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ABSTRACT 

Dry reforming of methane (DRM) is a promising technology towards 

production of synthesis gas (syngas) with low H2:CO ratio by utilization of gases 

(CO2 and CH4) with potential to cause global warming. This study entails the 

development of highly active and stable nickel (Ni) based catalyst supported on 

synthesized fibrous KCC-1 silica (KAUST Catalytic Centre number 1) by in situ 

one-pot method. The performance and robustness of the synthesized Ni/KCC-1(1P) 

catalyst to DRM reaction was evaluated and compared to other silica-based Ni 

catalysts supported by wet impregnation on KCC-1 (Ni/KCC-1(IM)) and 

conventional silica (Ni/SiO2). Furthermore, lanthanum (La) was added as a promoter 

to Ni/KCC-1 also in situ one-pot synthesis and compared to catalysts of single metal 

loadings of nickel (Ni/KCC-1(1P)) and lanthanum (La/KCC-1(1P)). Fresh and spent 

catalysts were characterized with the aid of X-ray diffraction, nitrogen adsorption-

desorption isotherm, field-emission scanning electron microscope, energy-dispersive 

X-ray, transmission electron microscope, Fourier-transform infrared spectrometer, 

IR-pyrrole chemisorption, temperature-programmed reduction with hydrogen and X-

ray photoelectron spectrometer, Raman spectrometer, thermogravimetric analysis. 

The effects of support morphology, synthesis mode and addition of La promoter on 

the activity and stability of Ni-based catalysts for DRM were studied over a 

temperature range of 550 – 850 
o
C and atmospheric pressure. From the results 

obtained, Ni/KCC-1(1P) produced the best performance in terms of reactants (CO2, 

CH4) conversions in comparison to  Ni/KCC-1(IM) and Ni/SiO2 in the order: 

Ni/KCC-1(1P) (88 %, 92 %) > Ni/KCC-1(IM) (80 %, 92 %) > Ni/SiO2 (76 %, 82 %). 

From the reaction kinetics, low activation energy Ni/KCC-1(1P) at 22.7 kJ/mol 

facilitated its high activity in comparison to Ni/KCC-1(IM) and Ni/SiO2 with energy 

values of 26.5 and 40.9 kJ/mol, respectively.  Enhanced surface area, mesoporosity 

and basicity were responsible for the increased activity of KCC-1 supported catalysts 

over silica. Activity of Ni/KCC-1(1P) was accompanied by an outstanding stability 

over 72 h time on stream with negligible activity loss, whereas Ni/KCC-1(IM) and 

Ni/SiO2 produced activity losses of 13.4 % and 42.5 %, respectively for CH4 

conversion. The long-term stability was attributed to the confinement effect, core-

shell structure and strong metal-support interaction provided by the one-pot mode of 

synthesis.  The introduction of La promoter on Ni/KCC-1 increased its catalytic 

activity and selectivity for CO production due to enhancement in Ni dispersion and 

catalyst basicity for CO2 chemisorption. As a result, the activation energy for CO2 

and CH4 conversions were reduced by a margin of 10.4 kJ/mol and 2.2 kJ/mol 

respectively. Based on optimization of reaction conditions for the synthesized 

catalyst by response surface methodology, DRM reaction temperature of 820 
o
C, 

CO2:CH4 feed ratio of 2.5 and gas hourly space velocity of 35.5 Lg
-1

h
-1

 produced an 

optimal CH4 conversion of 97 %. The highlight of this study is the application of the 

confinement effect and core-shell structure from in situ one-pot synthesis and the 

fibrous dendrimer morphology of KCC-1 support in the quest for a robust catalyst 

design for industrialization of syngas production via DRM. 
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ABSTRAK 

Pembentukan semula kering metana (DRM) adalah teknologi yang baik untuk 

menghasilkan gas sintesis (singas) dengan nisbah H2:CO rendah menggunakan gas 

(CO2 dan CH4) yang mempunyai potensi untuk penyelesaian pemanasan global. 

