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ABSTRACT 

An accurate and reliable assessment of ground condition is one of the critical 

aspects in surface excavation work. This issue become more complex when dealing 

with heterogeneous ground material with various weathering stages. Seismic velocity 

and electrical resistivity method are among the common tools used to assist the 

understanding of the subsurface condition. This study aims to investigate the 

application of the seismic refraction and resistivity method together with the 

geotechnical assessment for the purpose of surface excavation work. The study was 

carried out at Iskandar Puteri, Johor namely Legoland (LEGO), SILC Site 1 (SILC 1), 

SILC Site 2 (SILC 2) and SILC Site 3 (SILC 3). The sites are underlain by a thick 

residual soil and interbedding of sandstone and shale from various weathering states. 

The geophysical surveys that were carried out on the same outcrops were then 

compared. The classification of rock mass was carried out by adopting Rock Mass 

Rating (RMR) and Q-system. The field results indicate RMR range from 0 to 69 and 

Q-value of 0 to 16.883 specifies weak to fair rock. Joint spacing was attained with 

value of 0 – 1.95 m. The laboratory tests were carried out on 144 – 156 samples for 

dry density, moisture content, point load test and slake durability. Point Load Strength 

(Is50) for the samples ranges from 0 – 6.889 MPa indicates very weak to strong rock. 

Laboratory evaluation indicates the rock quality deteriorates with increase of 

weathering. Trial excavation was carried out on 19 panels using Komatsu PC300 - 6. 

Four boreholes that were drilled then correlated with five resistivity and four seismic 

velocity profiles. Resistivity value for residual soil indicates value of less than 1000 

Ωm. Meanwhile for slightly weathered sandstone and shale 1500 Ωm – 12000 Ωm, 

moderately weathered zone ranges from 370 Ωm – 5000 Ωm, highly weathered of 100 

Ωm – 3000 Ωm and completely weathered with 30 Ωm – 2000Ωm. Boulder was 

detected with resistivity value of 5000 Ωm – 12000 Ωm. Besides that, seismic velocity 

for residual soil shows value of less than 750 m/s, slightly weathered zone of 1500 m/s 

– 3000 m/s, highly weathered zone of 100 m/s – 2000 m/s and completely weathered 

zone with velocity of 500 m/s – 1500 m/s. Boulder was not able to be detected. 

Resistivity survey provide more reliable results in sensing lithology and saturated 

zone. Field assessment quantified that when RMR less than 40 and Q less than 1 is 

dominated by completely weathered shale is categorized as easy excavation (> 400 

m3/h). On the other hand, moderate excavatability (100 m3/h – 400 m3/h) yielded when 

40 < RMR < 60 and 1 < Q < 10 which consists of highly/moderately weathered 

sandstone/shale and completely weathered sandstone while hard excavation (< 100 

m3/h) was observed when 60 < RMR < 70 and 10 < Q < 20 which includes slightly 

weathered sandstone/shale. The result showed that both Q and RMR exhibit a trend of 

higher value of rating and commensurate with seismic and resistivity value. The 

findings of this study contributed the development in excavatability assessment by 

proposing the resistivity and seismic velocity index for interbedded sedimentary rock 

mass. The proposed scheme of resistivity and velocity index based on tropically 

weathered sedimentary rock mass with respect to excavation performance is 

significant advanced compared to existing assessment.   
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ABSTRAK 

 Penilaian efektif berkaitan profil sub-permukaan bumi merupakan aspek 

kritikal dalam penilaian kerja pengorekan. Isu ini menjadi semakin kompleks dalam 

zon yang rencam tahap luluhawanya. Kaedah seismik dan keberintangan elektrik 

merupakan prosedur yang sering digunakan untuk memahami profil sub-permukaan. 

Kajian ini bertujuan menilai keupayaan kaedah geofizik sebagai salah satu cara 

penilaian sub-permukaan sebelum kerja pengorekan sebenar dilakukan. Kajian ini 

dijalankan di Iskandar Puteri, Johor, melibatkan empat tempat kajian iaitu Legoland 

(LEGO), SILC Site 1 (SILC1), SILC Site 2 (SILC 2) dan SILC Site 3 (SILC 3). 

Kawasan kajian diliputi oleh tanah baki dan batu pasir yang berselang-lapis dengan 

syal daripada tahap luluhawa yang berbeza. Survei geofizik dijalankan pada singkapan 

yang sama dimana pengkelasan batuan dijalankan. Klasifikasi jasad batuan dikelaskan 

dengan ‘Rock Mass Rating (RMR)’ dan ‘Q-system’ mendapati nilai RMR berjulat 0 – 

69 manakala Q ialah 0 hingga 16.883 menunjukkan batuan jenis lemah hingga kuat. 

