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ABSTRACT 

Miniaturized refractive index sensor by combination of nanostructure thin films as a 

transformer sensitive layer and optical fiber as a signal carrier offers great potential for 

identifying the environmental features and understanding the novel sensor concepts. The 

partially unclad and bi-layer zinc oxide (ZnO) / silver (Ag) coated multimode glass and 

polymer optical fiber as a simple and reliable intrinsic fiber sensor was proposed in this work 
to detect the ambient refractive index changes (saline and crude oil having various 

concentrations) using two broadband sources of infrared radiation and ultraviolet-visible. 

The removing process to partially unclad the polymer and glass fiber was carried out 

precisely using our proposed dynamic monitoring process to prevent any interruption on 

propagating light by occurrence of damage on the core surface. The ZnO as an outer 
sensitive layer had three configuration which was spherical nanoparticle, horizontally and 

vertically oriented nanorods deposited on discontinuous Ag layer using mixture of 

electroless, dip coating and low temperature hydrothermal techniques because solo 

deposition technique was not possible. Ag nano-island shape deposition made the transition 

of evanescent wave to external media possibly through this semi-reflectance structure.  ZnO 
coating avoided the formation of oxygen deficit defects, inhibited aging problem and 

trapping measurand molecules through mechanical interlock phenomena which altered its 

optical characteristics and improved sensitivity of the sensor. The x-ray diffraction spectra 

demonstrate that the level of crystallinity was higher for vertically oriented ZnO compared to 

others. Using field emission scanning electron microscope images, the width/length of 

vertically and horizontally oriented ZnO nanorods was measured to be ~ 86 nm/~ 690 nm 
and ~ 67 nm/~ 544 nm, respectively. The ZnO nanoparticle size was in the range of ~ 10 nm 

to ~ 75 nm. Surface roughness of ZnO/Ag coated glass (polymer) probe extracted from 

atomic force microscopy was ~ 39 (52 nm), ~ 52 (176 nm) and ~ 148 (346 nm) for 

nanoparticles, horizontally and vertically nanorods respectively. Room temperature 

Photoluminescence spectra from bi-layer ZnO/Ag coated on glass substrate when contact ed 
with saline and crude oil having different concentrations revealed that near band edge 

emission band gap shifted from ~3.447 eV to ~3.189 eV going from sphere nanoparticles to 

vertically oriented nanorods. This shift is independent with the contact media. However, 

deep level emission depends strongly on the concentration of the contacted media. The shif t 

observed for nanoparticle, horizontally and vertically oriented ZnO/Ag when contacted with 
saline (crude oil) was ~ 0.05 eV (~ 0.09 eV), ~ 0.02 eV (~ 0.03 eV) and ~ 0.08 eV (~  0.11 

eV) respectively. The performance of fabricated probe to detect saline concentration changes 

for glass fiber coated with vertically oriented ZnO nanorods/Ag when IR light source 

employed, was supreme compared to the other samples and was reported to be 255.4 

nm/RIU and 314.2 dB/RIU for wavelength and intensity sensing respectively. The durable 

polymer fiber coated with vertically oriented ZnO/Ag nanorods showed the intensity and 
wavelength sensitivity of 146.2 dB/RIU and 78.5nm/RIU respectively in identifying the 

variation of crude oil from 0 to 100%. The optimum length of glass and polymer fiber probe 

for maximum sensitivity was obtained for 3 cm and 2 cm respectively. The precise 

production techniques together with comprehensive analysis of the sensing mechanism lead 

to a deeper understanding of the liquid refractive index behavior applicable in quality control 
in water resource and oil reservoir. 
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ABSTRAK 

