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ABSTRACT 

Catalytic hydroisomerization of n-alkane has been one of the vital processes in 

the petroleum refining industry to improve the quality of gasoline. The existing 

catalysts have registered low isomerization performance due to the poor accessibility 

of active sites for the reactant molecules and the strong acid sites tend to be more 

selective towards cracking, thus affecting the overall efficiency of the process. This 

study investigated the catalytic performance of modified mordenite zeolite in n-hexane 

hydroisomerization. A novel protonated mordenite catalyst with bicontinuous lamellar 

morphology (HM@KCC-1) was successfully prepared via a microemulsion system 

with a mordenite seed-assisted crystallization technique. Platinum (Pt) was loaded by 

wet impregnation method and the catalytic performance was compared with Pt 

supported on commercial mordenite zeolite. The catalysts were characterized with X-

ray diffraction, field emission scanning microscopy, transmission electron microscopy 

(TEM), surface area analyzer and electron spin resonance spectroscopy. The acidity 

was determined by pyridine and 2,6-lutidine adsorbed Fourier transformation infrared 

(FTIR) spectroscopy, while the catalytic performance was conducted in a 

microcatalytic pulse reactor at 150-350 °C under a hydrogen stream. The higher 

catalytic activity of Pt/HM@KCC-1 was achieved with 75% conversion, 98% isomer 

selectivity and 74% isomer yield compared to Pt/HM with 60% conversion, 40% 

isomer selectivity and 24% isomer yield at 300 °C. This was attributed to the well-

dispersed Pt nanoparticles on the bicontinuous lamellar structure of HM@KCC-1 

evidenced from the TEM images and the moderate acid sites on Pt/HM@KCC-1 as 

shown by FT-IR which favoured the dehydrogenation/hydrogenation function and the 

skeletal isomerization, respectively. Furthermore, the effect of zirconium (Zr) 

incorporation was investigated with different Zr loading (1, 5, 10wt %) on HM@KCC-

1. The results showed formation of permanent Lewis acid sites which was selective 

towards the generation of mono-branched isomers. Hence, Zr has great potential as a 

promoter with 5Zr/HM@KCC-1 exhibiting the best catalytic performance. Zr as a 

promoter in Pt/5Zr-HM@KCC-1 was prepared by impregnation with 0.5wt % Pt. The 

isomer yield followed the order of Pt/5Zr-HM@KCC-1(86) > Pt/HM@KCC-1(74) > 

5Zr-HM@KCC-1(60), best catalyst showed remarkable increased strength of Lewis 

acid sites and selectivity towards the di-branched isomer. Zr evidently enhanced the 

formation of molecular hydrogen-generated protonic acid sites which plays an 

important role in the hydroisomerization process. The optimum isomer yield for the n-

hexane hydroisomerization obtained by response surface methodology was 85.7% at 

a reaction temperature of 293 °C, reduction temperature of 474 °C and flow of 

hydrogen over catalyst weight of 502 ml.g-1min-1. The experiment carried out at these 

optimum conditions yielded 84.1% isomer with 1.9% error. This study has highlighted 

the efficient design of Zr promoted Pt on HM@KCC-1 catalyst with appropriate 

metal/acid sites functions for hydroisomerization. In conclusion, the promising 

performance of PtZr/HM@KCC-1 catalyst demonstrated the potential to be used for 

the production of high-quality fuel, particularly for n-alkane hydroisomerization in the 

refining processes. 

. 
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ABSTRAK 

Pengisomeran hidro n-alkana bermangkin telah menjadi salah satu proses 

penting dalam industri penapisan petroleum untuk meningkatkan kualiti petrol. 

