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ABSTRACT 

Maltooligosaccharides (MOS) are potential oligosaccharides in food-based 

applications and can be synthesized through the enzymatic synthesis of maltogenic 

amylase from Bacillus lehensis G1 (Mag1). Although MOS can be synthesized by 

using free enzymes, this process is hampered by poor enzyme recovery and lack of 

enzyme stability, which makes it unrealistic for applications. To overcome these 

drawbacks, several optimization methods, including enzyme immobilization 

approach, could be applied. A carrier-free immobilization technique that uses cross-

linked enzyme aggregates (CLEAs) enhances the stability of the enzymes. Indeed, a 

decrease in substrate accessibility of CLEAs may hinder CLEAs applications. The 

substrate accessibility problem of CLEAs formation was overcome by the addition of 

porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs have 

particles that are small in size, soft and mechanically unstable, which can cause 

enzyme leaching and reduce the activity, as well as the performance of the enzyme. 

To address these problems, p-CLEAs were entrapped in calcium alginate beads 

(CA). In this study, a formation of cross-linked enzyme aggregates of Mag1 (Mag1-

CLEAs) were carried out to improve the stability and reusability of free Mag1. The 

substrate accessibility problem of Mag1-CLEAs was solved by the formation of 

porous CLEAs of Mag1 (Mag1-p-CLEAs). All factors affecting the formation of 

CLEAs were investigated. The highest activity recovery of Mag1-CLEAs 58.14 % 

(18.6 U/mg) was obtained at 80 % (w/v) ammonium sulphate (precipitant), 0.25 % 

(w/v) chitosan (cross linker) with cross-linking time of 1.5 h. In comparison, Mag1-

p-CLEAs prepared with 0.8 % (w/v) citrus pectin (porous agent) exhibited 91.20 % 

(29.2 U/mg) activity. This developed porous material exhibited larger particles size 

(1.60 µm) and pore size distribution of 8 – 1000 nm. Mag1-p-CLEAs noticeably 

retained 80 % of their activity after 30 min of incubation at 40 °C and showed longer 

half-life compared to free Mag1 and Mag1-CLEAs. The 1.68-fold increase in Vmax 

value in comparison to Mag1-CLEAs showed that the presence of pores of Mag1-p-

CLEAs enhanced the beta-cyclodextrin (β-CD) accessibility. Next, Mag1-p-CLEAs 

were entrapped into calcium alginate beads. Mag1-p-CLEAs-CA prepared with 2.5 

% (w/v) sodium alginate and 0.6 % (w/v) calcium chloride yielded 53.16 % (17.0 

U/mg) activity and showed a lower deactivation rate and longer half-life than those 

of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-

CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and 

high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study 

revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards β-CD 

(Km = 0.62 mM). MOS (261.9 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 

°C through hydrolysis reaction of β-CD. Although, Mag1-p-CLEAs-CA have low 

transglycosylation activity, they have superior reusability and can maintain their 

activity for up to 11 cycles. In conclusion, the combination of CLEAs technology 

with entrapment approach, has proven to be a promising tool to develop stable 

enzymes. The developed Mag1-p-CLEAs-CA are potential biocatalyst for the 

continuous production of MOS.  
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ABSTRAK 

Maltooligosakarida (MOS) adalah oligosakarida yang berpotensi dalam 

aplikasi berasaskan makanan dan boleh disintesis melalui sintesis enzimatik 

menggunakan amilase maltogenik dari Bacillus lehensis G1 (Mag1). Walaupun MOS 

boleh disintesis dengan menggunakan enzim bebas, proses tersebut terhad 

disebabkan oleh perolehan enzim yang lemah dan kekurangan kestabilan enzim yang 

menjadikan proses ini tidak realistik untuk digunakan. Untuk mengatasi kekurangan 