Kajian ini melibatkan sintesis mangkin berasaskan nikel (Ni) yang sangat aktif dan 

stabil disokong pada silika KCC-1 bergentian yang disintesis (KAUST pusat 

pemangkin bernombor 1) dengan kaedah satu bekas di situ. Prestasi dan keteguhan 

mangkin Ni/KCC-1 (1P) yang disintesis terhadap tindak balas DRM dinilai dan 

dibandingkan dengan mangkin Ni berasaskan silika lain yang disokong secara 

pengisitepuan basah pada KCC-1 (Ni/KCC-1 (IM)) dan silika konvensional 

(Ni/SiO2). Tambahan pula, lantana (La) telah ditambah sebagai penggalak kepada 

Ni/KCC-1 juga semasa sintesis satu bekas di situ dan dibandingkan dengan mangkin 

logam tunggal nikel (Ni/KCC-1 (1P)) dan lantana (La/KCC-1 (1P)). Mangkin segar 

dan terguna dicirikan dengan bantuan pembelauan sinar-X, isoterma penjerapan-

penyerapan nitrogen, pengimbasan elektron pancaran medan, dispersi tenaga sinar-X, 

mikroskopi penghantaran elektron spektrometer, inframerah jelmaan Fourier, 

kemoterapi IR-pyrrole, penurunan suhu terprogram hidrogen dan spektrometer 

fotoelektron sinar-X, spektrometer Raman, analisis termogravimetrik. Kesan 

morfologi sokongan, jenis sintesis dan penambahan penggalak La pada aktiviti dan 

kestabilan mangkin berasaskan Ni untuk DRM telah dikaji pada julat suhu 550 – 850 
o
C dan tekanan atmosfera. Keputusan yang diperolehi, Ni/KCC-1 (1P) menghasilkan 

prestasi terbaik dari segi penukaran bahan tindak balas (CO2, CH4) berbanding 

Ni/KCC-1 (IM) dan Ni/SiO2 mengikut urutan: Ni/KCC-1 (1P) (88%, 92%) > 

Ni/KCC-1 (IM) (80%, 92%) > Ni/SiO2 (76%, 82%). Dari kinetik tindak balas, tenaga 

pengaktifan rendah Ni/KCC-1 (1P) pada 22.7 kJ/mol memudahkan aktiviti yang 

tinggi berbanding dengan Ni/KCC-1 (Ni) dan Ni/SiO2 dengan nilai tenaga masing-

masing adalah 26.5 dan 40.9 kJ/mol. Luas permukaan yang dipertingkatkan, 

mesoliang dan tapak bes bertanggungjawab terhadap peningkatan aktiviti mangkin 

KCC-1 yang disokong oleh silika. Aktiviti Ni/KCC-1 (1P) disertai dengan kestabilan 

yang luar biasa melebihi 72 jam dalam aliran dengan kehilangan aktiviti yang dapat 

diabaikan, manakala Ni/KCC-1 (IM) dan Ni/SiO2 menghasilkan kehilangan aktiviti 

masing-masing adalah 13.4% dan 42.5% untuk penukaran CH4. Kestabilan jangka 

panjang adalah disebabkan oleh kesan pembendungan, struktur teras-cengkerang dan 

interaksi logam-sokong kuat yang disediakan oleh ragam sintesis satu bekas. 

Pengenalan penggalak La pada Ni/KCC-1 meningkatkan aktiviti pemangkinan dan 

pemilihan terhadap pengeluaran CO yang disebabkan oleh penambahbaikan dalam 

penyebaran Ni dan bes mangkin untuk penjerapan kimia CO2. Akibatnya, tenaga 

pengaktifan bagi penukaran CO2 dan CH4 masing-masing dikurangkan dengan 

margin 10.4 kJ/mol dan 2.2 kJ/mol. Berdasarkan pengoptimuman keadaan tindak 

balas untuk mangkin yang disintesis oleh kaedah sambutan permukaan, suhu tindak 

balas DRM 820 
o
C, nisbah suapan CO2:CH4 2.5 dan halaju ruang jaman gas 35.5 Lg

-

1
h

-1
 menghasilkan penukaran CH4 optimum sebanyak 97%. Penekanan kajian ini 

adalah penggunaan kesan pengasingan dan struktur teras-cengkerang dari sintesis 

satu bekas in situ dan morfologi sokong dendrimer berserat KCC-1 dalam usaha 

untuk menghasilkan reka bentuk mangkin yang kuat untuk industri pengeluaran 

singas melalui DRM. 
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 CHAPTER 1

 

 