Mangkin sedia ada telah mencatatkan prestasi isomerisasi yang rendah disebabkan 

oleh kebolehcapaian tapak aktif yang lemah untuk molekul reaktan dan tapak asid yang 

kuat lebih cenderung memilih terhadap keretakan, sekali gus menjejaskan kecekapan 

keseluruhan proses. Kajian ini dikendalikan untuk mengkaji prestasi pemangkin zeolit 

mordenit yang diubahsuai pada pengisomeran hidro n-heksana. Pemangkin mordenit 

berproton baharu dengan morfologi lamela dwiselanjar (HM@KCC-1) telah berjaya 

dihasilkan dengan menggunakan sistem mikroemulsi dengan dibantu oleh teknik 

penghabluran benih mordenit. Platinum (Pt) telah dimuatkan menerusi kaedah 

impregnasi basah dan prestasi pemangkinan telah dibandingkan dengan Pt yang 

disokong pada zeolit mordenit komersial. Mangkin-mangkin ini telah dicirikan dengan 

pembelauan sinar-X, mikroskopi elektron imbasan pancaran medan, mikroskopi 

penghantaran elektron (TEM), penganalisa luas permukaan dan spektroskopi resonans 

putaran elektron. Keasidan telah ditentukan menggunakan piridin dan 2,6-lutidin 

dijerap spektroskopi inframerah transformasi Fourier (FTIR), manakala prestasi 

pemangkinan dilakukan dalam reaktor denyut bermangkin mikro pada 150-350 °C 

dalam aliran hidrogen. Aktiviti pemangkinan yang lebih tinggi menggunakan 

Pt/HM@KCC-1 telah dicapai dengan 75% penukaran, 98% selektiviti isomer dan 74% 

hasil isomer berbanding Pt/HM dengan 60% penukaran, 40% selektiviti isomer dan 

24% hasil isomer pada 300 °C. Ini adalah disebabkan oleh nanopartikel Pt yang 

tersebar dengan baik pada struktur lamela HM@KCC-1 yang dibuktikan daripada imej 

TEM dan tapak asid yang banyak di Pt/HM@KCC-1 seperti yang ditunjukkan oleh 

FTIR yang masing-masing cenderung terhadap fungsi nyah hidrogenasi /hidrogenasi 

dan isomerisasi rangka. Tambahan pula, kesan penggabungan zirkonium (Zr) telah 

diselidiki dengan kandungan muatan Zr yang berbeza (1,5,10% berat) pada 

HM@KCC-1. Keputusan menunjukkan pembentukan tapak asid Lewis kekal yang 

terpilih ke arah penghasilan isomer bercabang-satu. Oleh itu, Zr mempunyai potensi 

tinggi sebagai pengalak dengan 5Zr/HM@KCC-1 yang mempamerkan prestasi 

bermangkin terbaik. Zr sebagai pengalak dalam Pt/5Zr-HM@ KCC-1 telah disediakan 

menggunakan impregnasi dengan 0.5% berat Pt. Hasil isomer mengikut susunan 

adalah Pt/5Zr-HM@ KCC-1 (86)> Pt/HM@ KCC-1 (74)> 5Zr-HM@KCC-1 (60), 

mangkin terbaik menunjukkan peningkatan kekuatan tapak asid Lewis dan selektiviti 

yang luar biasa terhadap isomer bercabang-dua. Zr terbukti meningkatkan 

pembentukan tapak asid proton yang dihasilkan oleh molekul hidrogen yang 

memainkan peranan penting dalam proses pengisomeran hidro. Hasil isomer optimum 

untuk pengisomeran hidro n-heksana yang diperolehi melalui kaedah gerakbalas 

permukaan adalah 85.7% pada suhu tindak balas 293 °C, suhu penurunan 474 °C dan 

aliran hidrogen ke atas berat mangkin, 502 ml.g-1min-1. Eksperimen yang dijalankan 

pada keadaan optimum ini menghasilkan 84.1% isomer dengan ralat 1.9%. Kajian ini 

menyerlahkan pembuatan Zr yang efisien dibantu oleh Pt pada mangkin HM@KCC-

1 dengan fungsi tapak logam/asid yang sesuai untuk pengisomeran hidro. 

