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ABSTRACT 

 Surfactant adsorption on reservoir rock surface is a fundamental issue in 

surfactant based enhanced oil recovery. Reservoirs contain a significant amount of 

clays that results in large surface areas, thus causing a large portion of the surfactant 

to be adsorbed. Sacrificial agent (SA) is meant to be sacrificed, hence serving as a 

shield that protects the formation of rock by adsorbing into active adsorption site and 

prevents the subsequent surfactant to be adsorbed onto the surface. Despite the 

promising initial results, the suitability of numerous available types of lignosulfonate 

(LS) in the vast market as SA has yet to be investigated. Having that said, the 

objectives of this study are to determine the readiness of four LS types to adsorb onto 

clay minerals based on their functional groups, to investigate the adsorption capability 

and to define the effective method (mixture or pre-treatment), as well as to identify the 

underlying mechanism responsible for the effectiveness to reduce cetyl trimethyl 

ammonium bromide (CTAB) adsorption. The most commonly used method to 

measure adsorption refers to the depletion method, where the concentration before and 

after adsorption are measured. Adsorption data obtained from the depletion method 

can be modelled into adsorption model to describe the adsorption process. Four types 

of LS, which are sodium LS (SLS), ammonium LS (ALS), magnesium LS (MLS), and 

calcium LS (CLS), were compared in terms of functional group, adsorption capability, 

and adsorption model to determine their readiness to adsorb onto kaolinite and 

montmorillonite. Different LS types, concentration, contact time, and model of 

adsorption were among the parameters tested with different brine salinity and pH. Both 

mixture and pre-treatment methods were investigated in depth to identify the 

underlying mechanism responsible to effectively reduce CTAB adsorption. A major 

finding from this study is that the functional groups in LS, such as (a) hydroxyl group 

in phenolic and aliphatic, (b) methyl and methylene, (c) aromatic, (d) sulfonic acids 

and stretching aliphatic, and (e) CHx bending out plane, were involved in the 

adsorption process onto kaolinite and montmorillonite. The mechanism appeared to be 

driven by electrostatic forces. SLS displayed the highest readiness to adsorb onto 

kaolinite and montmorillonite, which adhered to the following sequence 

SLS>ALS>CLS>MLS. Higher LS concentration and salinity led to higher adsorption, 

especially with the change of monovalent salt to divalent salt. Nonetheless, pH had no 

impact on adsorption. This signifies that pH modification may be ignored when using 

LS as SA. Equilibrium and kinetic adsorptions adhered to the Freundlich model and 

the pseudo-second order, respectively. Electrostatic forces, cation-π interaction, 

hydrophobic interaction, and cation bridging had a crucial role in the adsorption 

mechanism of LS with kaolinite and montmorillonite. The SLS as SA had successfully 

reduced CTAB adsorption via pre-treatment method. The effective underlying 

mechanism revealed in this study is SLS as SA that displayed high adsorption 

readiness, along with cation bridging assistance from divalent salt and reversed surface 

charge. As high as 50% CTAB reduction was recorded in the experimental work. As 

such, this study concludes that SLS is suitable to function as SA to reduce cationic 

adsorption onto kaolinite and montmorillonite. Pre-treatment is an effective way to 

reduce CTAB adsorption. 
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ABSTRAK 

Penjerapan surfaktan di permukaan batuan reservoir merupakan salah satu isu 

asas dalam penggunaan surfaktan bagi perolehan minyak tertingkat. Reservoir yang 

mengandungi kandungan lempung yang tinggi boleh menghasilkan keluasan 

permukaan batuan yang lebih besar yang menyebabkan sebahagian besar surfaktan 

terjerap. Ejen korban (SA) adalah bahan yang dijadikan korban, berpotensi melindungi 

batuan dengan menjerap ke permukaan aktif penjerapan dan berikutnya menghalang 

surfaktan dari menjerap ke permukaan batuan. Walaupun hasil kajian awal yang 

menyakinkan, kesesuaian pelbagai jenis lignosulfonat (LS) yang berada di pasaran 

sebagai SA masih belum disiasat. Oleh yang demikian, objektif penyelidikan ini 

adalah untuk menentukan kesediaan empat jenis LS untuk menjerap pada mineral 

lempung berdasarkan kumpulan fungsinya, untuk menyiasat keupayaan penjerapan 

dan untuk mengenalpastikan kaedah yang berkesan (campuran atau pra-rawatan) di 

samping mekanisme yang bertanggungjawab terhadap keberkesanan untuk 

mengurangkan penjerapan cetil trimetil amonium bromida (CTAB). Kaedah yang 

paling lazim untuk mengukur penjerapan adalah kaedah susutan di mana kepekatan 

sebelum dan selepas penjerapan diukur. Data penjerapan yang diperolehi dapat 

dimodelkan ke dalam model penjerapan yang dapat menjelaskan proses penjerapan. 