Nilai jarak antara ketakselanjaran berjulat antara 0 – 1.95 m. Ujian makmal melibatkan 

144 – 156 jumlah sampel untuk setiap ujian ketumpatan kering, kandungan 

kelembapan, kekuatan beban titik dan pemeroian batuan. Indeks titik beban (Is50) 

berjulat antara 0 ke 6.889 MPa menunjukkan tahap kekuatan berbeza. Penilaian di 

makmal menunjukkan kualiti batuan menurun apabila tahap luluhawa meningkat. 

Ujian pengorekan langsung menggunakan Komatsu PC300 - 6 dijalankan pada 19 

panel. Lima profil keberintangan dan empat profil halaju seismik dikorelasikan dengan 

empat lubang bor. Nilai keberintangan tanah baki adalah kurang daripada 1000 Ωm. 

Manakala batu pasir dan syal terluluhawa sedikit menunjukkan julat 1500 Ωm – 12000 

Ωm, batuan yang terluluhawa sederhana berjulat 370 Ωm – 5000 Ωm, terluluhawa 

tinggi adalah 100 Ωm – 3000 Ωm dan batuan yang terluluhawa lengkap menunjukkan 

nilai 30 Ωm – 2000 Ωm. Batu tongkol pula dapat dikesan dengan nilai 5000 Ωm – 

12000 Ωm. Sementara itu, nilai halaju seismik bagi tanah baki adalah kurang daripada 

750 m/s, batuan terluluhawa sedikit 1500 m/s – 3000 m/s, terluluhawa sederhana 500 

m/s – 3000m/s, terluluhawa tinggi 100 m/s – 2000 m/s dan zon terluluhawa lengkap 

500 m/s – 1500m/s. Batu tongkol tidak dapat dikesan melalui kaedah seismik ini. 

Survei keberintangan memperlihatkan hasil yang lebih baik dalam mengenalpasti 

litologi dan zon lembap. Penilaian di lapangan membuktikan bahawa RMR yang 

kurang daripada 40 dan Q kurang daripada 1 didominasi oleh tanah baki dan syal 

terluluhawa lengkap, dikategorikan sebagai pengorekan mudah (> 400 m3/jam). 

Pengorekan sederhana (100 m3/jam – 400 m3/jam) apabila 40 < RMR < 60 dan 1 < Q 

< 10 melibatkan batu pasir/syal yang terluluhawa tinggi/sederhana. Pengorekan sukar 

dicerap apabila 60 < RMR < 70 dan 10 < Q < 20 melibatkan batu pasir/syal yang 

terluluhawa sedikit. Hasil kajian ini menyumbang terhadap kemajuan penilaian 

kebolehkorekan dengan menambah nilai keberintangan dan halaju seismik pada 

batuan sedimen yang berselang-lapis. Skema nilai keberintangan dan halaju seismik 

yang dicadang berdasarkan tahap luluhawa batuan sedimen berluluhawa tropika 

dengan menilai prestasi pengorekan adalah signifikan berbanding dengan penilaian 

sedia ada.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Detailed and reliable assessment of ground condition is one critical aspect in 

excavation work in order to do a proper ground evaluation. This issue become more 

fascinating when dealing with heterogeneous zone and intricate weathering stages 

(Bolton et al., 2010; Hakan and Palmstrom, 2011; Edy Tonnizam et al., 2017). The 

application of geophysical method widely applied in excavation work by seismic 

technique lead to the use of others method such as electrical resistivity to ease the site 

investigation (Soupios et al., 2007; Abidin et al., 2011). The complexity of subsurface 

conditions and various underlying materials with disreputable mechanical properties 

often unfavorable for the constructions. This can give rises to difficulties particularly 

in impending progress or increasing the hazardous nature of the excavation works. 

Sufficient information of the subsurface features can assist the construction process 

efficiently. 

Disagreements in excavation method are common problems in construction 

especially the existence of hard material. This hard material primes to complications 

because its properties often too weak to be blast and too strong to be excavated by 

conventional method (Mohd For, 1995; Kavvadas, 1998; Kanji, 2014). This problem 

is particularly acute in tropical region given that thick profile of weathered zone is 

encountered. In relation to this, there is essential for the development of technology 

related to the excavation works that is needed for site investigation by adding 

geophysical methods as a tool. However, the most significant factor in evaluating the 

excavation assessment are the weathering profile, rock nature and its properties. The 

complexity of subsurface conditions, existences of boulders, cavities, faults, 

discontinuities such as bedding, joint, foliation and the inhomogeneity of rocks 

prominently influence the excavation performances. Geomechanical properties of both 
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intact rock and rock mass is theoretical thought to be great aspect for excavatability of 

rock includes weathering grade, strength and discontinuities. Field and laboratory test 

for instance rock strength, rebound test, durability test and wave velocity are often 

applied to determine its mechanical properties in order to evaluate its excavatability. 

