is dominantly known as the culprit to the long term integrity of 

ductile materials like steel and metal (2). There are steady guidelines and 

formulations established for fatigue and fracture in ductile materials such as steel 

and metal components. Comprehensive research in fatigue especially on metal and 

steel make the engineers today have high confidence to use and incur fatigue 

element in their design since it is rather easy to understand and implement. 

In reality, not only ductile material experiences fatigue. Brittle material like 

concrete also continually encounter repeated loading that can lead to fatigue failure. 

Undeniably, researches on concrete have broadly branched and it is progressing 

well until current (3,4). Though, there are some fragment of concrete study is 

noticed to be deficit, which is fatigue and fracture mechanics. Although at the very 

beginning of the last century to the latest study in fatigue and fracture has attracted 

attention tremendously, there are still no recognized agreements in methods to 

perform the fatigue assessment of concrete. Moreover, not much organized works 

were done to cultivate specific method or standard to suit the condition of 

detrimental effect of notches on plain concrete subjected to cyclic loading (5). Back 

in 1920s where the industrial age was, many engineers remained the fatigue issue 

in concrete as a textbook discussion – the realisation started to exist after 50 years 

as the engineers only realised fatigue is a long-term failure process (6). 
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1.2 Background of Study 

A proper research in fatigue on concrete initiated quite late, which was at 

the end of 1980s compared to steel and metal. For example, one of the initial 

researches was in 1991 which was related to the size effect of concrete towards the 

fatigue fracture (7). The reasons of the adjournment are due to the employment of 

additional safety factor in designing concrete structure that make a structure over-

designed and the lack of advancement in high-rise concrete structures back then.  

Firstly as mentioned above, every calculation in designing concrete 

structures has already been utilised the safety factor as early as 1930s (8). The 

safety factor was applied either it was direct or indirect manner (9). The safety 

factor incorporates additional value on top of concrete’s ultimate strength. Hence, 

the final value to design concrete structure after adding safety factor is more than 

its ultimate strength. Consequently, the final value will correspond directly to the 

dimension of a concrete structure. Having said that, bigger safety factor will result 

higher final value, which finally will enlarge the dimension of concrete structure. 

At that moment, engineers presume larger concrete structure can discourage the 

fatigue failure caused by continual cyclic loading (10). However, as the standards 

that associated to the concrete design evolved towards adopting green building 

codes and embraces sustainability in construction, many calculations that involve 

safety factor has been optimised and trimmed to avoid over-designed structures. By 

optimising the factor by lowering it in concrete design will result reduction of 

concrete usage and size of concrete structures. Although it is still safe, reducing the 

size of concrete has exposed the structure with one of the infamous factor of 

failures for concrete which is fatigue. It is because quasi-brittle material like 

concrete only allows minimal crack before it ruptures and fail. The propagation of 

cracks due to cyclic loading is not elastic – the crack links from one to another. The 

inelastic crack linkage is strongly influenced by the structural size factor (11). 

The second factor of adjournment is while engineers were looking forward 

into the matter involving safety factor, at that era there was less tall buildings being 

built. Tall building is understood to be the structures that vulnerable to the fatigue 

fracture. But nowadays, there are many concrete-based skyscrapers, high-rise 



 

3 

building, and flyovers are built across the globe. The higher it goes, more 

gesticulation of the structures that has to be considered. Yet, one might claim that 

in the Eurocodes or British Standards, there is already wind load factor that has 

been considered in constructing tall buildings. It has to be understood that the wind 

load factor is meant to defy the ultimate strength whereas fatigue failure happens at 

the amplitude which did not need to reach the ultimate strength (10). 

Research on fatigue in concrete is not a straight-forward task. Fatigue is 

being very subjective on its application on concrete. Hence, the research of fatigue 

in concrete needs more tremendous exploration.  