Empat jenis LS iaitu sodium LS (SLS), amonium LS (ALS), magnesium LS (MLS) 

dan kalsium LS (CLS) dibandingkan dari segi kumpulan fungsi, keupayaan penjerapan 

dan model penjerapan untuk menentukan kesediaan penjerapan ke atas kaolinit dan 

montmorilonit. Jenis LS, kepekatan, masa sentuh dan model penjerapan LS adalah 

parameter yang diuji, di samping kepelbagaian pH dan kemasinan air garam. Kaedah 

campuran dan pra-campuran diteliti secara mendalam untuk mencari mekanisme yang 

bertanggungjawab untuk pengurangan penjerapan CTAB. Penemuan utama daripada 

kajian ini adalah didapati kumpulan fungsi dalam LS seperti (a) kumpulan hidroksil 

dalam fenolik dan alifatik, (b) metil dan metilena, (c) aromatik, (d) asid sulfonik dan 

alifatik regangan, dan (e) lenturan CHx terlibat dalam proses penjerapan kaolinit dan 

montmorilonit. Mekanisme kelihatan didorong oleh daya elektrostatik. SLS mudah 

dijerap oleh kaolinit dan montmorilonit dan didapati mengikut urutan 

SLS>ALS>CLS>MLS. Kepekatan LS dan kemasinan yang lebih tinggi menghasilkan 

penjerapan yang lebih tinggi terutamanya semasa perubahan dari monovalen kepada 

divalen, manakala pengaruh pH tidak signifikan. Pengubahsuaian pH dapat diabaikan 

ketika menggunakan LS sebagai SA. Penjerapan adalah mengikut model Freundlich 

dan penjerapan kinetik mengikuti urutan pseudo-kedua. Daya elektrostatik, interaksi 

kation-π, interaksi hidrofobik dan penghubung kation memainkan peranan penting 

dalam mekanisme penjerapan antara LS dengan kaolinit dan montmorilonit. SLS 

sebagai SA berjaya mengurangkan penjerapan CTAB dengan menggunakan kaedah 

pra-rawatan. Mekanisme berkesan yang didedahkan dalam kajian ini adalah SLS 

sebagai SA yang menunjukkan kesediaan penjerapan yang tinggi, bersama dengan 

bantuan penghubung kation dari garam divalen dan cas permukaan berbalik. Sebanyak 

50% pengurangan CTAB dicatatkan dalam kajian ini. Oleh yang demikian, kajian ini 

menyimpulkan bahawa SLS sesuai berfungsi sebagai SA untuk mengurangkan 

penjerapan kationik pada kaolinit dan montmorilonit. Pra-rawatan adalah kaedah yang 

berkesan untuk mengurangkan penjerapan CTAB. 
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INTRODUCTION 

1.1 Problem Background 

Surfactants are applied mainly due to their remarkable ability to influence the 

properties of surfaces and interfaces. In surfactant-based enhanced oil recovery (EOR) 

methods, trapped oil can be mobilised by reducing the interfacial tension (IFT) of oil-

water interface and by altering the wettability of rock by using the injected surfactant 

solution (Reed & Healy, 1977). This technique has been proven to recover trapped oil 

that cannot be recovered via conventional method of water flooding (Hirasaki et al., 

2011; Sheng, 2015). Surfactant is also used as a foaming agent in CO2 gas flooding to 

create stable foam, so as to minimize gas mobility in oil displacement (Bai, 2005; 

Syahputra et al., 2000). Nonetheless, surfactant loss appears to be a major challenge 

in surfactant flooding (Kovalev et al., 2016; Sedaralit et al., 2015; Zhu, 2015; Zhu et 

al., 2012). 