In the meantime, borehole drilling is the most conservative implemented 

method to acquire subsurface profile and its engineering properties. To establish the 

requisite number of boreholes, apply at site is difficult and it is bond directly to relative 

costs of the project. The result obtain from drilling methods does not offer continuous 

and detailed information of the entire studied area. The samples were taken from a 

range of depths depends on the subsurface for an amount of distinct points. Drilling 

only provides representative samples of the site. In tropical region country as Malaysia, 

inappropriate site investigation and lack of precise ground information lead to non-

efficient construction in excavation works, failure and damage of building structure, 

road and cut slope. 

Besides that, effective excavation require precise interpretation of different 

characteristic for thick weathering profiles typically contains of a numeral of sub 

classifications or weathering state produced by the weathering of surface rocks in 

tropical climates. Therefore, by implementing a method that can deliver information 

of the entire area of the unpredicted ground condition, the site investigation problems 

can be reduced. Hence, geophysical methods are appointed as a non-destructive 

technique for the site investigation engage with geotechnical work due the limitations 

in providing continuous and precise information by borehole method. 

Along with that, ground information could be obtained through geotechnical 

and geophysical methods. Several studies on the application of geophysical methods 

in engineering and environment purpose are executed all over the world with different 

geological setting and target definition. The application of geophysics in civil 

engineering implement the principles and methods of physics in the measurement of 

subsurface characteristics and properties. The methods are used to determine ground 

properties and profile for the engineering and development purposes. Note that the 

important aspect in all geophysical methods is that they are non-invasive and non-
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destructive. Geophysical approaches play a significant role in the possession of such 

knowledge; it provides helpful and cost effectives information about subsurface 

features at the required level of spatial resolution and target definition. Geophysical 

methods comprise resistivity, seismic, ground penetrating radar, gravity and magnetic 

to measure ground. The methods that have progressive growth are electrical resistivity 

imaging or geo-resistivity and seismic refractions method. The techniques can produce 

continuous image of subsurface profile with a measurement that provides an 

improvement in accurate and sufficient information for heterogeneous ground. 

The combinations of geotechnical and geophysical discipline can be beneficial 

in classifying the depth of rock layer, detecting voids, cavities and boulders in 

subsurface works. Since the early application of seismic refraction method to 

determine depth to bedrock at 1930s, geophysical methods have been discovered as 

one of the dependable practices for geotechnical evaluation (McDowell et al., 2002; 

Anderson et al., 2008; Mahvelati et al., 2018). The greatest verdict when applying the 

method in early stage of site investigation work is that able to discard other site 

investigation technique and shortlist those with potential values for improving the 

overall effectiveness of site investigation in term of cost and time consuming. This 

study focuses on the use of resistivity survey and seismic refraction methods in the 

study area and the result are then correlate with the geotechnical result and potential 

relation between the parameters are studies to get better interpretation in term of 

geophysics and engineering.  

1.2 Problem Statement 

The problems of geological variation, structural complexity, heterogeneous 

zones and unpredictable weathering states are some examples in the tropics ground 

condition that lead to difficulties in site clearing earth excavation work. Assessment of 

rock mass properties are significant, primarily in the pre-construction stage and are a 

consequence of the geological understanding based on field investigations and the 

experienced interpretation of accessible results. Regardless of the intricacy and 

difficulty in determining the engineering properties of rocks, in order to diminish rock 
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engineering dispute and assign reliable values to them. The state of weathering from 

the parent rock to the ground surface reflects rock mass weathering profile. It is 

significantly altered the geotechnical behaviours of rocks. The degree of weathering 

illustrates the disintegration of the parent rock with depth.  

Researchers have made continuous efforts in developing the method for 

characterisation or description of this weathered profile. The variations of weathering 

profile from different location, due to rock type and structure, topography and rate of 

erosion because of regional climate variation, particularly rainfall, are amongst the 

struggles in attaining broad perception from which to view the weathered profile. 

Guidance in different engineering purposes of existing rock mass classification 

essentially convey the development in enhancing the properties considered for 

excavation assessment. Most classification emphasis on the application in tunneling 

work. Concerning about weathered rock, the problems of structural complexity of the 

parent rock, unpredictable variable due to wide range of properties, heterogeneity, 

anisotropy and major changes in degree of weathering lead to difficulties in the method 

of excavation in engineering design.  