INTRODUCTION 

1.1 Background of Study 

It was estimated at the beginning of 2016 that a total of 6879 trillion cubic 

feet natural gas (NG) has been discovered in its associated and non-associated form 

(Huang et al., 2018). Fast depleting crude oil reserves and stringent environmental 

regulations on emission control has diverted attention to NG as a source of energy 

for heat, power and vehicular applications. Setbacks to NG for these applications are 

its characteristic low energy density, low critical temperature, high cost of storage 

and transportation. As a result of these challenges, utilization of abundant NG 

reserves as fuel is low resulting to flaring of large volume during exploration of 

crude oil. Anthropogenic production and emission of greenhouse gases (CH4, CO2, 

H2O vapour, NOx) have been established to be responsible for the menace of heat 

trapping in the Earth‘s atmosphere known as global warming (Cooper et al., 2018). 

As at 2011, the World Meteorological Organization (WMO) assessment revealed the 

atmospheric concentration of CH4 and CO2 as 1.8 and 393.1 ppm respectively (Wang 

et al., 2015a). Despite the low methane concentration relative to that of carbon 

dioxide, its global warming potential (GWP) is 28-36 times higher than that of CO2, 

hence contributing severely to Earth‘s radiative imbalance (Elvidge et al., 2018; 

Song et al., 2018).  

CO2 emission poses the greatest threat due to its high energy absorbing 

efficiency attributed to its large-scale emission and long-term duration in the 

atmosphere. Capture, sequestration and utilization of CO2 have been the most 

effective abatement strategies towards combating this trend (Wang et al., 2015b). 

Despite the successes attained in Carbon capture and sequestration (CCS), Utilization 

of immensely stored CO2 has found limited application. In an effort to curb 

underutilization, reduce wastage and control generation of greenhouse gases from 
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gas flaring, CO2 and NG containing mainly CH4 are converted to synthetic gas 

(syngas), an important platform chemical intermediate for production of useful 

chemicals and synthetic fuels through distinct processes such as steam reforming 

(SRM), autothermal reforming (ATM), dry reforming of methane (DRM), oxidative 

coupling (OCM) and partial oxidation (POM) (Wang et al., 2017a), (Bian & Kawi, 

2017).  

Methane conversion to synthesis gas (syngas) by CO2 dry reforming is a 

catalytic induced process producing syngas (a gaseous fuel mixture containing 

primarily H2, CO and traces of CO2) used as a sustainable fuel alternative to fossil 

fuel and also a precursor for important chemicals such as methanol, ammonia and 

synthetic hydrocarbon fuel production (Zain & Mohamed, 2018; Paksoy et al., 2015). 

Advantages of this technology are its suitability for low calorific value CO2-rich NG, 

utilization and conversion of CH4 and CO2 which are both gases with significant 

greenhouse tendencies, production of eco-friendly fuel products and their subsequent 

conversion to liquid fuels through Fischer-Tropsch synthesis to address the inherent 

storage and transportation problems associated with gaseous fuels (Rafiee et al., 

2017; Pal et al., 2018; Dahan et al., 2019). The utilization of cheap and readily 

available DRM catalysts with performance to maximally produce syngas has been 

the focal point of research and development in recent times. Despite its economic 

and environmental potentials, DRM is still an immature industrial process due to the 

problem associated with catalyst development with a long life-span on stream at a 

cheap price suitable for profit-oriented commercialization (Park, 2019; Das et al., 

2019). 

In 2015, Linde group revealed the pioneer pilot plants for dry reforming of 

methane (DRM).  It was a product of concerted research effort in partnership with 

BASF and others. The Linde Pilot Reformer (LPR) is located near Munich and it 

uses two catalyst materials; a Nickel-based and a Cobalt-based. The aim is to test-run 

the LPR to obtain data at longer-term and longer-scale using pilot facility to 

investigate and optimize different approaches which could be used towards design of 

a commercial plant for the DRM (Schödel et al., 2015). Obviously, the LPR not only 

inspired greater research efforts in DRM catalyst design and development, but it is a 
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step further towards commercial utilization of DRM catalysts for syngas production 

(Jarvis & Samsatli, 2018; Er-Rbib et al., 2012). The other two industrial pilot plants 

successfully implemented are the SPRAG and CALCOR projects (Er-Rbib et al., 

2012).  

