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ABSTRACT 

Process effluent recovery can be a potential source of revenue as well as an 

effective way to reduce the environmental footprint for industrial processes.  In 

addition to sustaining business profitability, modern day industries have to fulfil their 

social responsibility by contributing toward environmental conservation and 

sustainable development. Mass (or materials) integration is a methodology for 

systematic and efficient reuse and recycling of materials in a closed loop within a mass 

exchange network (MEN). The integration of systems and processes promotes 

manufacturing synergy and minimises waste generation, disposal, and reduces the use 

of fresh materials and mass separating agents. Methodologies for MEN design and 

targeting include insight-based graphical and algebraic techniques as well as 

mathematical programming approaches. This study presents a new algebraic tool for 

simultaneous targeting and design of mass exchanger network that overcomes the 

limitations of previously developed mass integration approaches such as composition 

interval table (CIT), graphical composite curves (CCs) and grid diagram for MEN. The 

current CIT and CC cannot completely map individual rich and lean process streams, 

or individual process and utility streams. Hence, the mass separating agent (MSA) 

targeting results cannot be used to simultaneously design the MEN.  Although pinch-

based tools have been established for MEN design, the procedure is typically done in 

two sequential stages. The first stage involves MSA targeting using CIT.   Once the 

targeting stage is completed the MEN design to achieve the MSA target is done using 

grid diagram.  As the CIT cannot be used to visualise the MEN, repetitive stream-wise 

composition and mass load balance calculations have to be done in order to achieve 

the minimum MSA and number of mass exchange units.  The aforementioned 

significant limitations of the conventional pinch-based approach have been overcomed 

by the newly developed segregated composition interval table (SECIT) proposed in 

this research. SECIT represents mass cascade along composition intervals for lean and 

rich individual streams. SECIT can help identify pinch point(s), determine utility 

targets and conduct SECIT mass allocation (SMA).  The SMA can be converted to a 

SECIT network diagram that represents the MEN in terms of mass exchange quality 

and quantity, on the interval composition scale. Economic analysis study showed that 

the total capital cost target for MEN based on the  newly developed SECIT is USD 

752,539.  This total capital cost target agrees with those obtained using conventional 

composite curves. However, sensitivity analysis study carried out using various 

minimum composition differences showed an optimal total  cost of USD 448,945 and 

was found at minimum composition difference of 0.0001. Furthermore,  sensitivity 

analysis study  based on selection of  materials of construction showed that 303 

stainless steel type is the best material of construction for the newly SECIT network 

design. Four case studies, including an industrial application had been presented to 

demonstrate the validity and advantages of the proposed approach. This study shows 

that the SECIT and segregated network design can be an essential blend of algebraic 

and graphical visualisation tools for simultaneous MEN targeting and design of simple 

and complex processes and for retrofit cases involving threshold problems, stream 

splitting and multiple pinches. 
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ABSTRAK 

Proses pemulihan efluen berpotensi menyumbang hasil pendapatan selain amat 

berkesan untuk mengurangkan jejak alam sekitar bagi proses industri. Disamping 

mencapai keuntungan, industri masa kini perlu memenuhi tanggungjawab sosialnya 

dengan menyumbang kepada pemuliharaan alam sekitar dan pembangunan mapan. 

Integrasi jisim (atau bahan) adalah kaedah  penggunaan sisa buangan secara sistematik 

dan cekap dalam sebuah rangkaian penukaran jisim (MEN). Integrasi  sistem dan 

proses menggalakkan sinergi pengeluaran, meminimakan penjanaan  sisa, pelupusan,  

mengurangkan penggunaan bahan segar dan agen pemisahan  jisim. Kaedah 

rekabentuk dan sasaran MEN merangkumi tatacara berasaskan grafik dan teknik 

algebra, serta kaedah pengaturcaraan  matematik. Kajian ini membentangkan perkakas 

algebra baharu bagi penetapan sasaran serta reka bentuk rangkaian penukar jisim 

secara serentak, yang mengatasi kekangan kaedah integrasi jisim yang terdahulu 

seperti jadual interval komposisi (CIT), lengkuk komposit grafik (CCs) dan rajah grid 

MEN. CIT dan CC tidak dapat memetakan aliran individu proses yang kaya dengan 

aliran bersih, atau aliran proses individu dan aliran utiliti. Oleh itu, hasil sasaran ejen 

pemisah jisim (MSA) tidak boleh digunakan untuk merekabentuk MEN secara 

serentak. Meskipun kaedah berasaskan jepitan telah lama digunakan bagi 

merekabentuk MEN, prosedur jepitan biasanya dilaksanakan dalam dua langkah yang 

berturutan. Langkah pertama melibatkan penyasaran MSA menggunakan CIT. Setelah 

tahap penyasaran selesai, rajah grid digunakan untuk rekabentuk MEN bagi mencapai 

sasaran MSA. Oleh kerana CIT tidak boleh digunakan bagi visualisasi MEN, 

imbangan komposisi aliran serta jisim perlu dilakukan secara berulang bagi mencapai 