ini, beberapa kaedah pengoptimuman, termasuk pendekatan imobilisasi enzim, boleh 

di aplikasikan.  Teknik imobilisasi bebas pembawa yang menggunakan agregat 

enzim terpaut silang (CLEAs) mampu meningkatkan kestabilan enzim. Namun, 

penurunan capaian substrat terhadap CLEAs boleh menghalang aplikasinya. Masalah 

kebolehcapaian substrat oleh CLEAs boleh diatasi dengan penambahan agen berliang 

untuk menghasilkan CLEAs berliang (p-CLEAs). Walaubagaimanapun, p-CLEAs 

mempunyai saiz yang kecil dan lembut, dan tidak stabil secara mekanikal yang boleh 

menyebabkan enzim terbebas dan mengurangkan aktiviti serta prestasi enzim. Bagi 

mengatasi masalah ini, p-CLEAs dikepung di dalam manik kalsium alginat (CA). 

Dalam kajian ini, agregat enzim terpaut silang Mag1 (Mag1-CLEAs) dibentuk untuk 

meningkatkan kestabilan dan kebolehgunaan semula Mag1 bebas. Masalah 

kebolehcapaian substrat oleh Mag1-CLEAs dapat diselesaikan dengan pembentukan 

CLEAs berliang Mag1 (Mag1-p-CLEAs). Semua faktor yang  mempengaruhi 

pembentukan CLEAs dikaji. Pemulihan aktiviti tertinggi Mag1-CLEAs 58.14 % 

(18.6 U/mg) diperoleh pada 80 % (w/v) ammonium sulfat (pemendak), 0.25 % (w/v) 

kitosan (agen pemaut silang) dan 1.5 jam masa pemautsilang. Sebagai perbandingan, 

Mag1-p-CLEAs yang dibentuk dengan 0.8 % (w/v) sitrus pektin (agen berliang) 

menghasilkan aktiviti 91.20 % (29.2 U/mg). Bahan berliang ini menunjukkan saiz 

yang besar (1.60 µm) dan penyebaran saiz liang 8 – 1000 nm. Mag1-p-CLEAs 

mengekalkan 80 % aktiviti selepas pengeraman selama 30 minit pada 40 °C dan 

menunjukkan separuh hayat yang lebih lama berbanding dengan Mag1 bebas dan 

Mag1-CLEA. Peningkatan 1.68 kali ganda nilai Vmax berbanding dengan Mag1-

CLEAs menunjukkan bahawa kehadiran liang pada Mag1-p-CLEA meningkatkan 

kebolehcapaian beta-siklodekstrin (β-CD). Seterusnya, Mag1-p-CLEAs dikepung ke 

dalam manik kalsium alginat. Mag1-p-CLEAs-CA yang dibentuk dengan natrium 

alginat 2.5 % (w/v) dan 0.6 % (w/v) kalsium klorida menghasilkan aktiviti 53.16 % 

(17.0 U/mg) dan menunjukkan kadar penyahaktifan yang lebih rendah dan separuh 

hayat yang lebih lama daripada Mag1 bebas yang terkepung (Mag1-CA) dan Mag1-

CLEAs yang terkepung (Mag1-CLEAs-CA). Selain itu, Mag1-p-CLEAs-CA 

mempamerkan enzim terbebas yang rendah dan toleransi yang tinggi terhadap 

pelarut organik berbanding Mag1-p-CLEAs. Kajian kinetik mendedahkan Mag1-p-

CLEAs-CA mempunyai tarikan yang tinggi terhadap β-CD (Km = 0.62 mM). MOS 

(261.9 mg/g) telah disintesis oleh Mag1-p-CLEAs-CA pada 50 °C melalui tindak 

balas hidrolisis β-CD. Walaupun Mag1-p-CLEAs-CA mempunyai aktiviti 

pentransglikosilan yang rendah, mereka mempunyai kebolehkitaran yang lebih baik 

dan boleh mengekalkan aktiviti sehingga 11 kitaran. Kesimpulannya, gabungan 

teknologi CLEAs dan teknik kepungan telah terbukti menjadi kaedah yang baik 

untuk menghasilkan enzim yang stabil. Mag1-p-CLEAs-CA menjadi biomangkin 

yang berpotensi untuk penghasilan MOS secara berterusan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Galactooligosaccharides (GOS), fructooligosaccharides (FOS) and lactulose 