Contemporary design of DRM catalysts involved principally the utilization of 

inherent properties of catalyst components and understanding their complex 

synergistic interactions for optimum performance and longevity using state-of-the-art 

theoretical and analytical characterizations. Different catalyst configurations, 

morphologies and topologies have overtime been tested to evaluate how synergistic 

component interactions affects active metal dispersion, basicity, redox property, 

oxygen mobility, particle size, size distribution, reducibility and mass transfer 

limitations of catalysts (Zhang et al., 2018c; Abdel et al., 2018). These interactions 

have been linked towards predicting the pathways for establishing DRM reaction 

kinetics, thermodynamics, mechanisms and reactor design. Trade-offs between 

catalysts cost and their respective activity, selectivity and stability is the main 

challenge facing syngas production by dry reforming. Base metals are cheap and 

abundant catalyst precursors currently applied in dry reforming of methane (DRM) 

as a replacement to noble metals but their accelerated deactivation due to catalyst 

sintering, coke formation and deposition on catalyst surface at reforming conditions 

constitute a major challenge. Catalysts from noble metal precursors such as Ir, Pd, Pt, 

Rh and Ru have proven to manifest higher activity, selectivity and stability during 

DRM. Their viability for large scale industrial application is however not 

economical, attributed to their high cost and scarcity (Serrano-Lotina, 2013; Khajeh 

et al., 2015). 

In a typical DRM system, syngas is produced from endothermic reaction of 

CH4 and CO2 (Equation 1.1) at a lower syngas ratio (H2:CO = 1) in comparison to 

steam reforming (H2:CO = 3) or partial oxidation (H2:CO = 2) making a suitable path 

way to Fischer-Tropsch synthesis (Usman, et al., 2015). This endothermic nature of 

DRM requires high temperature for activity which implies high energy consumption 

and thus high operating cost. Production of syngas by DRM is however affected by 

competing side reactions which aid carbon formation and deposition on catalyst such 
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as methane decomposition (Equation 1.2), Boudouard reaction (Equation 1.4) and 

reverse water-gas shift (RWGS) reaction (Equation 1.3) (Pal et al., 2018). 

CH4 + CO2 ⇌ 2CO + 2H2   ΔH
0

298K = 260.5 kJ/mol          (1.1) 

CH4 ⇌ C + 2H2    ΔH
0

298K = 75.0 kJ/mol           (1.2) 

CO2 + H2 ⇌ CO + H2O   ΔH
0

298K = 41.0 kJ/mol           (1.3) 

2CO ⇌ C + CO2    ΔH
0

298K = -173.0 kJ/mol          (1.4) 

From the stoichiometry of the DRM reaction, CO2 and CH4 conversions are 

expected to be equal and the syngas ratio also to be unity. Presence of side reactions 

and the extent with which they occur are measured by the deviation from products 

formed from the ideal stoichiometry. RWGS reaction can be confirmed by presence 

of water at the outlet of the reactor and higher stoichiometric conversion of CO2 than 

CH4, Boudouard reaction by disproportionation of CO formation and CH4 

decomposition by CH4 conversion higher than CO2 conversion (Serrano-Lotina, 

2013). 

Suitability of different catalysts for DRM has been thoroughly investigated. 

However, their application has recorded limited successes for commercialization due 

to their susceptibility to deactivation caused by coke formation and sintering (Gurav 

et al.,2017; Lovell et al., 2014). Research attention has shifted from noble metals to 

base metals for economic reasons. Ni-based catalysts have been found to be 

competitive with noble metals in their catalytic activities at affordable costs (Zhang 

et al., 2018c). To overcome challenges of coke deposition and sintering of Ni 

catalyst, various factors have been considered and investigated for their reduction or 

elimination. These include nature of active metal, incorporating promoters with basic 

properties, interactions between active metals and support, particle size reduction, 

change in pre-treatment and preparation route and viability testing for different 

combinations of metals and supports (Álvarez et al., 2018; Wang et al., 2014b; Li et 

al., 2015). Lots of researches carried out in DRM have shown that achieving an ideal 

carbon-resistant and heat stable catalyst by exclusive adjustment of a single 

parameter is difficult to achieve. Therefore, it is imperative to consider the 
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collaborative association of various parameters in the design of a robust and efficient 

DRM catalyst. Attempts to improve coking resistance and catalytic activity have also 

been made via combination of two or more active metals, support and/or promoters 

(Guharoy et al., 2018).   