Penderia indeks biasan miniatur dengan gabungan filem nipis nanostruktur sebagai 

lapisan sensitif pengubah dan gentian optik sebagai pembawa isyarat berpotensi untuk 

mengenal pasti keadaan sekeliling dan memahami konsep penderia baharu. Gentian optik 
kaca dan polimer berbilang mod yang telah dinyahsalut sebahagiannya dan disalut dengan 

dwilapisan zink oksida (ZnO) / perak (Ag) bertindak sebagai penderia gentian intrinsik yang 

mudah dan boleh dipercayai dicadangkan untuk mengesan perubahan indeks biasan (air 
garam dan minyak mentah pada pelbagai kepekatan) dengan menggunakan dua sumber jalu r  

lebar, inframerah dan ultraungu-cahaya tampak. Proses penyahsalutan separa gentian 

polimer dan kaca secara terperinci dilakukan dengan pemantauan secara dinamik seperti 
yang dicadangkan untuk mengelakkan sebarang gangguan terhadap penyebaran cahaya 

melalui  kerosakan pada permukaan teras gentian optik. ZnO sebagai lapisan sensitif  luaran 

mempunyai tiga konfigurasi iaitu nanopartikel sfera, nanorod berorientasi mendatar dan 
menegak, endapan pada lapisan Ag yang berlainan menggunakan campuran elektroless, 

salutan celupan dan teknik hidrotermal suhu rendah karana teknik endapan tidak dapat 

dilakukan secara solo. Endapan nano-pulau Ag menjadikan peralihan gelombang sisihan ke 
media luaran terhasil melalui struktur pemantulan separa ini. Salutan ZnO mengelakkan 

pembentukan kerosakan defisit oksigen, merencat masalah penuaan dan memerangkap  

molekul ukuran melalui fenomena interlok mekanikal yang mengubah percirian optik dan 
meningkatkan sensitiviti penderia. Spektrum pembelauan sinar-X menunjukkan bahawa 

tahap pengkristalan ZnO yang berorientasi tegak lebih tinggi berbanding yang lain. Melalui  

imej mikroskop imbasan elektron pancaran medan, lebar / panjang nanorod ZnO yang 
berorientasikan secara menegak dan melintang diukur masing-masing sebanyak ~ 86 nm / ~  

690 nm dan ~ 67 nm / ~ 544 nm. Saiz nanopartikel ZnO ialah dalam julat ~ 10 nm hingga ~ 

75 nm. Kekasaran permukaan kuar kaca (polimer) bersalut ZnO / Ag yang diekstrak dari 
mikroskop daya atom masing-masing adalah ~ 39 (52 nm), ~ 52 (176 nm) dan ~ 148 (346 

nm) untuk nanopartikel, secara mendatar dan menegak. Spektrum foto pendarcahaya pada 

suhu bilik dari lapisan ZnO / Ag bersalut pada substrat kaca apabila bersentuhan dengan 

larutan garam dan minyak mentah yang berbeza kepekatan menunjukkan peralihan hampir 
jalur pinggir ~ 3.447 eV ke ~ 3.189 eV nanopartikel sfera ke arah nanorod berorientasi tegak. 

Peralihan ini tidak dipengaruhi oleh media sentuhan. Walau bagaimanapun, pelepasan paras 

dalam sangat bergantung kepada kepekatan media yang bersentuhan. Peralihan yang 
diperhatikan untuk nanopartikel, ZnO / Ag berorientasikan secara mendatar dan menegak 

apabila berinteraksi dengan larutan garam (minyak mentah) masing-masing adalah ~ 0.05 eV 

(~ 0.09 eV), ~ 0.02 eV (~ 0.03 eV) dan ~ 0.08 eV (~ 0.11 eV). Prestasi kuar yang difabrikasi 
untuk mengesan perubahan kepekatan garam untuk gentian kaca yang dilapisi dengan 

nanorod berorientasikan ZnO / Ag menegak ketika sumber cahaya IR digunakan, 

dibandingkan dengan sampel yang lain dan dilaporkan masing-masing sebanyak 255.4 nm / 
RIU dan 314.2 dB / RIU untuk panjang gelombang dan intensiti. Polimer tahan lasak yang 

bersalut dengan nanorod ZnO / Ag berorientasikan menegak menunjukkan sensitiviti 

intensiti dan panjang gelombang sebanyak masing-masing 146.2 dB / RIU dan 78.5 nm / 
RIU untuk mengenal pasti kepekatan minyak mentah dari 0% hingga 100%. Panjang 

optimum kuar gentian kaca dan polimer untuk sensitiviti maksimum adalah masing-masing 