Kesimpulannya, prestasi mangkin PtZr/HM@KCC-1 yang menggalakkan 

menunjukkan potensi untuk digunakan dalam pengeluaran bahan api berkualiti tinggi, 

terutamanya untuk pengisomeran hidro n-alkana dalam proses penapisan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Recently, global concern on the environment and health has led to new 

stringent legislative policies regarding gasoline. Gasoline contains mainly C4-C10 

hydrocarbons, with a significant portion composed of linear alkanes. Although several 

processes such as catalytic cracking, reforming and alkylation have been employed to 

improve the octane number, current gasoline specifications being implemented 

worldwide impose a strong restriction on limiting the amount of aromatic and olefin 

compounds in gasoline (Zhang et al., 2018a). Decreasing the quantity of these 

compounds has resulted in negative effects on the anti-knocking properties of gasoline 

that have to be compensated with other environmentally clean technologies. The need 

for high-quality gasoline has prompted a search for new technologies to improve the 

existing process in oil refineries and industries. 

In this regard, the hydroisomerization of linear alkanes to branched isomers 

has generated great interest in modern refining industries. The process has proved to 

be an effective strategy to transform linear alkanes with a low octane number to their 

corresponding branched-isomers with a high octane number sufficient to improve fuel 

quality (Chica and Corma, 1999; Galadima and Muraza, 2015; Pinto et al., 2016). 

Hydroisomerization is a better option compared with other technologies proven to be 

perilous to the environment.  

The hydroisomerization of n-alkanes proceeds by the classical bifunctional 

metal-acid mechanism. It involves the de/hydrogenation of the n-alkane on the metal 

sites and the skeletal rearrangement of the intermediate alkenes on the acid sites (Ono, 

2003). Besides, hydrogen plays a vital role in n-alkane hydroisomerization in the 

generation of protonic acid sites by the hydrogen spill-over phenomena (Triwahyono 



 

2 

 

et al., 2007; Hattori, 2016). Hydrogen molecules split on the metal sites to form 

hydrogen atoms which then diffuse on the acid support and release their electrons to 

the Lewis acid sites, thereby forming protonic (Brønsted) acid sites. These acid sites 

participate in the reaction as the active sites, thus improving the catalytic performance 

(Hattori, 2016). Active protonic acid sites are involved in skeletal rearrangement to 

maintain high activity and stability of the catalysts (Li et al., 2017). Besides, catalyst 

stability is also improved by the hydrogenation process to decrease coke deposition. 

Several researchers have reported various types of acidic supports to include 

metal oxides and zeolites for the hydroisomerization process. Among which zeolites 

are the most promising due to their unique properties. Besides, different topologies of 

zeolite support such as SAPO-11, ZSM-22, ZSM-5, HY, HBEA and MOR have been 

widely applied for the hydroisomerization of n-alkanes. However, zeolites as support 

materials suffer several drawbacks which mainly include high diffusional limitation, 

easy catalyst deactivation and consequently low selectivity to bulky isomer products. 

Several strategies for the preparation of mesoporous zeolites have been reported, post-

synthetic methods (top-down approach) such as demetallation which includes 

dealumination and desilication, hard-templating and soft-templating strategies 

(bottom-up approaches) (Schwieger et al., 2016). Post‐synthetic demetallation led to 

the loss of acidic sites by partial destruction of the zeolitic structure while the hard 

templating is expensive, often time-consuming and the constricted synthesis method 

is capable of not relinquishing any microporosity and acidity of parent zeolites during 

the formation of mesopores (Zhang and Ostraat, 2016). Soft-templating strategies 

represent the most attractive and efficient approach in the synthesis of mesoporous 

zeolites. It involves using surfactants which usually results in extensive mesoporosity 

with highly controllable structures. Thus, extensive efforts are being made to develop 

new catalysts with improved performance to achieve better mass transfer and a higher 

number of exposed active sites. 