MSA minimum dan bilangan unit penukaran jisim. Keterbatasan pendekatan 

berasaskan kaedah konvensional jepitan telah diatasi melalui jadual interval komposisi 

segregasi (SECIT) yang baharu dibangunkan dalam kajian ini. SECIT mewakili profil 

aliran jisim merentasi komposisi bagi aliran kaya dan aliran bersih. Ia digunakan untuk 

mencari titik jepitan, mengira sasaran utiliti dan peruntukan jisim SECIT (SMA). SMA 

boleh ditukar kepada rajah rangkaian SECIT bagi mempamerkan rangkaian penukaran 

jisim dan juga jumlah penukaran jisim pada skala interval komposisi. Kajian analisis 

ekonomi menunjukkan bahawa jumlah sasaran kos modal untuk MEN berdasarkan 

SECIT yang baharu dibangunkan adalah USD 752,539. Keseluruhan sasaran kos 

modal ini menghasilkan keputusan yang sama jika dibandingkan dengan kaedah 

konvensional yang menggunakan lengkuk komposit. Bagaimanapun, kajian analisis 

sensitiviti yang dijalankan dengan menggunakan pelbagai perbezaan komposisi 

minimum menunjukkan bahawa jumlah kos tahunan yang optimum ialah USD 

448,945 dan keputusan ini dihasilkan pada perbezaan komposisi minimum iaitu 

0.0001. Selain itu, analisis sensitiviti berdasarkan pemilihan bahan pembinaan 

menunjukkan bahawa jenis keluli tahan karat 303 adalah bahan pembinaan terbaik 

untuk reka bentuk rangkaian SECIT yang baharu dibangunkan. Empat kajian kes, 

termasuklah aplikasi industri telah dibentangkan bagi membuktikan kelebihan 

pendekatan ini. Kajian ini menunjukkan bahawa SECIT dan rekabentuk rangkaian 

segregasi merupakan kombinasi penting untuk perkakas visualisasi algebra dan grafik 

bagi menyasarkan MEN secar serentak dan merekabentuk proses-proses yang ringkas 

dan kompleks, termasuk kes-kes berbilang jepitan, pemecahan aliran dan masalah 

ambangan. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Research Background 

Growing global concern on environmental sustainability, rising costs of 

energy, raw materials and waste treatment as well as increasingly stringent emission 

regulations, are among the factors that encourage process industry to employ process 

integration for resource conservation. The optimal design of solvent utilisation and 

recovery networks based on mass integration concept can help conserve valuable 

material resources while reducing environmental emissions. The industrial solvent 

market size was over USD 23.5 billion in 2017 and industries expect solvent 

consumption globally to remain at over 28 million tons in 2024 (Ahuja and Deb, 2018). 

Mass Exchange Networks (MEN) are widely used in process industry to cost-

effectively treat liquid wastes generated by a plant to an acceptable level. Mass 

integration can involve removal of pollutants/contaminants from process streams, or 

recovery of waste before being discharged to the environment. The  design of a mass 

integration system, or more widely known as MEN, requires a combination of 

systematic conceptual approach and powerful computational tools. 

Mass exchange has a key role to play in minimising hazardous wastes from 

processes.  This is made possible through the optimal design of  mass exchange 

networks that involve the  transfer of pollutants or contaminants from a set of pollutant-

rich streams to a set of pollutant-lean streams. The MEN are systems of direct contact 

mass transfer units, which use process streams of external mass separation agents 

(MSA, lean streams) to selectively remove pollutants from waste process streams (rich 

streams). Examples of mass-exchange operations include absorption, adsorption, 

stripping, solvent extraction, leaching,  and ion exchange. 
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Practical industrial applications of mass exchange systems are concerned with 

aspects of design, operation and optimisation of single and multiple mass exchangers 

with the goal of operating cost-effectively through the minimum use of mass 

separating agents (MSA, or solvent) as lean streams to remove contaminants from the 

“rich streams”. A systematic methodology for MEN design can therefore yield ample 

technical and economic benefits.   