1.3 Statement of Problem 

Recently, researches related to fatigue on concrete are growing but the 

depth of study is still shallow and lack compared to metal and steel (11). It could be 

said that the study of fatigue in concrete is still in its infancy stage. One of the 

factors that deter the research related to fatigue in concrete is due to its 

complications in configuring fatigue test on concrete specimen. While inquiring 

fatigue knowledge deeper, the study found that running a fatigue test on a concrete 

specimen is not an easy task. The impediments are in the form of lack of clear 

global standard used, no detailed procedures to practice, not much of safety 

measures to conduct the experiment itself, time-consuming and refractory.  

Having said that, in this challenging situation, the fatigue study has 

discovered the Theory of Critical Distances (TCD). TCD is a formulation that 

capable to perform fatigue assessment not only on steel but also on concrete. TCD 

has been proven to be accurate in various perspectives of Fracture Mechanics (12). 

Experts in the field like Luca Susmel and David Taylor have propounded that TCD 

is suitable for practical interest like industrial engineers and indeed, it is well-

proven (13,14). For now, TCD is acting as one of the most practical solution in 

fatigue assessment. Nevertheless, as far as the development of fatigue in concrete is 

inadequate, TCD which operates in fatigue condition also is limited when it comes 

to some applications towards concrete material.  
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Based on one of the recent findings by Luca Susmel where he applied the 

TCD formalisation on two batches of concrete specimen – both batches of concrete 

are made of different water-cement ratio, a batch is 0.4 and another batch of 

concrete with water-cement ratio 0.5. It was found out that the difference in 

percentage error between water-cement ratios in both batches are severely high, 

although the individual errors are low and acceptable (5). Henceforth, it shows 

instability of TCD towards different concrete mixes specifically on the change of 

water-cement ratio. Although he has confirmed the accuracy of TCD by controlling 

every test over minimal allowance of error, however it is wise to know that the 

accuracy should be accompanied with precision that will do the formulation best. 

Therefore, TCD must be investigated further so as to identify its consistency and 

application on different water-cement ratio in concrete composition. 

As the research of fatigue in concrete is already in a worrying state with the 

unavailability of certified fatigue methodology and unsteadiness of TCD towards 

different water-cement ratio in concrete, the situation is worsened by the absence of 

steady establishment between static and fatigue behaviour of concrete testing. 

Realising the difficulties, the study will try to make use of previous researches 

related to static and cyclic loading on a material, exploits a scientific technique and 

propose a unified linkage to connect them. Through this study, it will definitely 

improve the understanding in the TCD and enhance its application in future. This 

will embark the journey of static and fatigue study in concrete to become more 

dynamic and practical by easing the formulation to cross from static to fatigue, and 

enhance its application throughout different concrete mixes. 

1.4 Aim and Objectives of Study 

The aim of this research is to investigate in detail numerical characterisation 

of crack in concrete governed by water-cement ratio using an improved linkage 

between static and fatigue loading. The characterisation is based on the Theory of 

Critical Distance (TCD) framework and Xiao Zhi Hu’s static concrete methodology 

(15–17). The technique based on the use of local stresses suitable for estimating 
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fatigue damage in notched concrete components subjected to in-service fatigue and 

static loading. In order to achieve the stated aim, the following are the objectives; 

(a) To examine concrete’s fracture behaviour respecting the water-

cement ratio variation.  

(b) To establish relationship between static and cyclic loading on 

concrete material under fracture mechanics. 

(c) To improvise the sensitivity of  TCD formulation through the study 

of accuracy and compatibility on different water-cement ratio of 

concrete. 

 

1.5 Scope of Study 

This section will discuss on the boundaries of the study – based on literature 

reviews and researches, the formalization suits the study which focusing on 

concrete under cyclic/repeated loading. 

The study is governed by formalization on fatigue and fracture called the 

TCD. The arguments on how or why TCD, and the concrete beam under static and 

fatigue loading are chosen are discussed further ahead. The study is expected to 

investigate the crack and failure of a concrete structure under static and cyclic 

loading. The concern on crack will cover two loading modes; static and cyclic. It is 

important to know the fracture mechanics in both phases. Some might suggest that 

as in civil engineers do not tolerate with any cracks, hence the comprehension must 

be more on crack initiation compared to the propagation phase – that is perhaps the 

reason why engineers must not allow any crack to occur in any concrete structure. 