Surfactant loss in reservoir stems from several mechanisms, including 

surfactant adsorption, surfactant precipitation, and surfactant entrapment 

(Somasundaran et al., 1984; Novosad, 1984). Surfactant loss due to adsorption on solid 

surface has been a main issue in surfactant-based EOR (Saxena et al., 2019; Wu et al., 

2016). In pilot field test for chemical flooding, especially in Alkali Surfactant flooding 

(AS), the role of alkali is to reduce surfactant adsorption. Alkali, such as sodium 

hydroxide (NaOH/caustic soda), sodium carbonate (Na2CO3/soda ash), sodium 

bicarbonate (NaHCO3), and sodium metaborate (NaBO2), has been applied as 

chemical agent to decrease the adsorption of anionic surfactants on rocks (Hirasaki et 

al., 2011; Sheng, 2013). Alkali increases the pH and the net negative surface charge, 

thus reducing the adsorption of anionic surfactants due to electrostatic repulsion 

(Hirasaki et al., 2011). Nevertheless, this is limited to reservoirs with low salinity, as 

alkali is sensitive to divalent cations, Ca2+, and Mg2+, thus causing alkali to precipitate 
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and become ineffective. In high salinity environment, these multivalent ions can 

adsorb onto negatively charged rock surfaces and may reverse the sign of the surface 

charge (Austad et al., 1991, Tabatabal et al., 1993). Having that said, use of cationic 

surfactant leads to minimal adsorption due to electrostatic repulsion. Although 

inclusion of salt can reduce cationic adsorption, adsorption is still bound to happen 

(Nandwani et al., 2019). 

Limited laboratory studies have actually attempted to address the cationic 

surfactant adsorption by introducing new formulations that suit a particular reservoir 

condition (Ali & Reza, 2013; Barati et al., 2015; Cui et al., 2014; Iglauer et al., 2010; 

Nandwani et al., 2019, Zendehboudi et al., 2013). However, it has always been 

impossible to identify a suitable surfactant for each unique reservoir condition to work 

as desired. As such, the term “sacrificial agent” (SA) was coined to minimize 

surfactant adsorption. Nevertheless, studies concerning SA has been in scarcity (Bai 

et al., 2009, ShamsiJazeyi et al., 2014, Weston et al., 2014). The SA refers to a 

substance that can mitigate the adsorption of surfactants into a formation. The SA can 

adsorb on and occupy sites within the matrix of the formation, thus the ability to 

eliminate or substantially decrease the tendency for the subsequent injected surfactant 

in the micellar to adsorb on rock matrix. Additionally, SA is more cost effective than 

surfactant, easy to access with huge capacity, and environment-friendly. A range of 

chemicals has been tested as potential SA, including silicates, carbonates, inorganic 

salts (Falcone et al., 1982), water-soluble polyelectrolytes (ShamsiJazeyi et al., 2014), 

ethoxylated sulfonates, carboxylic acids, and lignin-based derivatives (Bonnie, 1989; 

Novosad, 1984). Although each has its own advantages over the other, some studies 

have suggested lignin-based derivatives as effective SA due to its renewable and 

sustainable property, environment-friendly, available commercially, and very 

affordable (Mu et al., 2013; Norgren & Edlund, 2014; Suhas et al., 2007; Watkins et 

al., 2015). 

The application of lignin as SA to enhance oil recovery has been practiced for 

less than five decades. Lignin is a natural polymer found in the cell wall of woody tree 

type and it is usually attained from discharge waste emitted from paper mills. The 

importance of lignin first drew attention when salt lignosulfonate (LS) as SA was 
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introduced. Novosad (1984) conducted an experiment using Berea sandstone cores to 

assess the effect of ammonium lignosulfonate (ALS) on oil production during 

surfactant flooding. The primary objective of the experiment was to prove that LS used 

as pre-flush could reduce anionic surfactant adsorption and increase oil recovery. 

However, the study outcomes showed that oil recovery without pre-flush was 79%, 

which was higher than oil recovery with ALS pre-flush at 68%. This indicated that 

ALS better served as mixture. Hong et al. (1987) evaluated ALS as SA using rock 

from Glenn Pool reservoir. In a laboratory test, unfortunately, no oil recovery 

experiment was conducted. The only result from the work was that ALS had 

successfully reduced anionic surfactant adsorption by 39%. Safarzadeh et al. (2011) 

examined the effect of calcium lignosulfonate (CLS) on surfactant alternative gas 

injection (SAG) and concluded that CLS added with surfactant can reduce anionic 

adsorption. Nevertheless, studies that have applied LS as SA to reduce surfactant 

adsorption are rather limited, thus constraining the discussion on which method and 

mechanism that dictate the effectiveness of LS as SA. Surfactant involved with the 

usage of SA is, thus far, constrained to anionic.  