Over the past 40 years, pinch analysis has been established as a systematic tool 

for optimal design of resource utilization networks including heat (Linnhoff and 

Hindmarsh, 1982), mass pinch (El‐Halwagi and Manousiouthakis, 1989), water (Wang 

and Smith, 1994), total site heat integration (Klemes et al.,1997), oxygen pinch 

(Zhelev, 1999), hydrogen pinch (Towler, 2002), CO2 emission pinch (Tan et al., 2012), 

power pinch (Wan Alwi et al., 2013), bio-refinery integration (Shenoy and Shenoy, 

2014), sustainable power generation planning (Jia et al., 2016), pinch analysis to 

determine policies for health care delivery system (Basu et al., 2017), waste 

management pinch analysis (Ho et al., 2017), managing finance for energy 

conservation (Roychaudhuri and Bandyopadyay, 2018) and Iterative pinch analysis 

(Arya and Bandyopadyay, 2019).   

El‐Halwagi and Manousiouthakis (1989) proposed an MEN targeting and 

design methodology for minimising mass separating agents (MSA) that is analogous 

to pinch analysis approach for heat exchange network synthesis. Following the success 

of heat pinch analysis, the MEN synthesis approach has also found practical industrial 

applications.  Later advances in MEN techniques have included capital cost target, 

capital-energy cost trade-off targeting as well as retrofit targeting among other 

developments based on pinch analysis. 

Numerous insight-based algebraic and graphical MEN synthesis approaches 

have been developed over the years.  In general, MEN synthesis tasks for the algebraic 

and graphical approaches  are typically performed in two sequential stages covering 

MSA flowrate targeting and network design.  Research on MEN synthesis using 

mathematical programming approaches that is well-suited for handling large and 

complex MEN problems has also seen extensive progress.  All in all, both the insight-
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based and mathematical programming approaches complement one another in 

addressing varieties of practical industrial problems.  The algebraic and graphical 

approaches provide essential visualisation tools for practitioners who typically 

appreciates the insights and understanding it provides in solving of manageable scale, 

while mathematical programming approaches provides the computing power that is 

essential to address larger and more complex problems. 

The fundamentals of MEN was first  introduced by (El‐Halwagi and 

Manousiouthakis, 1989). El-Halwagi and Manousiouthakis (1989) applied pinch 

technique for MEN synthesis through targeting and design sequentially. The minimum 

composition difference (ε) is presented to pinpoint thermodynamic bottleneck (pinch) 

that limits the extent of mass exchange. They introduced the algebraic tool, 

composition interval table (CIT) and graphical tool termed as mass composite curves 

(CCs) which maps composite rich and lean streams on a composition versus mass load 

diagram (y-M) to achieve maximum possible mass exchange, thus achieving minimum 

external MSA requirement.  

However, the minimum number of unit target is also achieved by using the 

number of streams information. They also introduced Grid Diagram (GD) as an 

interface for MEN design with several design rules. The author stated that stream-

matching should begin from the pinch to ensure that no mass transfer across the pinch 

takes place for minimum MSA target to be achieved in the design. 

A key limitation of the CIT is that, it is based on the composite stream profile.  

As the CIT does not show the profile of individual rich and lean stream mass cascade, 

it cannot guide individual process to process and process to utility stream matching.  

As a result, the CIT also cannot be used for MEN design. The need for a systematic, 

interactive, insight-based simultaneous MEN targeting and synthesis approach have 

motivated this work. This  research proposes the Segregated CIT (SECIT) as a new 

algebraic technique that allows the MSA targeting and MEN network design to be 

simultaneously performed.  The SECIT technique enables matches between each rich 

and lean stream to be readily be used to generate the final MEN configuration. Hence, 



4 

repetitive stream-wise composition and mass load balance calculations can be avoided 

during the MEN synthesis. 

1.2 Problem Statement 

Raw materials are vital resources to chemical and process industries. Synthesis 

of MEN involves the transfer of waste materials from rich streams to lean streams 

(Mass Separating Agent (MSA)). For the purpose of targeting, the minimum MSA 

flowrates, composition interval table (CIT) and composite curves (CCs) have been 

among the most widely used pinch analysis algebraic and graphical tools. The targets 

for the minimum flowrate of MSA can be determined using CIT and the MEN, 

designed using the grid diagram (GD).   

As the CIT cannot be used to visualise the MEN, repetitive stream-wise 

composition and mass load balance calculations have to be done to achieve the 

minimum MSA and number of mass exchange units.  There is the need to develop an 

algebraic technique for simultaneous MEN targeting and design.  Ideally, the new 

technique should be based on profiles of mass cascade across composition intervals 

for lean and rich individual MSA streams. This new algebraic approach will overcome 

the limitations of CIT and CCs. 

Follow is the problem statement of this work: 

Given a number of pollutant-rich streams (NR) and a number of MSAs 

(pollutant-lean streams, NS). Also given are the flowrate of each rich stream, the rich 

stream’s supply (inlet) composition and its target (outlet) composition, where i = 1, 2 

..... NR. In addition, each MSA’s supply and target compositions,  and, are given; where 

j = 1, 2 ..... NS. The flowrate of each MSA is unknown, and is to be determined so as 

to minimise the network cost. The candidate lean streams can be classified into NSP 

process MSAs and NSE external MSAs (where NSP+NSE=NS). Process MSAs that is 

available on site can be used to remove pollutants/contaminants at a low cost, or at 

almost no cost. Each MSA flowrate that is available for mass exchange is limited by 
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its availability within the plant, and is bounded by the value. The flowrates of 

externally purchased MSAs shall be dictated by economic considerations.  