pada 3 cm dan 2 cm. Teknik pembuatan yang teliti berserta dengan analisis yang 
komprehensif membawa kepada kefahaman yang lebih mendalam terhadap keadaan serakan 

indeks cecair yang mana mampu menyumbang kepada kawalan mutu sumber air dan 

takungan minyak. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Optical fiber sensor is a device that exchanges the light rays into electronic 

signals and it has connected to a light source to allow the detection of modulated 

light. It measures the physical changes in the amount of light and translates it into a 

form of signal which is readable by the optical spectral analyzer. A multiple sensing 

application have been revolutionized by representing the fiber optic sensors.  

Possibility of preparing a variety of fiber sensing structures by glass and polymer 

optical fiber makes them an ideal candidate for fabrication of sensing device. Fiber 

optic sensors are generally classified as either intrinsic or extrinsic. In the intrinsic 

sensor, the physical properties of light inside the fiber are modulated by the physical 

detecting parameter whereas in an extrinsic sensor, light modulation occurs outside 

the fiber (Liaw, 2019). In the former, there is possibility to modulate one of the 

physical properties of the guided light such as wavelength, intensity, polarization and 

phase by the measurand. In the latter case, the fiber only acts as channel to transport 

the light signal to and from the sensor probe. However, out of these four properties of 

light, the intensity and wavelength modulated ones propose the widest range of 

optical fiber sensors (Du et al., 2019; Wang et al., 2018; Efendioglu, 2017). The 

special characteristics of being non-electrical, small in size, rugged and immune to 

electromagnetic interference boosts the use of optical fibers for sensing applications 

in the field of engineering, science and technology (Mowbray et al., 2019; Güemes, 

2014). The physical and chemical properties such as temperature (Guo et al.,  2019), 

liquid level  (Díaz et al., 2019), radiation (Mikel et al., 2019), strain (Nascimento et 

al., 2019), refractive index (Gowri et al., 2019), vibration (Kuribayashi et al., 2019), 

concentration of liquid (Wang et al., 2019) and chemical analysis (Kaushik et al., 

2019) can be detected by optical fiber sensors. Furthermore, low loss, low dispersion, 

ultra-wide bandwidth, high dynamic range, durability and upgradability are the other 
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reasons for shifting the attention from traditional electrical sensors to optical fiber 

sensors (Barrias et al., 2016). Compatibility to the multimode fiber technology and 

simplicity of construction are two main advantages of intensity and wavelength 

modulated sensors (Bag et al., 2020; Zhang et al., 2020). 

1.2 Statement of the Problems 

For developing the optical fiber sensor, the diameter of optical fiber must be 

reduced by removing the cladding part. Due to refraction of evanescent wave in  the 

cladding and its absorption in surrounding media, the etched region of optical fiber 

becomes more sensitive (Korposh et al., 2019). For removing the cladding of optical 

fiber, several ways are existed. The current techniques for stripping the cladding can 

be divided into mechanical and chemical methods. Polishing the fiber is the most 

common mechanical technique to remove the cladding (Addanki et al., 2018). 

However, significant disadvantage of this method is that the fiber optic stripper can 

potentially damage the fiber core and it typically requires more expensive equipment. 

Furthermore, lasers and precision lenses on laser processing platforms with a moving 

mechanism are used for removing purpose, however, the precision lens on the laser 

processing platform tends to age, which may affect the accuracy of the moving 

platform and lead to cause experimental errors (Lin et al., 2019). Moreover, the 

problems such as an inability to correctly remove materials, and/or changes in the 

material properties may occur using the laser (Pospori et al., 2017). The chemical 

method like using of various solutions such as Hydrofluoric acid (HF) for  glass 

optical fiber (GOF) and organic solvents for polymer optical fiber (POF) was 

employed by different researchers (Zaca-Morán et al., 2018; Razzaq et al., 2020; 

Subashini et al., 2018; Inglev et al., 2019). However, the etching process is dif ficult 

to control because a slight error can generate unexpected processing like damaging 

the core outer layer as a result affect the light propagating and sensing quality. 