Rock type is another crucial factor in determining the successful application of 

LS as SA. Most rock types in the discussion of LS adsorption are limited to Berea 

sandstone and carbonate rock. For instance, Grigg and Bai (2004), Bai and Grigg 

(2005) and Bai et al. (2009) conducted static and dynamic experiments to assess the 

adsorption behaviour of CLS as SA onto Berea sandstone, limestone, and dolomite 

core. However, surfactant was excluded from the three studies. Furthermore, one 

cannot dismiss the potential effect of clay minerals on surfactant adsorption, such as 

the reservoirs in Malaysia (Kovalev et al., 2016) and Sirikit oilfield in northern 

Thailand (Srisuriyachai et al., 2019). Several core samples from West Malaysia 

oilfield revealed the presence of clay from 15% to 27% from the total rock mineralogy 

(Osman et al., 2014), which contained high mineral of kaolinite. Clay minerals in rock 

can affect the adsorption in many ways, thus making the recovery process 

uneconomical (Gogoi, 2011). This limitation had led to this investigation. 
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Reduction of surfactant adsorption using LS as SA had been very much limited 

to anionic and non-ionic surfactants. Safarzadeh et al. (2011) reported on the use of 

CLS as SA, in which sodium dodecyl sulfate (SDS) (anionic surfactant) adsorption 

decreased by 22%. In an experiment carried out by Bonnie (1989), which used mixed 

surfactants of anionic and non-ionic carboxymethylated ethoxylated (CME), a 

reduction of 69% surfactant adsorption was recorded when using LS as SA. 

Meanwhile, Hong et al. (1987), who used Petrostep 405 and 420 (mixed surfactants of 

anionic and non-ionic) with ALS as SA, reported reduction of more than 50% 

surfactant adsorption. The literature depicts that anionic surfactant is still preferred for 

sandstone reservoir due to the similar charges shared between the surfactant and the 

rock surface, thus the ability to automatically reduce surfactant adsorption by repulsion 

forces. Some conventional ways to optimise the surfactant flooding at a successful rate 

are by matching the charge of surfactant with the charge of rock surface. As such, 

anionic surfactant is more suitable for sandstones reservoir, while cationic surfactant 

in carbonate reservoir. To date, no study has used LS as SA to reduce cationic 

surfactant adsorption. The success of LS as SA in reducing cationic surfactant has a 

great impact on surfactant selection. More surfactant selection that varies from anionic 

and cationic can be an option with the presence of LS as SA. The method and the 

underlying mechanism responsible for the effectiveness of LS as SA can be 

comprehended for anionic and cationic surfactants. 

The LS is the preferred material for SA due to its ability to dissolve in water. 

However, over the years, LS had been studied separately without any attempt to relate 

or compare with various LS types in terms of sacrificial use. For instance, Hong et al. 

(1987) examined ALS, Debon et al. (1991) studied sodium lignosulfonate (SLS), while 

Bai et al. (2009) and Safarzadeh et al. (2011) assessed CLS. In their report, the 

selection of LS for their research work was not mentioned. These clearly reveal a gap 

of knowledge, thus presenting an interesting area to explore. It is crucial to compare 

various LS readiness to adsorb in terms of adsorption ability, functional groups of LS 

involved in adsorption, and the adsorption mechanism model so that the behaviour of 

LS can be well studied and understood.  
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Other factors that can influence the adsorption are the environment and the 

condition of the reservoir system, such as salinity, temperature, and pH (Hu et al., 

2017; Li et al., 2018; Saxena et al., 2019). Grigg et al. (2004), for example, examined 

the effect of CLS adsorption onto Berea sandstone in the mixture of monovalent and 

divalent (5 wt% of NaCl and 5 wt% of CaCl2), and single divalent (10 wt% of CaCl2) 

indicated that CaCl2 in CLS solution displayed greater influence on CLS adsorption. 

Similar finding with the same concentrations (0 wt%, 2 wt%, and 5 wt%) of NaCl and 

CaCl2 solutions, which revealed that CaCl2 exerted greater influence on CLS 

adsorption on limestone and dolomite, had been reported by Bai and Grigg (2005) and 

Bai et al. (2009). Nonetheless, no study has examined lower concentration of divalent 

and higher concentration of monovalent. As for temperature, most of the previous 

work showed that increased temperature had decreased the adsorption due to 

exothermic reaction (see Azam et al., 2013; Saxena et al., 2019; Yekeen et al., 2017). 