Studies recently have shown that catalyst support materials and methods with 

which they are prepared impact the activity of Ni and Ni-based catalysts for carbon 

dioxide dry reforming, of which the catalyst structure formed after synthesis also 

control carbon formation and deposition. This proposes a tendency of obtaining an 

improved catalytic performance simply by the appropriate choice of the catalyst 

supports and control of the nickel-support interaction. The method a catalyst is 

prepared may also affect strongly the types of active species present on the catalyst 

surface which thereupon determine its final performance. The role played by the 

method followed in the preparation of catalysts on their overall performances can be 

classified into two groups namely: (1) method of support synthesis and (2) method of 

active metal doping on support. Both approaches have overtime been systematically 

modified and improved to control metal-metal, metal-support, metal-coke, support-

coke interactions and their interactions with reactant gases in an effort to eliminate or 

reduce the setbacks of nickel-based catalysts application during DRM. 

Several researches have over the years been conducted in an effort to improve 

and maintain dispersion of Ni particles, within support structure, to prevent sintering 

and coking by tuning metal-support, bimetallic, and catalyst-reactants‘ interaction 

pathways and mechanisms. One of the contemporary and efficient ways is the 

confinement of Ni particles in the matrix of mesoporous support materials by one-pot 

metal-support synthesis, forming catalyst with core-shell structure, with active metals 

as core and the support providing the protective shell structure. The mesoporous 

support provides the channels for diffusion of the gaseous reactant molecules and 

shell to suppress sintering and coke formation (Zhang & Li, 2015; Almana et al., 

2016). The adverse effects of coke formation and sintering have previously been 

tackled via film generation by atomic layer deposition, metal nanoclusters 

functionalization on the porous support, alloying with high heat resistant metal, and 

coating of mesoporous support shell structure (Theofanidis et al., 2017; Gould et al., 
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2015). However, these approaches have tendencies towards reducing the catalyst 

activity, attributed to the blockage of active sites and mass transfer limitation.  

In recent times, the discovery of KCC-1 has found significant application in 

the field of drug delivery, chromatographic separation, and energy storage, because 

of its unique fibrous morphology and extended surface area. Since its discovery, 

efforts were initially made to enhance its properties for better applications 

(Febriyanti et al., 2016; Bayal et al.,  2016; Singh et al., 2016; Thankamony et al., 

2015).  Its inherent ability towards minimising diffusion limitation, and resisting 

Ostwald ripening of the loaded metals related to its well-developed dendrimer 

networks, facilitate its applications in the field of heterogeneous catalysis, such as 

Knoevenagel condensation (Bouhrara et al., 2013), production of n-butyl levulinate 

(Mohammadbagheriet al.,  2018), Suzuki coupling (Fihri et al., 2012), and Sabatier 

reaction (Shahul Hamid et al., 2018). The enhanced pore accessibility and mass 

transfer makes it a better candidate, as a support over the conventional SiO2 and 

other mesoporous silica, such as MSN, MCM-41, and SBA-15 (Shahul Hamid et al., 

2017; Sadeghzadeh et al., 2018; Werghi et al., 2018). This study involves the 

synthesis of a robust Ni based catalyst, supported on fibrous silica (KCC-1) for high 

activity and stability at high DRM temperature, using one-pot hydrothermal synthesis 

and the conventional wet impregnation. The fibrous KCC-1 provides enhanced metal 

dispersion, while the one-pot nickel loading ensures the anticipated long-term 

stability. 

1.2 Problem Statement 

The stringent environmental laws and regulations governing the discharge of 

carbon dioxide and methane into the atmosphere is due to their immense potentials 

towards affecting the earth‘s radiative equilibrium through a phenomenon called 

global warming. Therefore, the storage and utilization of these two greenhouse gases 

to produce value-added chemicals via dry reforming of methane is indeed an 

attractive venture with high economy of scale. However, methane and carbon dioxide 

as reactants are highly stable gas molecules and thus, require high temperatures to 
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have a spontaneous reaction. As a result of this high temperature reaction condition, 

there are numerous underlying factors that impede the industrialization and 

commercialization of the process for syngas production. 

