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ABSTRACT 

Acidizing treatment is one of the most useful methods in oil well stimulations 

to form wormholes in carbonate formations in order to enhance reservoir fluid 

production. Obtaining the number of pore volumes to breakthrough is an important 

objective in carbonate acidizing to determine the wormhole properties such as type, 

shape, and size. Finding this number in experimental works requires a considerable 

amount of time, energy, and cost. Therefore, this study aimed to establish an 

analytical model in which a reasonable result would be achieved for the number of 

pore volumes to breakthrough. This purpose was accomplished by only using acid 

and formation properties without performing any experimental works. The process of 

wormhole modelling is simulated by developing an analytical model which uses the 

conservation of mass law. The carbonate core is treated as a closed system and the 

overall mass in the system as constant during the acid injection process. Furthermore, 

a constant number is added to the mathematical part of the model in order to 

eliminate the dimensionless Damköhler number which is supposed to be calculated 

experimentally. The results of the analytical procedure of the developed model are 

further compared to six other experimental and numerical works, which led to the 

computation of average accuracy and coefficient of determination of this model. 

Evaluation of the developed model with other experimental and numerical results 

gives an excellent assessment of 95.45% for the average accuracy and 0.9938 for the 

average coefficient of determination. This study establishes a comprehensive 

analytical model to estimate the number of pore volumes to breakthrough with an 

acceptable accuracy rate merely through implementing known acid and core 

properties.  
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ABSTRAK 

Rawatan asid ialah satu daripada kaedah berguna dalam perangsangan telaga 

bagi membentuk lubang cecacing dalam formasi karbonat dengan tujuan untuk 

meningkatkan pengeluaran bendalir reservoir. Memperoleh jumlah isipadu liang 

untuk bulus ialah objektif penting dalam pengasidan matriks karbonat, bagi 

menentukan sifat-sifat lubang cecacing, misalnya jenis, bentuk, dan saiz. 

Memperoleh angka ini menerusi kerja ujikaji melibatkan banyak masa, tenaga dan 

kos. Oleh itu, kajian ini bertujuan untuk membina model analisis bagi menghasilkan 

dapatan munasabah bagi jumlah isipadu liang untuk bulus. Matlamat ini boleh 

disempurnakan dengan hanya menggunakan sifat-sifat formasi dan asid tanpa 

melibatkan sebarang ujikaji. Proses pemodelan lubang cecacing diselaku dengan 

membangunkan model analisis menerusi hukum keabadian jisim. Teras batuan 

karbonat dianggap sebagai suatu sistem tertutup dan keseluruhan jisim di dalam 

sistem sebagai malar semasa proses penyuntikan asid. Selain itu, angka malar 

ditambah ke dalam model matematik bagi menyingkir nombor Damköhler tanpa 

dimensi yang sepatutnya dikira secara ujikaji. Dapatan daripada tatacara analisis 

model terbabit selanjutnya dibandingkan dengan enam hasil kerja terdahulu yang 

dilaksana secara ujikaji dan berangka sehingga berjaya menghasilkan kejituan purata 

dan pekali penentuan model. Penilaian terhadap model terbabit dengan hasil kerja 

secara ujikaji dan berangka memberikan keputusan yang baik, iaitu 95.45% bagi 

kejituan purata dan juga 0.9938 untuk pekali purata penentuan. Kajian ini berjaya 

menghasilkan satu model analisis yang komprehensif bagi menganggar jumlah 

isipadu liang untuk bulus dengan kadar kejituan yang boleh diterima dengan hanya 

mengguna pakai sifat-sifat asid dan teras. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

There are various methods in increasing the efficiency of oil well production. 

One of the common ways for this enhancement is acidizing. According to glossary of 

Schlumberger, in the acidizing process the intended acid is pumped into the wellbore 

to eliminate the damaged zone due to drilling process around well formation. This 

technique generally enhances reservoir fluid production by increasing the effective 

well radius and matrix acidizing is a useful treatment for carbonate formations with a 

stimulation fluid or acid (Schlumberger, 2019).  

In the carbonate formations, injected acid dissolves the carbonate formation 

during penetration and this matrix acidizing treatment creates wormholes to 

enhanced production of reservoir fluids. In this method, acid injected in oil well 

creates wormholes around the well and expands porosity and permeability and leads 

to improve oil flow rate (Dong et al., 2016; Mahrous et al., 2017). Selecting a proper 

acid depends on various factors such as type of reservoir rock, mineralogy, ionic 

composition, temperature, pressure, and depth. Acidizing will usually be used when 

the bottom hole is damaged because of cementing, penetration of mud drilling,  well 

perforation, etc.  

Matrix acidizing is a stimulation method mostly used for carbonates and 

sandstones formations. There are various differences between these two kinds of 

reservoirs concerning acidification of them, although both of them are based on the 

same principle of chemical dissolution in the mineral formations. In carbonate 

formations, the effects of acid reaction rate and acid concentration lead to several 

dissolution patterns.  These patterns are known as wormholes (Schwalbert et al., 

2019). 
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 According to Shokry and Keshtta (2010), the acid reaction and transport rate 

in the carbonate reservoirs creates high conductive flow channels or wormholes. 

These wormholes increase the reservoir fluid flow significantly because they have a 

higher conductivity compared with the original porous medium of reservoir 

formation. Therefore, this stimulation technique has a very high success result in 

carbonate formations which depends on wormhole shape. A good shape wormhole is 

capable to bypass the damaged zone around the wellbore. On the other hand, a bad 

shape wormhole leads to fluid leak off and decreases the depth of acid penetration. 