Typically, the mesoporous BEA (Musselwhite et al., 2015), USY (Denayer et 

al., 2000), ZSM-5 (Parsafard et al., 2014), SAPO 11 (Zhang et al., 2018a), ZSM-22 

(Martens et al., 2013) and even MOR (Monteiro et al., 2014) were reported as good 
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hydroisomerization supports. However, these materials exhibited several drawbacks 

that include loss of acidity and low surface area.  

Among the various zeolites with different topology which have been explored 

for hydroisomerization, mordenite zeolites with high thermal stability and tunable 

acidity has been very promising as supports in the hydroisomerization of n-alkanes 

(Monteiro et al., 2014; Pastvova et al., 2017; Pastvova, Pilar, Moravkova, Kaucky and 

Rathousky, 2018; Sazama et al., 2018). Noble metals such as Pt, Pd and non-noble 

metals (Ni, Zn, Mo, Ga and Zr) have been utilized in n-alkane hydroisomerization. 

Particularly, Pt supported catalysts have been reported to be selective and stable in 

hydroisomerization. Accordingly, the isomerization of C6-C7 over Zr-Al-MCM-41 

showed enhanced activity which was attributed to the appropriate proximity of Lewis 

acid sites that strengthened the strong Brønsted acid sites (Eswaramoorthi et al., 2004). 

The isomerization selectivity to multibranched isomers for both n-hexane and n-

heptane was higher for Zr containing Al-MCM-41 than Al-MCM-41 without 

zirconium. 

Nonetheless, to date, there are no reports available regarding the modification 

of mordenite with bicontinuous concentric lamellar silica KCC-1 type material and 

incorporation of zirconium. In this thesis, bicontinuous lamella silica mordenite 

(HM@KCC-1) was used as the platinum support and n-hexane hydroisomerization 

was chosen as a model reaction. In addition, the physicochemical properties and 

catalyst activity of Pt/HM@KCCC-1 were compared with Pt/HM, since Pt is well 

known as an active noble metal for n-alkane hydroisomerization. The KCC-1 

incorporation on mordenite modified the acidity to be moderate which facilitated the 

formation of isohexane in correlation with its catalytic activity. The presence of 

bicontinuous lamellar morphology and interparticle textural porosity contributing to a 

high surface area and large pore diameter of HM@KCC-1, which opens a new design 

possibility for a catalyst to with highly accessible active sites, which led to high 

selectivity towards isomerization suppressing the competing cracking reaction. Also, 

the influence of Zr as a promoter in n-hexane hydroisomerization was investigated by 

employing the bicontinuous concentric lamellar silica KCC-1 mordenite with zirconia. 

It was expected that the interaction of Zr with bicontinuous concentric lamellar silica 
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KCC-1 on mordenite would generate Lewis acid sites to improve the catalytic activity 

and selectivity. Further modification of Pt/HM@KCC-1 with zirconium to form 

PtZr/HM@KCC-1 was expected to enhance the hydroisomerization performance to 

obtain more di-branched isomers as it plays an important role in the generation of 

protonic acid sites via hydrogen spillover phenomena thus, enhancing the catalytic 

performance. The optimization of the n-hexane hydroisomerization process over 

PtZr/HM@KCC-1 was carried out using the response surface methodology (RSM). 

1.2 Problem Statement and Hypothesis 

In recent times, global energy demand has continued to increase due to the 

rapid growth in the world’s population and the expansion of developing-world 

economies. Although fossil fuel will remain the major source of energy for the next 

few decades, environmental concerns have led to stringent policies to reformulate 

gasoline composition in order to improve fuel quality. The required quality of fuel can 

be achieved through progressive improvements in technology to increase product 

quality while minimizing undesirable effects on the environment.  In an effort to 

address this problem, the hydroisomerization of linear alkanes has proved to be an 

effective industrial process to improve the octane number of gasoline. The product 

consists of branched alkanes with a considerably higher octane number than the 

corresponding linear alkanes. It is one of the key environmentally friendly processes 

employed to achieve high-quality clean gasoline, thereby meeting the required 

specifications of good fuel quality.  