Trade-offs between activity and stability of Ni-based catalysts remains the 

major bottleneck for the actualization of syngas production via DRM. Being a highly 

endothermic reaction, equilibrium conversion of reactants is attainable only at high 

temperatures mostly in the regions above 700 
o
C. DRM reaction at these 

temperatures produce high conversion of reactants, but is however vulnerable to 

unwanted and competitive side reactions such as methane cracking, CO 

disproportionation and RWGS reactions. These side reactions affect the selectivity of 

the desired products and more so the life span of catalysts used. The catalyst life span 

is severely affected at high temperature due to deactivation by carbon deposition and 

active metal sintering. Concerted efforts have overtime been made towards 

improving catalyst stability, many of which have been found to be detrimental to the 

catalyst activity and similar trends were also obtained vice versa. Low catalyst 

activity affects plant productivity while short catalyst lifespan increases operating 

costs from regeneration or replacement of spent catalysts. It is therefore imperative to 

develop robust catalysts with the required activity and stability suitable of industrial 

application of the process.     

Catalysts of noble metals such as platinum (Pt), palladium (Pd), rhodium (Rh) 

and ruthenium (Ru) have been suggested and tested as candidates for DRM because 

of their high activity and strong resistance to carbon deposition. From the industrial 

point of view considering the high cost and limited availability of noble metals, their 

application is not profitable and sustainable. They are likely vulnerable to sintering 

as well at high temperature. As an alternative to exorbitant noble metal catalysts, 

nickel-based catalysts have been the most widely tested. Nickel as a transition metal 

with relatively cheap price and readily available has an activity competitive with 

those of noble metals. The setback to Ni and Ni-based catalysts is their characteristic 

rapid deactivation due to carbon deposition and sintering. It is worthy of note that the 

effect of the type, formation mechanism, and evolution of carbon deposits on 

deactivation is still much debated and not fully understood. Therefore, a thorough 
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understanding the carbon types and coking mechanism is also crucial towards 

tailoring the appropriate resistance required. 

Despite the tremendous research successes recorded overtime in catalysts 

development with excellent activity and stability results, the search for novel and 

economically viable Ni catalysts with improved properties and performances is still 

much desired for successful implementation of the industrial and commercial aspect 

of the process. Research focus are still very much important on catalyst development 

and tuning of relevant properties and interactions suited for the desired catalyst 

activity and long-term stability. 

Silica has been extensively used as a support material for DRM catalyst 

development due to its low toxicity, ease of preparation and handling, neutral acidity, 

low cost, universal availability, strong thermal, swell and shrink resistance. Its 

porosity has over the years been enhanced in the quest for better active metal 

dispersion via highly mesoporous silica materials such as SBA-15, MCM-41 and 

MCM-48. However, the two-dimensional (2-D) structure of these mesoporous silica 

with empty and closely packed cages has a problem of mass transfer limitations as 

reported in the work of Singh & Polshettiwar (2019). They allow only one-

directional flow across their channels which hamper accessibility of gases to some 

pores and active sites and thus limit their catalytic performances. 

This research is therefore geared primarily towards the design of a robust Ni-

based catalyst with activity, stability and selectivity suitable for the industrialization 

of the DRM process. It is imperative to obtain an activity competitive to those of 

noble metals, long-term stability by strongly resisting active metal agglomeration and 

coking, and also providing the required selectivity for the desired products proximal 

to the stoichiometric H2:CO ratio. Carbon depositions is the major cause of 

deactivation but more insight on their types, properties, evolution on catalyst lifespan 

is critical during catalyst design. Addressing the challenge of low activity and short 

lifespan of cheap and widely available Ni catalyst is the roadmap towards the DRM 

commercialization in the nearest future.  
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1.3 Research Hypothesis 

The spontaneity and selectivity of dry reforming of methane in comparison to 

other side reactions to produce the desired product ratio is a function of the Gibbs 

free energy minimisation, equilibrium temperature and reaction temperature. The 

extended dendrimer surface area and porosity provided by the unique fibrous 

morphological makeup of KCC-1 support is expected to improve the dispersion and 

accessibility of Ni active sites required for a stellar performance. The enhanced mass 

transfer is expected to increase the turnover of reactants for faster reaction kinetics. 