Regardless of which method is employed, they all provide a lack of comprehensive 

post-processing quality control procedures. 
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It was discovered that the sensitivity of optical fiber sensors depends on the 

radius of the fiber, taper waist length, launch angle and surface roughness of the 

sensing area (Qazi et al., 2019; Rajamani et al., 2019; Qaziet al., 2019; Ma et al., 

2019). Despite the fact that the light-scattering loss is increased by increasing the 

surface roughness, the sensors with rough surfaces exhibit higher sensitivity than 

those with smooth surfaces (Sequeira et al., 2019). The effects of core roughness 

after fully etching the cladding, on performance of conventional core-clad structure 

glass fiber sensors have previously been studied (Liu  et al., 2002; Kimet al. ,  2010; 

Leal-Junior  et al., 2018; Qazi et al., 2019), but the effects of cladding roughness 

associated with varying solvent concentration on sensitivity of partially unclad 

optical fiber probe have not been investigated extensively. Cladding thickness play s 

a crucial role on sensitivity of the sensor therefore, the removed cladding part in 

micrometer scale have been reported elsewhere. However, systematic and accurate  

control of cladding removal in nanometer have not been reported.  

Currently, Ag coated optical fiber probe due to superior properties of Ag such 

as surface plasmon resonance (SPR), electron donor in dark and high reflectivity  in  

the visual to near-infrared region has been attracted huge attention for measuring the 

refractive index changes (Fu et al., 2019; Lee et al ., 2018; Shen et al., 2008). 

However, there is some backwards of using this material. Aging and exposing to 

atmosphere cases the oxygen deficit defects formed the silver oxide matrix on the  

sensing layer which consequences to shortening the life  time and lowering the 

sensitivity of the fiber optic (Lee et al., 2018; Jiu et al., 2015). Moreover, high 

reflectivity leads to reflect the evanescence wave back completely to the core and 

prevent contacting with media.  

Glass and polymer optical fiber as nonconductive substrates can be coated by 

chemical and physical vapor deposition (CVD and PVD), chemical electroless 

plating, sol gel and chemical bath deposition. However, continuous deposition type, 

high-temperature treatments and huge energy supply systems (Christopher et al., 

2018; Ozcariz et al., 2019) which are required for PVD and CVD make them 

unsuitable for our purpose. In sol-gel method there is a little control over porosity  of 

the gel which in turn affects the rate of solvent removal from the gel in order to form 



4 
 

the final powder and similar to the other methods, discontinuous coating also is not 

possible (Tang et al., 2017). Electroless plating is a promising technique for uniform 

metallic coating where discontinuous deposition would be possible however, 

deposition of different nanostructure configuration is not provided by this meth od. 

Moreover, it should be mentioned that in this study both glass and polymer f iber is 

employed to fabricate sensor due to extending their application and considering their 

pros and cons once using them in various devices and environment.   

1.3 Objectives of the Study 

Considering the research background and the problem statements mentioned 

before, the main objective of this study is to fabricate sensitive optical fiber probe to  

detect the refractive index variance of different liquids. The specific objectives are 

shown as follow: 

a) To fabricate partially unclad glass and polymer optical fiber sensors. 

b) To modify partially unclad optical fiber probe via ZnO/Ag bi-layer coating 

having ZnO nanoparticles and nanorods as an outer layer and investigate the 

influence of bi-layering on sensitivity. 

c) To evaluate and optimize the sensing parameters including shape of the zinc 

oxide nanostructure, length of the probe and propagating wavelength on 

sensor performance. 
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1.4 Scopes of the Research 

For achieving the above stated objectives, following scopes of works have 

been presented: 

a) Preparing partially unclad glass and polymer multimode, step index optical 

fiber sensors for refractive index changes detection the following steps are 

performed: 

 

i. Removing the part of cladding using dilute hydrofluoric acid in the 

range of 35-20 % with decreasing ratio of 5% for glass fiber and 

mixture of acetone/methanol in the range of (50/50), (40/60), (30/70) 

and (20/80) for polymer fiber. For both fibers the temperature varies 

from 15 to 30 °C by increasing ratio of 5 °C. 