The structure of the wormhole channels, which varies significantly with  acid flow 

conditions and formation properties, ultimately control the shape of wormhole and 

effectiveness of stimulation treatments (Walle and Papamichos, 2015). 

For obtaining the wormhole shape and type, the number of pore volumes to 

breakthrough (PVBT) is required. This number is a dimensionless number for 

determining the ratio of injected acid and pore volume in the core (Fredd, 2000). The 

dynamic model of wormhole formation also was described in other studies 

(Schwalbert et al., 2019). Also, the wormhole type and structure are related through 

another dimensionless parameter known as Damköhler number (NDa) (Fredd and 

Fogler, 1999). This number presents the ratio of flow time scale to the chemical time 

scale. Both of these numbers required experimental work.  

Finding the pore volumes to breakthrough number is one of the most 

important parameters in the matrix acidizing. Experimental processes are vital to find 

this number (Davudov et al., 2018). On the other hand, in most numerical models, 

the concentration of fluid flow was considered as a constant. A model that can 

estimate the pore volume number has not yet been developed for different types of 

acids and formations with the effect of concentration of fluid flow changes without 

the need for an experimental work. 
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1.2 Statement of the Problem 

In the past, mineral acids and mostly hydrochloric acid (HCl) as an 

inexpensive acid or hydrofluoric acid (HF) were used in carbonates reservoirs 

acidizing. With development in petroleum industry, organic acids such as acetic acid 

(CH3COOH) and complex acids such as ethylenediaminetetraacetic acid (EDTA) or 

(C10H16N2O8) are also used to create more effective wormholes based on the type of 

the formations (Kankaria et al., 2017; Sokhanvarian et al., 2016).  

Chemical reactions of these different types of acids by various concentrations 

with different types of formations create many different types of wormholes. To 

measure these wormholes, finding the pore volume to breakthrough number is so 

important.  Experimental works were basically needed to find this number, which 

require lots of energy, time and cost (Nino-Penaloza and Gomaa, 2016). 

Due to the numerous chemical reactions between different types of acids and 

carbonate formations, developing a fully numerical model is essential. This model is 

capable of estimating the pore volume to breakthrough number based on the 

properties of acids and carbonate formations without any experimental work. 

1.3 Objectives of the Study 

The main objectives of this research are as follow: 

i. To develop an analytical model for different types of acid such as organic, 

mineral or complex with different concentrations to be used in carbonate 

formations. 

 

ii. To determine the number of pore volume to breakthrough in carbonate matrix 

acidizing by the developed model. 
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iii. To validate the results of the developed model by calculating the deviation, 

determination and accuracy through comparing them to the results of former 

experimental works and models.  

1.4 Scope of the Study 

The scope of this work consists of the following actions: 

i. Developing an analytical model for different types of organic, mineral, or 

complex acids in different concentrations with full mathematical methods and 

chemical properties of acids and formations with real data from experimental 

works. 

 

ii. The formation in this study is focused on two types of carbonate rocks; 

limestone (CaCO3) and dolomite (CaMg(CO3)2). Also the acids include 

organic, mineral, and complex acids with different molar concentrations. 

 

iii. The model will be validated by measuring the deviation and determination 

through comparing the results to different experimental works and numerical 

model developed previously that are done formerly in other studies. The 

accuracy of the model will also be assessed. 

1.5 Significance of the Study 

Acidizing is an important and inevitable process in the oil well stimulations 

to create wormhole in the formation. The number of pore volumes to breakthrough is 

the main index for knowing wormhole type, shape and size. Therefore, finding the 

number of pore volumes to breakthrough is one of the main goals in the matrix 

acidizing. Obtaining this number always requires experimental works.  In this study, 

a model is developed to determine an acceptable result for the number of pore 

volumes to the breakthrough without using experimental works with solely using 



 

5 

acid and formation properties. As a matter of fact, increasing the efficiency of oil 

production is one of the important goals for petroleum companies. Depending on the 

types of problems in oil wells, different solutions are generated. Acidizing is one of 

the useful solutions for the damages happening around well bore in order to increase 

oil production. In the past, most carbonate formations were acidized with HCl but 

currently various acids are used in industry to create wormholes in carbonate 

formations.  

This study aims to create a model capable of finding the number of pore 

volumes to breakthrough for carbonate formations with any type of acids such as 

organic, mineral and complex with any concentration in carbonate formations. 

Therefore, the originality of this study is to develop a new numerical model to 

estimate the pore volumes to breakthrough number with high accuracy merely using 

specified properties of acid and core. Consequently, this study can contribute to 

studies in finding pore volumes to breakthrough number in carbonate matrix 

acidizing.  

1.6 Layout of the Thesis  

 The presented thesis contains five main chapters. Chapter One presents the 

introduction of the thesis including the research background, objectives, scopes and 

significance of the study. Followed by the introduction chapter, literature review is 

presented in Chapter Two. The literature review chapter provides an overview of 

other experimental and numerical models and studies for pore volumes to 

breakthrough number. 

In Chapter Three, the research methodology and the selected data for 

developing the acidizing model in carbonate formations are presented. Mathematical 

and chemical methods and tools are further presented in this chapter. 

In Chapter Four, the model is developed based on the conservation of mass 

law and chemical equation balance between acids and carbonate rock by using 



 

6 

experimental results that are carried out previously by other scholars. Subsequently, 

the model is tested through comparing to other experimental works that are 

previously done using different acids and carbonate formations. The comparison is 

made in order to assess the accuracy of the developed model.  

Lastly, the discussions, conclusions and recommendations for the possible 

future works are presented in Chapter Five. 
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