The particle size of Ni crystallites is expected to be smaller due to better dispersion 

and further apart from one another to minimise the possibility of sintering. Synthesis 

by one-pot method is presumed to produce a coke and sinter resistance catalyst with 

core-shell morphology, where Ni particles are dispersed and encapsulated in the 

fibrous KCC-1 matrix. This gives the catalyst a strong resistance against thermal 

sintering. The KCC-1 support is also the shell shielding the metals surfaces from 

exposure to carbon deposition. Addition of lanthanum promoter is expected to 

improve the catalyst basicity for higher CO2 conversion and subsequently an 

improved CO formation. La2O3 addition is expected to also enhance the dispersion, 

reducibility and interaction of Ni with the KCC-1 support, all for an improved 

activity, stability and selectivity of the synthesized catalyst. 

1.4 Research Objectives 

The aim of this research work is to synthesize a robust bimetallic nickel-

based catalyst supported on fibrous silica with high activity and stability for optimal 

application in dry reforming of methane. This is achieved through the following 

objectives: 

1. To synthesize and characterize conventional SiO2 and fibrous KCC-1 

supported nickel catalysts with metal loading carried out by wet 

impregnation and one-pot method. 
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2. To investigate the effects of lanthanum oxide promoter addition on the 

activity, stability and selectivity of the bimetallic nickel catalyst for dry 

reforming of methane. 

3. To optimize the dry reforming of methane reaction parameters over 

synthesized bimetallic nickel-based catalyst via Response Surface 

Methodology. 

4. To carryout thermodynamic sensitivity analysis and equilibrium 

computations of dry reforming of methane alongside the occurrence of 

other competing side reactions with the aid of HSC Chemistry software. 

1.5 Research Scope 

This study is focused on addressing some major setbacks affecting the 

prospect of nickel-based catalyst for industrial syngas production via dry reforming. 

In this viewpoint, the effects of silica support morphology, effects of catalyst 

preparation method, effects of promoter, thermodynamics and optimization of dry 

reforming of methane have been deliberated upon. The specific details on the 

adopted scope of this research study are presented as follows: 

1. In order to determine the effects of support morphology and preparation 

techniques, 5 wt% of Ni supported on conventional silica (Ni/SiO2) and 

fibrous KCC-1 (Ni/KCC-1(IM)) were prepared by wet impregnation. 5 

wt% of Ni supported of fibrous KCC-1 was also prepared by in situ one-

pot synthesis (Ni/KCC-1(1P)). The KCC-1 support was synthesized by 

hydrothermal microemulsion technique using steps prescribed in the work 

of Febriyanti et al. (2016). The dendrimer structure was developed via 

mixture of organic phase comprising of toluene, butanol and tetraethyl 

orthosilicate (TEOS) with the aqueous phase containing 

cetyltriammonium bromide (CTAB), urea and deionized water.  The as-

synthesized catalysts were characterized by XRD, N2-adsorption, ICP-

OES, FESEM-mapping, FTIR-pyrrole, FTIR-KBr and XPS. Spent 

catalyst were characterized for carbon deposition or sintering using TEM, 
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Raman spectra, XRD, TGA and DTA. Performance evaluation of 

catalysts for dry reforming was conducted at atmospheric pressure and a 

temperature range of 550 – 850 
o
C at a GHSV of 30,000 mLg

-1
h

-1
, CO2: 

CH4: N2 ratio of 20:20:60, stability test for 72 h time on stream and 

reaction kinetics using Arrhenius equation. 

2. Studying the effects of promoter, which is lanthanum on dry reforming of 

methane, three catalysts namely: Ni@KCC-1, La@KCC-1 and Ni-

La@KCC-1 are prepared by one-pot method. 5 wt% of metal is loaded 

for monometallic catalysts while 5 wt% Ni and 1 wt% La were loaded for 

the bimetallic catalyst. Physicochemical properties of catalysts were 

characterized by XRD, N2-adsorption, FESEM-EDX, FTIR-pyrrole, TPR, 

TEM and XPS. Catalyst testing was also performed at atmospheric 

pressure, temperature range of 550 – 850 
o
C, GHSV of 30,000 mLg

-1
h

-1
, 

CH4: CO2: N2 ratio of 20:20:60, stability test period of 30 h and reaction 

kinetics using Arrhenius equation. 