are well established functional oligosaccharides and their prebiotics role has been 

recognized in Europe, Japan and the United States (Tuohy et al., 2005). Other 

emerging prebiotics such as xylooligosaccharides (XOS), soybean oligosaccharides 

(SOS) and maltooligosaccharides (MOS) also provide a potential for various 

applications. Maltooligosaccharides are sugar oligomers that are composed of 3 – 10 

of glucose monomers that are linked together by α-1,2 and α-1,4 glycosidic bonds. It 

have been demonstrated as potential prebiotics in many studies (Prapulla et al., 2000; 

Rastall, 2010). MOS that act as prebiotics can beneficially affect the host health by 

stimulating the growth and activity of bacteria in the colon. In fact, the prebiotics act 

as a nutrient for the probiotics in the host colon, especially Bifidobacterium and 

Lactobacillus spp. Besides, it have been used as sugar substitute, food flavour 

enhancer and widely used as additives in food and beverage products to control the 

bacterial contamination and extending the shelf life of the food. Since MOS are one 

of the candidates for prebiotics and is applied in food industrial areas, it is important 

to increase its production to meet its demand. Oligosaccharides are acquired from 

natural sources such as from fruits and vegetables as well as whole grains. 

Unfortunately, their consumption through natural elements might not be sufficient. 

Hence, a better way to consume oligosaccharides is by their supplementation in food 

products. As mentioned before, oligosaccharides can be acquired and extracted from 

natural sources. However, this approach is not suitable for large scale application 

because only a limited number of plants which are chicory root and Jerusalem 

artichoke are suitable sources for oligosaccharides in industrial applications (Van 

Loo et al., 1995). Thus, chemical and enzymatic syntheses are other alternative 

methods to obtain oligosaccharides. Yet, enzymatic synthesis is preferable in 
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comparison to chemical synthesis because this method involves milder reaction 

processes and the uses of enzymes are feasible for industrial processes. This is 

because, enzymes are robust, easy to handle and utilizes inexpensive and simple 

substrate for oligosaccharides production. Furthermore, oligosaccharides synthesis 

by enzymatic approaches has attracted growing interest as an alternative to old-

fashioned chemical synthesis method (Koeller and Wong, 2001).   

Enzymes are the natural biocatalysts that are produced by living organisms to 

increase the rate of chemical reactions for life sustaining. The uses of microbial 

enzymes, approximately 200 types are applied in various sectors including food, 

agriculture, chemicals and medicine industries. Nevertheless, only 20 enzymes have 

been produced in large scale industry (Li et al., 2012). An enzymes offer various 

beneficial properties, for example, it provides efficient reaction rate even at low 

concentration, the reaction processes takes place under milder conditions 

(temperature and pH value) and the process involves low toxicity along with ease of 

activity termination (Choi et al., 2015; Li et al., 2012). Moreover, the enzyme with 

upgraded properties becomes an important tool for recognized practical applications 

and is rapidly gaining interest in many studies. Thus, the advancement in enzyme 

technology needs to be performed to increase the number of industrial enzymes that 

are useful in different industrial sectors. In addition, the increasing demand for 

consumer goods, the need for low production cost and the decrease in the use of 

natural resources are the driving factors that trigger for enzyme development in 

processing industry, specifically in food manufacturing (Choi et al., 2015). 