The goal of this research is to develop a new algebraic technique to 

simultaneously target the minimum MSA, maximise mass recovery and identify the 

pinch point for mass exchange.  The methodology should also allow the lean and rich 

streams to be individually mapped in the form of an MEN design that satisfies the 

minimum flowrates of MSA at the minimum total cost.  The trade-off between capital 

and operating costs and sensitivity analysis shall be performed to establish the optimal 

MEN design that yields the minimum network cost. 

1.3 Research Objectives 

The overall objective of the study is to develop a new algebraic approach for 

simultaneous targeting and design of mass exchanger networks. The specific 

objectives of the research are to:   

1. Develop a new pinch-based algebraic approach for simultaneous MEN 

targeting and design for single, multiple pinch problems with stream splitting 

and threshold problem based on individual streams approach. 

2. Apply the new technique to illustrative and industrial case studies.  

3. Analyse economics and sensitivity analysis to assess the profitability of  mass 

exchanger network. 

4. Compare the new targeting method and network design results with other MEN 

methods. 
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1.4 Research Scope 

Below is the research scope to accomplish the aforementioned  objectives: 

(a) State-of-the-art analysis of MEN targeting and synthesis techniques. 

(b) Identification of the interaction between MEN targeting and network 

design, and the different types of MEN which includes single, multiple 

pinch problems, stream splitting and threshold cases.   

(c) Development of MEN targeting and network design algorithm method for 

single pinch problem with no stream splitting based on individual stream 

approach using Microsoft excel tool version 365.  

(d) Development of MEN targeting and network design algorithm method for 

multiple pinch problem with stream splitting based on individual stream 

approach. 

(e) Development of MEN targeting and network design algorithm method for 

threshold cases. 

(f) Application of the new algebraic  technique to illustrative and industrial 

case studies to validate the effectiveness of the approach. 

(g)  Analyse the economics and sensitivity analysis to assess the profitability of 

the proposed mass exchanger network. 

(h) Comparison of the results of the new developed algebraic technique with other 

mass integration targeting techniques such as CIT and CCs. 
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1.5 Research Contributions 

Five new contributions have emerged from this research work as follows: 

(a) A new algebraic technique for MEN design known as Segregated 

Composition Interval Table (SECIT) have been developed to provide 

designers with valuable insights for simultaneous MEN targeting and 

design.  

(b) A new SECIT mass allocation technique based on individual, as opposed 

to composite process streams to assist designers visualize the mass 

exchange network on a segregated composition interval table.  

(c) Designers do not need to undergo the feasibility criteria checking and 

repetitive mass balance calculations throughout the process of network 

design since the targeting stage can be translated directly to network 

design stage.   

(d) This research aid in the development of mass exchange recovery (MER).  

Industries that consume huge amount of MSA and have multiple mass 

exchangers can optimise the MER and minimise their MSA. 

(e) A new method have been developed for capital cost target and optimum 

minimum composition difference based on individual stream matches for 

optimal MEN design to yield minimum network cost.  

1.6 Thesis Outline 

This thesis comprises five chapters. Chapter 1 introduces  the research 

background, presents the  problem statement, research objectives, research scope  and 

research contributions. Chapter 2 provides a review of  the state of the art for synthesis 

of MEN which includes introduction to pinch analysis, fundamentals of MEN design 

and synthesis, MEN targeting and network design using pinch analysis, review of 

STEP and SEPTA,  supertargeting for MEN, MEN using  mathematical programming, 
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, multicomponent transfer of MEN,   simultaneous targeting and design of MEN. The  

chapter concludes by highlighting the research gap on current simultaneous targeting 

and design for MEN synthesis.  

Chapter 3 describes the step-wise research methodology to accomplish the 

stated objectives. It provides an  overall summary of the methodology,describe the  

single pinch problem, multiple pinch problem with stream splitting scenario and 

threshold problem, Segregated Composition Interval Table (SECIT), Segregated CIT 

Mass Allocation (SMA), Segregated CIT Network design (SND) and economic and 

sensitivity analysis methodology. Chapter 4 presents the industrial application case 

study  that  illustrate the applicability of the new approach, analyse economics and 

sensitivity analysis to assess the profitability of the proposed mass exchanger network 

and compare the results with other MENs methods. Finaly, Chapter 5 concludes the 

overall research study and recommends possible future work to be explored. 
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