Industrial hydroisomerization catalysts are noble or transition metals supported 

on solid acids. These catalysts are bifunctional consisting of metallic and acidic 

functions. A suitable catalyst capable of high global conversion of n-alkanes and high 

selectivity to multi-branched isomers requires a proper choice of metal, as well as 

acidic functions for the hydroisomerization process. The current efficiency of refining 

and petrochemical industries is largely based on the use of highly active and durable 

catalysts, zeolites being the typical illustration of solid acids with large surface area as 

supports for developing environmentally benign processes. However, zeolite-based 
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catalysts suffer diffusional limitations and tend to be more selective towards the 

undesired cracking reaction because of their microporosity and strong acidity. Among 

the zeolite materials, mordenite is widely investigated in hydroisomerization due to its 

favourable properties such as high acidity, high thermal stability, shape selectivity, 

resistance to coke formation and high activity at moderate temperatures, but the 

hydroisomerization products are predominantly of mono-branched components, while 

the di-branched isomers are of essential importance for desired gasoline properties. 

Recently considerable efforts have been made by researchers to improve the 

accessibility of active sites and molecular transport to and from active sites by 

introduction of micro-mesoporous materials. Although the development of 

hierarchical mordenite has been reported to enhance the diffusion of reacting species, 

the catalytic activity can still be improved by modifying the acidity to achieve a good 

balance in the metal/acid function. These are the two important parameters that can 

influence the extent of hydroisomerization reaction as well as the selectivity to the 

bulkier multi-branched products.   

The main focus of this research is to design a new catalyst system to efficiently 

convert linear alkanes to high octane number branched alkanes.  It was hypothesized 

that the incorporation of bicontinuous lamellar silica with mordenite could introduce 

mesoporosity to provide good accessibility of active sites and good metal dispersion 

as well as modify the acidity. This is due to the morphological changes, thus achieving 

suitable metal and acid functions in the dehydrogenation/hydrogenation and skeletal 

rearrangement in the hydroisomerization process. The addition of zirconium as a 

promoter would result in increased Lewis acidity which stabilizes the electron in the 

generation of protonic acid sites. These protonic acid sites could enhance the 

selectivity towards di-branched isomers.     

1.3 Objectives of the Study 

The objectives of this study are: 
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1. To prepare and characterize bicontinuous lamellar silica mordenite and 

compare its performance with commercial mordenite as a support for 

platinum in n-hexane hydroisomerization. 

2. To investigate the influence of zirconium loading on HM@KCC-1 and 

Pt/HM@KCC-1 and study the reaction mechanism over PtZr/HM@KCC-

1 in n-hexane hydroisomerization. 

3. To optimize the n-hexane hydroisomerization process using response 

surface methodology (RSM). 

1.4 Scope of the Study 

This study is focused on designing hydroisomerization catalysts to solve the 

fundamental problems pertaining to low process efficiency. In this perspective, the 

effect of the incorporation of bicontinuous lamellar silica onto mordenite was 

compared with commercial mordenite as support for platinum, effect of zirconium 

loading on HM@KCC-1 and zirconium as a promoter on Pt/HM@KCC-1 in n-hexane 

hydroisomerization. Furthermore, the reaction mechanism and optimization of the n-

hexane hydroisomerization process have been elucidated. The n-hexane 

hydroisomerization process efficiency is related to maximize the yield for multi-

branched isomers thereby limiting the cracking selectivity. Therefore, the details of 

research scope are described as follows:  

(a) The effect of the incorporation of KCC-1 on mordenite and the comparison of 

its performance with commercial mordenite both with and without platinum 

was investigated in the hydroisomerization of n-hexane. In this 

study,bicontinous lamellar silica mordenite was prepared as reported by 

previous protocols using water in oil microemulsion method with 

cetyltrimethylammonium bromide (CTAB) as a surfactant, butanol as a co-

surfactant and toluene as the oil phase (Firminyansi et al., 2016). Incipient 

wetness impregnation method was chosen to load 0.5 wt% Pt based on 

literature reports (Musselwhite et al., 2016). The prepared catalysts were 
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characterized by X-Ray diffraction (XRD), N2 physisorption, Field Emission 