Increment in temperature reduced the surface energy of the adsorbent. Therefore, 

adsorption has always been exothermic, except for non-ionic adsorption that has been 

reported as endothermic (Belhaj et al., 2019; Khazri et al., 2017; Tate, 1965). In Bai’s 

work on the effect of temperature on CLS adsorption onto Berea sandstone and 

limestones, increased temperature from 30℃ to 50℃ has decreased CLS adsorption. 

Last but not least, the effect of pH on the adsorption highly depended on the type of 

surfactant, rock and salinity. Bera et al. (2013) reported that the influence of pH greatly 

relied on surfactant type. Generally, increased pH decreased the adsorption of anionic 

surfactant, but increased for cationic surfactant. As for non-ionic surfactant, the 

adsorption decreased up to pH 7 and remained constant at alkaline region. Hence, 

different types of LS must be examined to determine the role of pH. 

For most of the adsorption investigation, depletion method seems reliable to 

measure the adsorption in both static and dynamic tests. Depletion method measures 

the concentration of a solution before and after contacted with solid (Salari & Ahmadi, 

2016; ShamsiJazeyi et al., 2014; Yekeen et al., 2017). The results obtained from the 

depletion method have been discussed in light of adsorption behaviour through 

adsorption model. Bai et al. (2005) concluded that CLS adsorption onto Berea 

sandstone, limestone, and dolomite core adhered to the Freundlich isotherm, which 

explained multilayer adsorption on the surface. Qiu et al. (2009), on the other hand, 

found the adsorption isotherms to be Langmuir type for the adsorption of CLS on 
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titanium dioxide (TiO2) particles. This shows that different solid surfaces generated 

different adsorption models despite the use of the same solution. Unfortunately, the 

adsorption model for LS in the literature seems to be limited to Berea sandstone, 

dolomite, and limestone. Additionally, the adsorption model is limited to CLS. Such 

limitation has motivated to continue research in this area.  

1.2 Problem Statement 

The readiness of LS to adsorb has not been investigated before, as there was 

no attempt to compare various types of LS. The underlying mechanism that is 

responsible for the effectiveness of LS as SA has not been fully understood. Studies 

on surfactant involved in LS as SA are limited to anionic and a mixture of anionic and 

non-ionic. 

The LS was assessed previously without comparing with other types of LS, 

thus limiting the usage of LS as SA. Readiness of LS to adsorb in terms of functional 

group and adsorption capability was not studied. Both readiness and adsorption 

capability of LS as SA can provide meaningful insight on how well LS can serve as a 

shield to protect the rock surface from adsorption of subsequent injected surfactant. 

The method of LS as an effective SA is a crucial element for reservoirs in order 

to determine the success of surfactant aided by flooding, whether by using as mixture 

or pre-treatment. The underlying mechanism of mixture or pre-treatment that explains 

how effectively SA works to reduce surfactant adsorption is crucial. However, prior 

studies related to LS as SA have omitted the aspects of when, why, and how LS can 

be used effectively as SA to reduce surfactant adsorption. Therefore, there is a pressing 

need to comprehensively understand the mechanism for LS as SA, as well as to address 

when and how to effectively use LS as SA. 

 



 

7 

The issue pertaining to the presence of clay that affects surfactant adsorption 

is indeed crucial in reservoirs across Malaysia with high clay content. Researchers 

have concluded that surfactant adsorption results are affected by the presence of clays 

typically found interbedded in the rock matrix. Previous studies on LS, however, are 

limited to Berea sandstone and carbonate rock. Past studies on LS as SA are also 

limited to anionic and a mixture of anionic and non-ionic.  

1.3 Research Objectives 

This study determined the readiness of LS adsorption onto clay minerals, apart 

from identifying the method and the underlying mechanism responsible for the 

effectiveness of LS as SA in reducing Cetyl Trimethyl Ammonium Bromide (CTAB) 

cationic surfactant adsorption. The objectives of this study are as follows: 

 

1. To determine the readiness of four lignosulfonate types to adsorb onto clay 

minerals based on their functional groups. 