Commercially available enzymes in most of industrial areas are amylases, 

protease, lipase, cellulase, xylanase and catalases, with the most versatile are 

amylases. Amylases can convert starch to sugar syrups and MOS. Enzymes that can 

produce maltooligosaccharide are mainly from family 13 (GH 13) and considered as 

maltooligosaccharide-forming amylase (MFAses). Glucan-1,4-α-maltotetraohydrolase or 

known as maltotetraose-forming amylase, glucan-1,4-α-maltohexaohydrolase or 

maltohexaose-forming amylase, maltotriose-forming amylase also known as (glucan- 

1,4-α-maltotriohydrolase) and glucan-1,4- α-maltohydrolase or usually called maltogenic 

amylase produce maltotetraose, maltohexaose, maltotriose, and maltose, respectively, as 

a main products from the hydrolysis reaction of starch.  
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In recent years, the importance of amylases as industrial catalysts has grown 

steadily. Many researches are focusing on developing amylases with improved 

properties to fit the needs in industrial level (Li et al., 2012). It is worth mentioning 

that the use of enzymes in the industrial applications are challenging. This is because 

the enzymes are biological molecules that are difficult to work in the conventional 

industrial environments, such as at elevated pH and temperature and in the presence 

of mechanical stress due to harsh handling. Enzymes also cannot be reuse due to 

their solubility (Sheldon, 2010). These extreme conditions ultimately induce the 

conformation changes of the enzymes and leads to the reduction or loss of their 

activity. Thus, the improvements for the enzymes are needed to create a route for the 

success of enzymes applications. Moreover, most of the enzymes dissolve in an 

aqueous solution and it is impossible for their recovery and reuse. This condition 

leads to the increase of the production cost of the enzymes because of their relatively 

high price (Sheldon, 2007a). 

In order to tackle these problems, several tools and techniques have been 

explored to develop a stable and efficient enzymes with an excellent properties (Silva 

et al., 2018). Exploitation of methods to stabilize the enzymes, such as their isolation 

from extremophiles bacterium or through protein engineering, chemical 

modification, medium engineering and enzyme immobilization have been studied in 

many years. Although each approach has their own advantages and disadvantages, 

enzyme immobilization strategies have been broadly investigated on a diverse type 

of enzymes. The advantages of this technique include the possibility for re-utilization 

of the enzyme for the continuous-flow processes and modify the final properties of 

the enzyme by enhancing the stability, activity, selectivity, purity, specificity toward 

the different substrate and prevention of enzyme inhibition (Rodrigues et al., 2013). 

Generally, immobilization techniques were applied to increase enzymes stability and 

recyclability while maintaining their catalytic activity. In fact, for the 

commercialization of the enzymes, their reusability becomes more important and 

failing to provide this would cause the enzymes to be uneconomic (Datta et al., 

2013). Thus, enzyme immobilization techniques are used as an alternative method to 

enhance the properties and reproducibility of enzyme for their relevant applications.  

In addition, immobilized enzymes could be able to retain most of their activity and 
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offer similar or better performance compared to soluble enzyme, if the right 

immobilization approach was performed (Cao et al., 2003).  

Various applications of immobilized enzyme can be found in industry. 

Immobilized β-galactosidase is used for production of lactose-free milk, immobilized 

invertase for synthesis of glucose and fructose mixture and immobilized nitrile 

hydratase for the production of nicotamide (Homaei et al., 2013). In any 

commercialization of immobilized enzyme, the choice of immobilization techniques 

must be based on a specific compromise about the advantages and disadvantages 

between free and immobilized enzymes. There are numerous strategies of enzyme 

immobilization techniques that were comprehensively studied. This is includes 

adsorption, entrapment, affinity binding, covalent attachment and cross-linking or 

combination of several methods. Cross-linked enzyme aggregates (CLEAs) which 

are carrier free enzyme immobilization protocol have attracted increasing attention in 

many studies. This method was invented by Sheldon (Sheldon et al., 2005). This 

technique display outstanding advantages, such as providing high catalytic activity, 

high stability, facile enzyme recovery and reusability and the procedure require low 

cost due to exclusion of carrier usage and does not require extensive enzyme 

purification for its preparation. Although CLEAs preparation is a straightforward 

procedure, CLEA formation might be ineffective and problematic if the enzyme 

contains low external lysine residues and the CLEAs have substrate accessibility 

problem. In addition, the CLEAs particles are normally small in sizes which are less 

than 10 µm. Indeed, CLEAs particles are also too soft which are not suitable to be 

applied in reactors. Also, they are not mechanically stable, susceptible to enzyme 

leaching under harsh condition and has low solvent tolerance, which can reduce the 

activity, as well as the performance of the enzyme (Garcia Galan et al., 2011).  