Scanning Electron Microscope (FESEM) and Transmission Electron 

Microscope (TEM) in order to investigate the phase and crystal structure, 

surface area and pore size distribution and surface morphology and 

mesoporosity. Investigation of the nature and strength of acid sites was done 

by using Fourier Transform Infrared (FTIR) spectroscopy of preadsorbed 

pyridine, and 2,6-dimethylpyridine and the chemical environments was 

investigated by Electron Spin Resonance (ESR) Spectroscopy. Catalytic 

testing for n-hexane hydroisomerization was carried out at a temperature range 

of 150-350 °C under atmospheric pressure (Fatah et al., 2016). However, this 

application is limited to the operative pressure of the fixed bed reactor is 1 atm. 

(b) The effect of zirconium loading on HM@KCC-1 and zirconium as a promoter 

on Pt/HM@KCC-1 in n-hexane hydroisomerization was investigated.  A series 

of catalysts with different Zr loading (1, 5 and 10 wt %) were prepared using 

the incipient wetness impregnation method. The amount of zirconium was in 

the range stated based on literature (Triwahyono et al., 2018) and preliminary 

studies on the catalytic activity evaluation using different zirconium loading. 

The prepared catalysts were characterized by XRD, N2-physisorption, FESEM, 

TEM and 2,6-dimethylpyridine-FTIR. Catalytic testing on n-hexane 

hydroisomerization was carried out at temperature range of 150-350 °C and at 

atmospheric pressure. The mechanism of n-hexane hydroisomerization over 

different zirconium loaded PtZr/HM@KCC-1 was studied using in situ 2,6-

dimethylpyrine + H2 (Izan et al., 2018) and n-hexane + H2 FTIR spectroscopy 

(Kondo et al., 2007). 

(c) The optimal conditions for the n-hexane hydroisomerization process were 

determined by RSM using a Central Composite Design (CCD) developed by 

Statistica 6.0 StatSoft. The independent variables selected in the study are 

reaction temperature (250-350 °C), treatment temperature (400-500 °C) and 

flow of hydrogen over the weight of catalyst (475-525 ml/gmin) while the 

response is the isomer yield obtained from the catalytic performance evaluated 

in n-hexane hydroisomerization. These variables were selected based on the 

previous results from the literature and the preliminary analysis conducted 
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prior to the main study (Ruslan et al., 2012, Fatah et al., 2017, Setiabudi et al., 

2013). 

1.5 Significance of the Study 

In this study, a novel catalyst, bicontinuous lamellar silica mordenite was 

prepared for the n-hexane hydroisomerization. As compared to the commercial 

mordenite, HM@KCC-1 has a bicontinuous lamellar morphology. This unique 

morphology modified the properties of the catalyst to have high thermal stability, 

moderate acidity and allows diffusion of bulky hydroisomerization products. A 

detailed comparison study on the property-activity relationship of Pt supported on 

HM/KCC-1 and HM was carried out.  In addition, the effect of zirconium loading was 

investigated. Furthermore, the catalytic activity of PtZr/HM@KCC-1 and mechanism 

for n-hexane hydroisomerization was studied. Optimization by response surface 

methodology highlighted the factors affecting the hydroisomerization process. This 

study will have a significant contribution to scientific research and innovation, 

especially in the development of a new catalyst for n-alkane hydroisomerization.        

1.6 Thesis Outline 

This thesis begins with Chapter one which described the research background, 

problem statement and hypothesis, objectives, scope and significance of the study. 

Chapter two reviewed the literature related to the catalysts and the recent progress on 

the hydroisomerization of n-alkanes. Chapter three described the step by step 

experimental procedure and characterization techniques for synthesized catalysts and 

n-hexane hydroisomerization. While chapter four presented data processing and 

discussion on physicochemical properties and catalytic performance of the catalysts. 