 

2. To investigate the adsorption capability in the function of lignosulfonates type, 

concentration, contact time, and model of adsorption onto clay minerals with 

different brine salinity and pH values. 

 

3. To define the method (mixture or pre-treatment) and the underlying mechanism 

responsible for the effectiveness of the selected lignosulfonate to reduce CTAB 

adsorption. 
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1.4 Scope of the Study 

In order to achieve the research objectives, the depletion method was used to 

measure static adsorption. Depletion method was also employed to determine the 

concentration of solution before and after the adsorption test. The difference reflects 

the adsorption density or the adsorption capability in unit mg/g. Adsorption capability 

refers to the quantity (mg) of adsorbate that can adhere to per gram of the adsorbent 

material. The higher is the quantity of adsorption capability for LS as SA, the greater 

is its readiness and efficiency to shield rock surface. 

Four types of LS were selected for this study, namely CLS, magnesium LS 

(MLS), SLS, and ALS, due to their water-soluble characteristic, negative charge, and 

some of these LS types have been studied in isolation. Although the LS was received 

in powder form, it was examined in solution form by diluting in aqueous. The LS types 

and concentration were assessed. However, the size and the molecular weight of LS 

were dismissed. All LS types are available commercially. The readiness of LS and its 

adsorption mechanism onto clay minerals had been investigated in this study. 

Kaolinite and montmorillonite were the clay minerals assessed in this study 

due to their high adsorption of CTAB. Kaolinite is found in abundance in Malaysia’s 

reservoir, while montmorillonite is found the least. These negatively charged clay 

minerals and the positively charged CTAB can enhance CTAB adsorption onto clay 

minerals. The selected LS with the highest adsorption capability was mixed with 

CTAB to evaluate the adsorption of CTAB onto clay minerals. Apart from the mixture 

approach, the selected LS with the highest adsorption capability was pre-treated with 

clay minerals prior to CTAB encounter to assess CTAB adsorption.  
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Cationic CTAB was used as surfactant due to its availability and it is often used 

in experimental work. The CTAB can further reduce the IFT to low IFT. The 

advantages of using cationic surfactant over anionic surfactant are that cationic forms 

stable solutions in brine and wettability alteration. The adsorption of both negatively 

charged clay mineral and anionic surfactant can spontaneously be reduced by 

electrostatic repulsion. Studies have proven the success of LS as SA in reducing 

anionic surfactant. To the best of the author’s knowledge, no study has reported LS as 

SA to reduce cationic surfactant.  

Monovalent (NaCl) and divalent (CaCl2) salts were used to test all adsorption 

experiments in static condition. The concentration ranged at 1-5 wt% for monovalent 

salt, while 0.1-1.0 wt% for divalent salt. Lower concentration of divalent salt and 

higher concentration of monovalent were purposely used to identify the effect of these 

salts. Acid and alkali regions (1-11) were studied for pH. Temperature was omitted as 

the universal trend shows that adsorption is reduced upon increment in temperature. 

All adsorption tests were conducted in aerobic environment. 

Static adsorption test was performed to investigate the readiness of LS to 

adsorb onto clay minerals. Equilibrium and kinetic adsorption models were used to 

describe LS adsorption. The efficiency of LS as SA to reduce CTAB through mixture 

or pre-treatment was determined in static adsorption. 
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1.5 Significance of the Study 

The significance of this study is described based on several aspects, such as 

material, empirical data, conceptual/theoretical, and practicality, as follows: 

(a) Material – This study assessed different types of LS and examined the 

readiness of LS adsorption onto clay. It is the first attempt to compare LS type, 

functional group, and adsorption capability onto clay minerals with different 

brine salinity, concentration, and pH values. This study not only evaluated the 

adsorption behaviour of different LS, but also comprehensively explored the 

mechanisms responsible for the effectiveness of LS as SA.  

(b) Empirical data – This study presents evidence based on experimental work to 

show the readiness of LS to adsorb onto clay minerals and the best method with 

effective underlying mechanism to reduce cationic adsorption using SA.  

(c) Conceptual/Theoretical – This study tested the compatibility in cationic 

surfactant that is directly link to other parameters and potentially enhanced the 

theory of LS as SA, which is limited to anionic surfactant in the past. 

(d) Practicality – The success of LS as SA in reducing both anionic and cationic 

surfactants at sandstone and carbonate reservoir conditions benefits the 

surfactant selection. Broader variety of surfactants can be selected with less 

worry on the adsorption.  
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