3. Optimization was conducted on DRM reaction parameters with the aid of 

central composite design (CCD) interface of RSM available on StatSoft 

STASTISTICA software 6.0. the independent variables selected for this 

optimization are reaction temperature (700 – 800 
o
C), GHSV (10,000 – 

50,000 mLg
-1

h
-1

) and CO2:CH4 ratio (1 – 4) using Ni-La@KCC-1 as the 

catalyst. These variables and their ranges were selected based on 

preliminary studies conducted and information obtained from literature. 

CH4 conversion being the rate determining step of DRM was selected as 

the response variable to evaluate the optimal performance of the catalyst. 

4. Thermodynamic study of the DRM reaction was conducted using the 

HSC chemistry 6.0 software. Spontaneity of DRM reaction and other side 

reactions were evaluated as a function of reaction temperature using the 

Reaction Equations module on the software. Temperature range 

considered is 100 – 1000 
o
C and a pressure of 1 atm for all analysis. 

Equilibrium amount of each reactant and products in the reactor were also 

determined with respect to reaction temperature using the Equilibrium 

Compositions module. Effects of selected side reactions on the 

equilibrium composition and amount were also conducted in this module 

at reaction temperature of 100 – 1000 
o
C and pressure of 1 atm.  
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1.6 Research Significance 

In this study where the reaction is highly endothermic and spontaneous only 

at high temperature, making catalyst susceptible to swift deactivation and poor 

product selectivity. A robust catalyst was thus developed using a silica support with 

distinctive morphology and applied for the first time in the area of dry reforming of 

methane. The unique fibrous surface structure having bulk of its surface area 

attributed to its fibres unlike other mesoporous silica support materials such as SBA-

15, MCM-41 and MCM-48 whose high surface areas are due to their pores. With the 

fibrous dendrimer network of KCC-1, accessibility of active sites is significantly 

increased compare to other forms of silica because some of their pores are not 

accessible. KCC-1 has also been tested to exhibit an excellent mechanical, thermal 

and hydrothermal resistance. Ni supported on KCC-1 will be highly dispersed and 

accessible leading to higher turnover of reactants and thus, a faster reaction kinetics. 

Synthesis of KCC-1 supported Ni catalyst by one-pot technique will ensure stability 

of the highly dispersed Ni crystallites by encapsulation on the KCC-1 dendrimer 

matrix. Ni surfaces will also be protected by the KCC-1 shell against carbon 

deposits. To complete the facets of DRM catalyst performance enhancement under 

study, a promoter was introduced to the catalyst to improve its selectivity of syngas 

production to the appropriate H2:CO ratio of 1. 

1.7 Thesis Outline 

The research is targeted at the development of a robust bimetallic Ni-based 

catalyst supported on fibrous silica KCC-1 by one-pot method, for an efficient and 

sustained syngas production via dry reforming of methane. The KCC-1 morphology 

was to improve dispersion Ni and reduce its crystallite size for increased activity. 

The synthesis method was selected to immobilize the dispersed Ni particles 

inhibiting the tendency of sintering, and also provides a protective shield to Ni sites 

against metal deposition. Introduction of La promoter was done primarily to reduce 

H2:CO  ratio via CO2 chemisorption and conversion enhancements. The kinetics, 

thermodynamics and optimization of DRM reaction were conducted to ensure an 
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optimal utilization condition for the synthesized catalyst. This thesis therefore 

consists of five chapters. 

Research background of the study area, problem statement, hypothesis, 

objectives, scope and significance of this research were elaborately discussed in 

Chapter 1. Chapter 2 presents literature review on contemporary research outputs in 

areas of CO2 emission and utilization, methane as source of energy, methane 

conversion strategies, catalysts development, challenges of deactivation, effects of 

synthesis route on catalyst performance and the prospects of development of a robust 

catalyst. Chapter 3 entails the overall description of materials, methodology, 

characterizations and experimental procedures applied during the course of the 

research. Chapter 4 covers the entire results, discussions and their analysis 

conducted. This include results on characterization, activity, stability and selectivity 

of synthesized catalysts. Finally, Chapter 5 provides the conclusions drawn from this 

study and some recommendations proposed for future work. 
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