Finally, conclusions and recommendations for future research were highlighted in 

Chapter 5. 
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 APPENDIX A 

 Calculation of Percentage of Platinum (Pt) and Zirconium (Zr) 

 

Taking the amount of catalyst HM@KCC-1 as 1g and 0.5 wt% of Pt as desired 

amount of Pt, the calculation was as follows, 

Mass of Pt needed,  

0.5wt% Pt = x g Pt 

 1 g HM@KCC-1 + x g Pt 

  

x g Pt = 5.025 x 10-3 g Pt 

  

With MW Pt = 195.084 g mole-1 and MW Pt solution = 517.9 g mole-1 

Mole of Pt needed,  

  

g Pt solution  = 517.9 g mole-1 Pt solution x  5.025 x 10-3 g Pt 

   195.084 g mole-1 Pt 

 = 1.3340 x 10-2 g Pt solution 

  

With concentration of Pt solution = 9.6782 g/ 100 mL 

Volume of Pt needed, 

  

mL Pt solution = 1.3340 x 10-2 g Pt solution 

  9.6782 g/ 100 mL 

 = 0.1378 mL Pt solution 
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Thus, 0.1378 mL of Pt solution is needed to prepare 0.5 wt% Pt on 1 g 

HM@KCC-1. 

 

Taking the amount of HM@KCC-1 as 1g and 5 wt % of Zr, the calculation is as 

follows, 

Mass of Zr needed, 

Mass of Pt needed,  

5 wt% Zr = x g Zr 

 1 g HM@KCC-1 + x g Zr 

  

x g Zr = 0.0526 g Zr 

  

With MW Zr = 91.224 g mole-1 and MW ZrOCl2.H2O = 322.252 g mole-1 

  

  

g  ZrOCl2.H2O   = 322.252 g mole-1 ZrOCl2.H2O x  0.0526 g Zr 

   91.224 g mole-1 Zr 

 = 0.1858 g ZrOCl2.H2O 

  

  

Thus, mass of ZrOCl2.H2O needed to prepare 5 wt% Zr on 1 g HM@KCC-1 is 

0.1858 g ZrOCl2.H2O . 
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Appendix B  

 

 

Raw Data For n-Hexane Hydroisomerization 
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Appendix C  

 

 

Calculation for Catalytic Activity 

 

 

Based on the raw data in Appendix B, the calculation of conversion, selectivity and 

yield of a particular product was calculated as below: 

Xn-hexane 

 

= 1408.4+1390.5+16523.3+8534.4 x100  

 1408.4+1390.5+16523.3+8534.4+14501.6   

    

= 66%    

    

    

 

Selectivity of isomer was calculated as follows: 

= 1390.5+16523.3+8534.4 x100  

 1408.4+1390.5+16523.3+8534.4+14501.6   

    

= 95%   

    

    

And the yield, 

= 66 x 95  

 100  

   

= 63%  
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Appendix D 

 

 

Kinetic study 

 

Calculation of Rate Constant, K 

 

The rate constant, k was calculated according to the following equation: 

 

k = no. of mole n-hexane (mole) 

 Weight of catalyst (g) x time of pulse (s-1)x surface area 

 

With the mole of n-hexane = 6.83 x 10-6, the value of surface area is 679 m2/g presented 

in Table 4.2, the weight of 5ZrHM@KCC-1 = 0.1 g, and by assuming the time of pulse 

per second is 1, the rate constant for 5ZrHM@KCC-1: 

 

k = 6.83 x 10-6 (mole) = 3.638 x 10-8 mole g-1 s 

 0.1 (g) x 1 (s-1) x 679m2/g  

 

Thus, the rate constant of 5ZrHM@KCC-1 was 3.638 x 10-8 mole g-1 s 
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Arrhenius Plot 

 

y = -2.9147x - 12.601

R² = 0.901
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Appendix E  

 

 

Calculation of Acid Sites Concentration 

 

 The amount of pyridine per gram of catalyst was calculated using integrated 

molar extinction coefficient (IMEC), 1.67 cm/μmole and 2.22 cm/μmole for for 

Brönsted acid sites and Lewis acid sites respectively. 