The rapid developments in combination of carrier and carrier-free 

immobilization techniques have stimulated strong interest to improve the quality of 

the CLEAs. CLEAs may be require physical support to increase their rigidity and 

stability (Garcia Galan et al., 2011). The accelerated development of entrapment 

approach using polymers to improve the quality of the enzymes have been 

established in many studies (Jadhav and Singhal, 2014; Larosa et al., 2018). To 
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exploit the advantages of entrapment using calcium alginate beads, it is essential to 

investigate the potential of this approach in stabilizing the CLEAs particles. In this 

work, cross-linking and entrapment immobilization techniques of maltogenic 

amylase from Bacillus lehensis G1 (Mag1) was performed to enhance its stability. 

Since Mag1 is an enzyme candidate for MOS synthesis, it was selected for further 

investigation.  

1.2 Problem Statement 

Maltooligosaccharides (MOS) offer various health and industrial benefits. 

The enzymatic synthesis approach is preferable and a popular method to obtain 

MOS. This method exhibits high product yield and involved low production cost 

compared to when the natural extraction method is employed. Maltogenic amylase 

from Bacillus lehensis G1 (Mag1) is a potential biocatalyst for MOS synthesis. It 

catalyzes both hydrolysis and transglycosylation reactions for the formation of MOS 

with various lengths. Although Mag1 has great potential in the formation of MOS, 

the use of free enzymes remains challenging due to their poor stability and cannot be 

reused, and this resulted in higher production cost. Due to the importance of Mag1 in 

the food, beverages and pharmaceutical industries, many strategies were applied to 

increase their operational stability. Cross-linked enzyme aggregates (CLEAs), a 

growing technique has been practiced for many years as a method for enzyme 

stabilization. The chemical linkages that were formed between enzyme molecules 

allows the formation of a rigid and stabilized but active enzymes. CLEAs also allow 

easy separation of the enzyme for subsequent process. Indeed, CLEA formation 

might be ineffective and problematic if (i) the enzyme contains low external lysine 

residues, which could be solved by co-aggregation of the enzyme with polymers or 

proteic feeders, such as polyethyleneimine (PEI) and bovine serum albumin. (ii) A 

decrease in substrate accessibility of CLEAs may hinder CLEA applications. In this 

study, preparation of porous CLEAs (p-CLEAs) was performed in order to solve 

substrate accessibility problem of CLEAs. Although p-CLEAs provide high stability 

for Mag1 and solves substrate accessibility problem of CLEAs technology, enzyme 

leaching occurs due to their small size and soft particle, which will restrict their 
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application. Besides, p-CLEAs might have low tolerance toward non-aqueous 

solvents. Thus, p-CLEAs of Mag1 are entrapped into calcium alginate beads to 

prevent enzyme leaching, enhance their solvent tolerance and allow ease of enzyme 

separation. In this study, cross-linking and entrapment approaches were applied to 

improve the properties of Mag1 to allow its use as biocatalyst for MOS synthesis.  

1.3 Objectives of Study 

There are three main objectives in this study. The objectives are:  

a) To improve the stability of free Mag1 by CLEAs method and enhance substrate 

accessibility of CLEAs by the preparation of porous CLEAs. 

b) To investigate the effects of entrapment of CLEAs into calcium alginate beads. 

c) To examine the performance of immobilized Mag1 in the hydrolysis and 

transglycosylation reactions for MOS synthesis.  