But in reality, concrete structure is not that ideal. The study examines crack 

initiation critically and predicts the number of cycle to failure, and post-processes 

further to study the propagation of cracks and its characteristics.  
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It is worth to remember, the study is not meant to choose which 

formalization is better – the explanations on TCD previously is based on its 

suitability to the case of the study. The case is not simply chosen because there is 

less study or there are research gaps. The study is hold because of the concern and 

apprehensive in the development of fatigue especially in concrete which is left 

behind while it endangers human life by immediate and catastrophic failure without 

giving any sign of malfunction at any part of structure, as cases stated above. So, 

the testament is done through experimental scale – applying the static and cyclic 

loading on the concrete beam.  

The research involves laboratory works where concrete beams need to be 

casted. The outputs in this research are within the concrete mix of water-cement 

ratio 0.3, 0.4, and 0.5 and the size of beam is about 1 meter in length, 100 mm in 

depth, and 110 mm in width. In running fatigue testing on concrete, the limit is 

taken at 10 million cycles based on (18). 

1.6 Significance of Study 

While engineers are confident on concrete study and its applications and 

contributions to the world’s constructions, some of them overlooked the design and 

might neglect the consequences from the repeated cyclic loading.  

Generally, the study of fatigue in concrete is important to ensure the design 

of a structure includes an allowable degree of tolerance in deficiency. Thence, it is 

essential for engineers to understand the phases of fatigue cracks in concrete. 

Through the study, both engineers and researchers are able to appreciate fatigue in 

concrete using TCD and apply it in concrete study with confidence and zero-

reluctance. The unexpected and sudden failure can be avoided by understanding 

purely the material’s fatigue endurance limit through the first objective. Therefrom, 

research involving fatigue in concrete can be enhanced if the study successfully 

comes out with a unified connecting equation between these two modes of loading; 

static and cyclic as underlined in the second objective. Therewithal, the reason and 

parameter affecting TCD’s precision when bumped into cases of static and fatigue 
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with different water-cement ratio in concrete will be revealed – and TCD will be 

more sensitive to its application on concrete over the third objective. Besides, 

despite addressing only stress magnitude in every design calculation, concrete’s 

toughness and endurance limit should not be put aside. Engineers have to realise 

that static and fracture mechanics are related and should not distinguish them apart 

as what happened in previous decades – structures will be better in quality in any 

way. 

If TCD can be improved by considering concrete’s water-cement ratio in its 

mathematical expression, it will contribute for betterment in assessing predicting 

microcracks initiation and life expectancy of railway concrete structures. This is in 

line with the urge to strengthen infrastructure as in Chapter Seventh of “Eleventh 

Malaysia Plan (2016-2020)”. In the chapter, this research is exactly in the “Focus 

Area A: Building An Integrated Need-Based Transport System” named 

“Strengthening infrastructure to support economic expansion”, under the focus area 

A of “Building An Integrated Need-Based Transport System”, the second strategy 

(Strategy A2 – Improving safety, efficiency, and service levels of transport 

operations) ensuring the effective preventive maintenance and improving road and 

rail.  Thus, the research is in the perfect timing to corporate in Malaysia strategic 

thrust of Eleventh Malaysia Plan and definitely be worthwhile for our nation’s 

future in construction and maintenance work. 

1.7 Thesis Layout 

The thesis is divided into six comprehensive chapters where each chapter is 

connected to one another. Chapter One explained on the significant establishment 

of the research. Chapter Two focused on the related researches that have been done 

and the build-up that contribute to the initiation of the research. Chapter Three is 

typically the methodology of the entire research where it is divided into two parts – 

general and overall methodology, and specific and detailed methodology to achieve 

every objective. Chapter Four analysed the information and data that contributes to 

the first and second objectives. Chapter Five is the ultimate chapter of the research, 

which to comprehend and adjust TCD formulation by incorporating water-cement 
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ratio element as in line with the third objective. Last but not least, Chapter Six 

consists of general and objectival conclusion, and the recommendations for future 

research purpose. 
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