    

Ø = [IA (B)/IMEC (B) + IA (L)/IMEC (L) = Cpy 

   (3.14 R2) 

 

The amount of pyridine per gram catalyst (C) was obtained by dividing Ø by the 

weight per cm2 disk 

CB (pyridine on Brönsted acid sites) = 1.88 IA(B) R2 

  W 

   

CL (pyridine on Lewis acid sites) = 1.42 IA(L) R2 

  W 

 

 

With Brönsted integrated peak area at 1545 cm-1 of HM@KCC-1 = 0.15625 and 

Lewis acid sites integrated peak area at 1445 cm-1 of HM@KCC-1 = 0.48415. The 

calculation was made as follows, 

CB = 1880 μmole x 0.15625 x (2 cm)2 

  25 mg 

   

 = 46.92 μmole/g 

   

CL = 1420 μmole x 0.48415 x (2 cm)2 

  25 mg 

   

 = 110.12 μmole/g 

 

Thus, the Brönsted and Lewis acid sites acid sites concentration for HM@KCC-1 are 

47 μmole/g and 110 μmole/g, respectively. 
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Appendix F  

 

Microcatalytic pulse reactor experimental set-up 
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Appendix G 

 

Calculation of g-value 

 

The g-value was calculated based on the energy absorbed in terms of Bohr magneton 

as given in the equation below: 

E = hv = g BN H    

g = hv/BNH                                                      

Where  

BN = Bohr magneton = 9.27 ×10-24 JT-1 = 9.27 ×10-27 J/mT 

H = Magnetic field strength = 336.977 mT 

h = Planck’s constant = 6.626 × 10 -34 Js 

v = frequency of radiation = 9.015 GHz × 1000 = 9015 MHz = 9015 x 106 s-1 

g = g value  

g = 6.626 x 10 -34 Js x 9015 x 106 s-1/ 9.27 x 10 -27 J/ mT x 336.977 mT 

g = 1.91 
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Appendix H 

 

Calculation for mass transfer parameter 

 

The mass transfer parameters were evaluated based on the following equations: 

Porosity, ε 

Ɛ =  
 (𝑉𝑝)

𝑉𝑐𝑎𝑡 
                                                              (1) 

Where Vp is catalyst pore volume (m3) and Vcat is catalyst volume (m3) 

 

Tortuosity, τ 

Ƭ = 1 − 0.5 ln(1 − Ɛ)                                       (2) 

 

Molecular diffusivity, DAB(673 K) 

𝐷AB(673 K) = 𝐷AB(298 K) (
673

298
)

1.75

  (3) 

 

Thiele modulus  

ɸ1 = 𝑅P √
𝐾1𝜌𝑐𝑆𝑎

𝐷𝑒𝑓𝑓
      (4) 

Where Rp is the catalyst radius (m), k1 is the specific reaction rate (m/s), ρc is the 

catalyst density (g/m3), Sa is the catalyst surface area (m2/g) and Deff is the effective 

diffusivity. 

 

 

𝐷eff =
Ɛ

𝜏
𝐷AB                                               (5) 

 

Internal effectiveness factor: 

𝜂 =
3

ɸ1
2 (ɸ1 (

(𝑒ɸ1 + 𝑒−ɸ1)

(𝑒ɸ1 − 𝑒−ɸ1)
) − 1)    (6) 

 

Weiz-Prater Criterion: 

𝐶WP = 𝜂ɸ1
2 = 3(ɸ1 coth ɸ1 − 1)         (7) 

 

For 𝐶WP < 1 implies internal diffusion limitation is negligible and vice-versa 

Effective diffusivity: 
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