ii.  Measuring the diameter of cladding using field emission scanning 

electron microscopy (FESEM) to observe the remain cladding thickness 

and its configuration. Atomic force microscopy (AFM) to obtain the 

cladding surface roughness. Dynamic monitoring system including 

solvents, broad band light source with a laser wavelength ranges f rom 

360 to 2600 nm and power meter as a detector are employed. Higher 

(crude oil) and lower (saline) refractive index solutions with 

concentration of 0 to 100% and 0 to 20% are used respectively. The 

refractive index of the solution is measured by refractometer. 

b) For coating the fiber with ZnO/Ag bi-layer nanostructures and study their 

features following steps are carried out: 

i. Electroless deposition technique is used for preparing the Ag nano-

layers. The mixture of electroless, dip coating and low temperature 

hydrothermal method are employed for zinc oxide nanostructure 

deposition on top of the Ag layer. 

 



6 
 

ii. Using field emission scanning electron microscopy (FESEM) the 

nanostructures size is measured and their shapes are observed.  Energy 

dispersive X-ray spectroscopy (EDX) confirms the formation of 

deposited layer and examines the elemental distribution of the sample. 

X-Ray diffraction spectroscopy (XRD) estimates the degree of 

crystallinity and illustrates the structure of the deposited materials. 

Atomic force microscopy (AFM) reveals the morphology, size, 

roughness and surface topography of the fabricated probe. Contact 

angle (CA) is used to characterize the wettability of the probe surface.  

Zeta potential (ZP) is employed to determine the electrochemical 

surface properties and existence of charges on the surface. 

Photoluminescence (PL) spectroscopy determines the optical properties 

including the electronic bandgap, crystal defect energy level and 

changes the nanostructure band gap once exposing to different 

refractive index media. The UV-Vis/NIR transmission and absorption 

are employed for further optical characterization. Tensile test is carried 

out to measure the physical properties of the probe and its despondence 

to the applied stress. Refractometer measures the refractive index of the 

saline and crude oil solutions. Finally, the ImageJ program is applied to  

determine the dimension, size, and distribution of the ZnO 

nanostructure deposited on top. 

c) For fulfilling the third objective regarding to optimization of sensing 

parameters the following process is carried out. 

i. Light sources of UV-Vis and IR (ranges from 360 nm to 2600 nm) are 

employed. The optical spectrum analyzer (OSA) is used as a light 

detector and multimode optical fibers having sensing length of 1 to 5 

cm are applied. Saline and Crude oil solutions with different volume 

concentrations (ranges from 0 to 20% and 0 to 100%) are prepared as 

the measurand liquids. 
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1.5 Significance of Study 

Nanosizing of materials is prerequisite for developing new electronic and 

optoelectronic devices. Especial miniature optical fiber sensors have sensitive thin 

films as a probe that can open new field in optical fiber sensor applications. Optical 

fibers act as signal carrier and thin films work as sensitive elements and transducer to 

get response and feedback from environments. The utilization of a highly sensitive , 

flexible, low cost, and small size intrinsic optical fiber sensor based on exterior 

cladding modifications for detecting the crude oil and saline concentration, permits 

operation at harsh environment with remote sensing operation capability, where bulk 

extrinsic sensors is not suitable to use. The magnitude of the salinity changes is a 

critical factor for determining the chemistry of natural waters and biological 

processes. The label-free refractive index sensor is promising device for detecting 

these changes. Therefore, an accurate monitoring of concentration changes in  saline 

solution is prerequisite to control and minimize the negative effect of salt in water 

resources. Furthermore, efficient and accurate estimation of crude oil density 

changes is an essential factor in reservoir engineering. Determining the refractive 

index gradient as a representative of these changes by optical fiber sensor offers a 

novel approach in oil production optimization. 