Characterization of rock masses has to some extent been developed by some 

of the existing classification systems but few of them are of a general character as they 

are mainly directed towards a specific engineering function or design. In geotechnical 

engineering applications, the geophysical methods could be beneficial because there 

are many chambers for improvement and development to cater the engineering 

purposes. There is a need for better documentation and correlation of geological and 

geophysical for each grade of weathering profile for surface excavation purposes in 

order to adopt accurate and economical method in the construction. 

1.3 Aim and Objectives 

This study aims to investigate the geophysical characteristic of subsurface 

profile that affecting the performance of surface excavation. In order to obtain reliable 
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and accurate information on subsurface materials for excavation purposes, this study 

embark on the following objectives: 

i. To characterize the rock mass and geophysical index using resistivity value and 

seismic refraction velocity based on state of weathering. 

ii. To evaluate and correlate the resistivity and seismic refraction value for 

sandstone and shale with respect to surface excavation.  

iii. To propose a surface excavation classification based on resistivity value and 

seismic refraction velocity for tropically weathered sandstone and shale. 

 

 

1.4 Research Scope 

The study basically focuses on evaluating resistivity imaging and seismic data 

as a geophysical tool to map the subsurface profile in non-bedded and bedded rock 

mass area at few construction sites mainly in Johor Bahru. Special attention is provided 

in determining resistivity value and seismic velocity of various weathering grade of 

rock mass and evaluating them with their physical and mechanical properties related 

to excavation. The study comprises of geophysics field measurement and rock mass 

observation as well as laboratory testing in a way to investigate any possible 

correlation between the resistivity value and seismic velocity with the excavation 

performance in bedded sedimentary rock mass. Resistivity apply pole-dipole array for 

the assessment of geophysical survey, while seismic velocity adopted in this study is 

the primary wave (P). Two outcrops dominated by bedded sedimentary rock mass were 

studied. The geophysical results were validated with existing borehole data. The 

findings were then synthesized based on identified significant field observation, 

physical and engineering properties of materials with resistivity value and seismic 

velocity for the purpose of surface excavation works. Lastly, an inclusive resistivity 

value and seismic velocity with engineering properties as one of the indirect 

assessment tools in excavation assessment for tropically weathered rock mass was 

proposed.  
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1.5 Novelty and Significant of Study 

The economic grow is taking important part in a developed country as in 

Malaysia. This study contributes to a cost efficient and improved performance of 

excavation for construction purposes in a variety of materials, particularly in bedded 

sedimentary rock mass. Resistivity value and seismic velocity for ground material is 

very advantageous as it increases the interpretation accuracy of investigation site. 

Besides that, heterogeneity issues on rock mass always a dispute during the 

construction process, lead to the delay and cost expansion.  

A more comprehensive classification should available to ease the assessment 

of excavation process in order to enhance the economy by the development and 

effective implementation of geotechnical characterization. Tropical region is 

characterised by complex subsurface issues such as heterogeneities of ground, thick 

weathering profile, decrease of strength due to moisture and unclear interface 

boundary between soil and rock. Subsurface investigation may involve large area and 

deeper regions of the ground. By comprehending geophysical method in excavation 

assessment, the cost entail for total investigation work can be effectively sufficient 

besides saving time consumption on the processes.  

Geophysical method covered survey of large areas hence the number of 

boreholes drilling to investigate the subsurface condition can be diminished. A critical 

point or location of the borehole drilling will do to impact the geophysical data by 

relating its properties to the pseudo section inspected.  Marrying the geophysical and 

geotechnical way of assessing ground could provide a simplified new option for 

surface excavation. By understanding of the ground characteristic cater by seismic and 

geophysical method, site investigation either for excavation purpose or preliminary 

design stage could be enhance. Various geophysical method can be applied based on 

the priority in different ground conditions such as rock type and strength.  

By grasping resistivity and seismic velocity of tropically weathered sandstone 

and shale for excavation purposes, the correlation between both rock mass and 

geophysical resistivity and seismic velocity with excavation performance are 
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established. The most common available excavatability chart by Caterpillar (2007) 

was modified with new range of seismic velocity for tropically weathered sandstone 

and shale, besides disseminate the excavation performances into three classes which 

are easy (> 400 m3/h), moderate (100 m3/h to 400 m3/h) and hard (< 100 m3/h). The 

resistivity chart for excavation was proposed in addition to the new seismic velocity 

chart, with reverence to excavation performances for both sandstone and shale. The 

findings of this study contributed the development in excavatability assessment by 

proposing the resistivity and seismic velocity value for tropically interbedded 

sedimentary rock mass. The proposed scheme of resistivity and velocity index based 

on tropically weathered sedimentary rock mass with respect to excavation performance 

is extensively advanced compared to existing assessment.  
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