1.4 Scopes of Study 

This study focuses on the improvement of Mag1 stability by the cross-linking 

and entrapment immobilization techniques and the application of immobilized Mag1 

for MOS synthesis. Hence, the following scopes are outlined:  

a) Expression and purification of recombinant maltogenic amylase from Bacillus 

lehensis G1 (Mag1). 

b) Investigate the factors for the preparation of CLEAs; type and concentration of 

precipitant, type and concentration of cross linker, cross-linking time, type and 

concentration of additives and type and concentration of porous agent.  
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c) Characterization of CLEAs (Mag1-CLEAs, Mag1-CLEAs-Tween 20 and Mag1-

p-CLEAs).  

d) Screening of the factors for entrapment of CLEAs into calcium alginate beads; 

concentration of sodium alginate, concentration of calcium chloride and curing 

time.  

e) Study the effect of entrapment of CLEAs into calcium alginate beads. 

f) Determine the factors that affect the hydrolysis and transglycosylation reactions 

of immobilized Mag1 for MOS synthesis. 

1.5 Rational and Novelty of the Study  

The potential of Mag1 for the synthesis of MOS has been recognized by 

many researchers. The synthesis of MOS requires the enzyme to work in industrial 

operating conditions, including at elevated temperature, at the acidic and basic 

environment, under the harsh operating conditions and in the presence of an organic 

solvent. However, a soluble enzyme has moderate stability and inefficient for 

recyclability which hampers their application. Enzyme immobilization is one of the 

promising approaches to tackle those limitations. It is worth mentioning that 

exploring robust and renewable enzymes are important for various applications. 

Moreover, a continuous offering of data regarding the potential enzymes could be 

beneficial for the industrial organization and provide more knowledge to the 

scientific community in understanding the effect of enzyme immobilization in the 

performance of the enzyme. In the past decades, CLEAs, a simple carrier-free 

immobilization technique has been widely explored and this technique displays 

superior advantages such as provides high operational stability and high enzyme 

recovery. However, CLEAs formation might be problematic for the enzymes that 

contain low number of external lysine residue. Therefore, the addition of additive 

during cross-linking process is known to improve cross-linking efficiency and 

produce stable CLEAs. In addition, a compact structure of CLEAs will cause 
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substrate accessibility problem. This report is the first study in demonstrating the 

formation of p-CLEAs of Mag1 using citrus pectin as porous agent. Previously, only 

starch was applied as porous agent in the preparation of p-CLEAs. Exploring other 

porous agents for the preparation of p-CLEAs is crucial because not all enzymes will 

exhibit a higher activity if starch is used. In addition, the application of chitosan as a 

cross linker is also needed to be further considered. Although glutaraldehyde has 

been employed for CLEAs preparation for many years, its adverse effects to human 

and its deactivation effect for the enzyme have motivated the researcher to search for 

safe, biodegradable, environment-friendly and macromolecule cross linker. The 

findings demonstrated that the use of chitosan as a macromolecule cross linker and 

the addition of additive or porous agent during CLEAs preparation is a potential 

element that could be exploited for the production of stable and reusable CLEAs.  

Moreover, because of some of the problems associated with CLEAs such as 

their small particle size, which might be too soft and mechanically unstable as well 

as their low solvent tolerance, immobilization of CLEAs on the matrices is proposed 

to enhance their properties and to overcome above-mentioned limitations of CLEAs, 

especially p-CLEAs. Limited studies were available to observe the effect of CLEAs 

that was entrapped into calcium alginate beads. To the best of our knowledge, this 

report is the first study that demonstrates the use of entrapped p-CLEAs for MOS 

synthesis. Also, the use of immobilized Mag1 for transglycosylation reaction remains 

elusive. In this study, the hydrolysis and transglycosylation reaction of immobilized 

Mag1 was investigated to gain a better understanding of the effect of immobilization 

on the reaction process and product formation by immobilized Mag1.  
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