A novel ZnO/Ag bi-layer coated intensity and wavelength modulated optical 

fiber sensors having variety of ZnO shapes based on refractive index changes using 

IR and UV-Vis light sources are proposed. It is believed that this is the first work that 

the economic electroless technique as a promising chemical method i s used f or bi-

layer deposition of materials on multimode optical fiber. Moreover, controll ing the 

ZnO nanostructure shape which has direct ef fect on sensing mechanism can be 

controlled by chemical techniques and has not been extensively done. The possibility 

of tuning the optical response of coated nanomaterials by modifying their cladding 

part, synthesize techniques, length of the sensing area, nanostructure  configuration  

and applying different light source has become one of the most challenging aspects 

of recent fiber optic sensor research and have been successfully fulfilled in this 

thesis.  
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For controlling the assembly process and maintaining the quality of final 

products in manufacturing development where remote sensing is demanded, our 

organized fabricated micro scale sensor with low disturbance and without any 

explosion risks can contribute more effective than the other types of sensors. The 

proposed fabrication technique would be easy and economic. Large-scale and socio-

economic instrumentation is provided. The fundamental phenomena and  details of 

sensing mechanism would be fully understood. The device fabricated by this 

research can be used in wide range of industries and the data created will be 

published in high impact factor journal and presented in workshops, conferences and 

seminars. This methodology can be used to train the PhD and masters research 

scholar. High quality home fabricated optical fiber sensors can support the demands 

in optoelectronic industries. Measuring the small changes in refractive index would 

be possible by a set of characterization that is proposed. A right fiber optic sensor 

configuration for refractive index monitoring will be offered. These methodologies 

are not just limited to the deposited silver and zinc oxide nanostructures and it can be 

extended to other materials based on application needed. Other nanostructure 

materials like gold, nickel, copper and other also can be used as sensing part.  

1.6  Organization of Thesis 

This thesis structurally is divided into five chapters giving a complete 

fabrication, characterization and performance on partially unclad optical fiber 

sensors coated with bi layer ZnO/Ag for developing optical fiber sensors to monitor 

refractive index (concentration) of saline and crude oil solutions. The current chapter 

presents a short introduction on fiber optics field that consist of the motivation and 

the objectives of this research. 

Chapter 2 provides more information of an available literature review. This 

chapter consists of the theory of sensing mechanism and classification of optical 

fiber probe considering different aspects. Moreover, the feature and potential of ZnO 

and Ag as sensitive coated materials are extensively discussed. Varieties of 

deposition techniques are listed and among them electroless method is explained.  
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Chapter 3 includes a description of the fabrication of glass and polymer 

partially unclad optical fiber sensors based on solvent concentration and temperature. 

Moreover, fabricating of polymer and glass probe using deposition of bi-layer 

ZnO/Ag having different configuration of ZnO on partially unclad optical f ibe r via 

mixture of three techniques of  electroless, dip coating and low temperature 

hydrothermal method are explained. Finally, background information of major 

experimental tools or techniques for collecting data is explained.  

In chapter 4 the fabricated partially unclad optical fiber is characterized to 

view the morphology, structure and its performance. The role of probe length and 

etching solution concentration discussed in detail and the results are presented. Then, 

the optical features of ZnO/Ag nanostructures are investigated. The performance of 

ZnO/Ag bi-layer coated on polymer and glass fiber having variety of top-layer 

configurations is studied and presented. The sensitivity comparison for all fabricated 

probe is carried out and listed. Physical characteristic of the polymer and glass f iber 

sensor fabricated with optimum parameters is studied. 

Chapter 5 gives a summary and review of the results and analysis of th is 

study. It additionally includes limitation of this research and suggestions for f urther  

research work. Attached in the appendix contain published papers during this study. 
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Figure A.1 Un-cladding process via etching method by varying the temperature 

and solvents concentrations for GOF and POF. 
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Figure B.1 performance analysis of partially unclad fiber against refractive index 

changes. The refractive index of saline and crude oil solutions varied from 1.333-

1.368 and 1.372-1.478 respectively. 

Power Meter 

Light Source 

Probe in crude oil 

Crude Oil with different 

concentrations 

Saline with different 

concentrations 



179 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure B.2 performance process of probes coated with bi- layer ZnO/Ag on POF 

and GOF for detecting the concentration changes of saline and crude oil. 

 

Light Source 

OSA 

POF probe 

testing 

Solutions having variety 

of concentration 




