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Abstract. The transient dynamic behaviour of floating energy storage unit (FESU) is a result 

of coupling between three non-linear effects, which are sloshing of floodwater, wave loading, 

and FESU dynamics. The coupling of these effects would result in the catastrophic failure of 

the FESU in extreme conditions. Computational Fluid Dynamics (CFD) has shown that it holds 

great potential in solving the problem in the time domain, which is suitable for the transient 

stage. In this study, CFD simulation of damaged stability was conducted by using OpenFOAM 

to determine the dynamic response of FESU under the effects of floodwater and wave in 

transient flooding. OpenFOAM CFD simulation was conducted for the flooding of barge 

shaped FESU with different water inlet and air outlet sizes in still water condition followed by 

damaged stability in Stokes’ fifth-order beam wave and head wave condition. Dynamic 

responses of FESU, such as roll, pitch, heave, and floodwater volume flow rates were 

determined using the dynamic meshing solver of OpenFOAM. Simulation results showed 

similarity to experimental results within the time frame of 16 seconds. Reduction in water inlet 

area and air outlet area decreased the flooding time and flow rate of flood water. The amplitude 

of vibration of roll and pitch motion increased as the flood water volume was increased due to 

the force of floodwater exerted on the wall. Sloshing effects also caused the model to roll and 

pitch in secondary vibrational motion. Due to the coupling effect of the three non-linear 

criteria, the inflow and outflow of floodwater changed with time, which concludes that 

transient effects should not be ignored in the damaged stability assessment of FESU.  

1.  Introduction 

Floating energy storage unit (FESU) is one of the most attractive sustainable energy storage methods, 

especially for preserving ocean renewable energy and liquefied natural gas. Since most of the FESUs 

are designed in ship-shaped or barge type, the damaged stability of FESU is of concern in case of 

accidental collisions. The survivability of a damaged ship shaped FESU can be influenced by the 

dynamic behavior of the ship under floodwater and waves [1]. During the flooding process, the vessel, 
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floodwater, and sea waves affect each other interactively [2]. These effects will greatly increase the 

complexity of damaged stability assessment due to their non-linear behaviors. Computational fluid 

dynamics (CFD) simulation has been shown to possess the advantage to compliment experiments with 

regard to analysis on the dynamic behaviors of damage stability of FESU. At the transient stage, 

immediately after the formation of a damage opening during collision, floodwater rushes in, resulting 

in a sudden large angle of heel. There is a huge possibility that the FESU will capsize due to the 

sudden load, even with symmetrically flooded compartments. Previous study utilizes different 

mathematical models and analyze different parameters of the damage stability of the transient stage. 

This numerical simulation has been conducted to investigate the dynamic behaviors of the damage 

stability of FESU in the transient stage using CFD. The simulation includes flooding time, flow rate of 

flood water, and dynamic response of FESU in still and wave transient flooding. 

2.  Modelling of damaged stability  

2.1 Assessment of damage stability 

FESU faces the risk of flooding due to uncertainties such as the state of the sea during the accident, 

floodwater behavior and initial heeling angle after collision[5], which rises the complexity of FESU 

survivability assessment by hydrodynamic model. The damage stability of FESU relies on the 

dynamics of the wave and floodwater, covering three sub-problems, which are excitation of waves, 

floodwater behavior and the ingress of floodwater [6]. Prediction of the dynamic behavior of damaged 

FESU due to waves would be more accurate if the sub-problems mentioned are successfully modelled. 

Thereby, the solution of fluid flow using Navier-Stokes equation [7], as shown in Equation (1), which 

shows accurate fluid flow in the time domain, is important to be studied numerically.  

 2u P
u u v u

t 

 
     


 (1) 

u is the velocity vector, P is the pressure, while v is the kinematic viscosity and ρ is the density. ∇ 

indicates the gradient differential operator and ∇2 is the Laplacian operator. 

2.2 Simulation of transient stage of flooding 

Vassalos et al. [8] determined roll motion and righting lever (GZ) curves at various stages of transient 

flooding with inaccuracy of accounting the rate of energy dissipation in roll motion modelling 

subjected to damage and the modelling of water flow using simplified Bernoulli equation. 

Manderbacka [9] considered planar free moving water surface for the floodwater and included the 

inflow momentum due to its impact in dynamic behavior of ship in transient flooding. The 

hydrodynamic performance assessment of a damaged vessel, which adopted CFD method based on 

volume of fluid (VOF), could predict the fully coupled roll motion with sloshing effect under wave 

load [1]. To simulate CFD using finite volume method, partial differential equations based on 

simplified mathematical model to describe flow behavior are numerically solved using discretization 

methods.  

 In simulating wave loads on FESU, turbulence modelling is more critically important compared to 

the laminar flow due to the disturbance in high Reynolds number flow. Turbulent flow applied in this 

study was the k-ω shear stress transport (k-ω SST) model, which is a hybrid solution, taking the 

advantage of k-ω model near the wall, and k-ε in the turbulent region far from the wall.  

3.  Model preparation for hydrodynamics testing of damaged FESU 

3.1 Experimental setup  

Figure 1 shows the design of the barge-type FESU model, and Figure 2 illustrates the experimental 

setup of FESU damaged stability test. The model had dimension of 600mm × 200mm × 100mm, with 

submerged draft of 50mm with wall thickness of 5mm.Four different sizes of water inlets and four 

different sizes of air outlet were drilled on the model. 

In Figure 2, two cameras were used to capture the motions of barge-type FESU and floodwater. 

The camera at the front was Canon EOS 700D model to capture 4K 30 frames per second (fps) video 

outside the calm water tank, while the camera at the side was GoPro Hero Black 5 to capture 4K 30 
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fps video under the water. An accelerometer MPU6050 chip was attached at the top of the model and 

connected to Arduino UNO board to measure the roll and pitch motions of the FESU model with 

sampling rate of 100Hz. Ballast weight was placed in the centre compartment to ensure the centre of 

gravity wasin the center of model, with a draft of 50mm. Three rubber string mooring lines 

configuration were used to limit the surge, sway and yaw motions of the model with minimal effect to 

roll, pitch and heave motions. The dimension of the calm water tank was 90cm×40cm×45cm with 

water depth of 20cm.The unused air outlets were sealed with tape andwater was left to calm before 

each experiment was started.  

 

 

 

 
Figure 1. FESU model and its principal 

dimensions 
 

Figure 2. Experimental setup of damage 

stability in still water condition 

 

3.2 Numerical simulation setup 

The geometry data, initial conditions and and boundary conditions had been set in the OpenFOAM 

case folder, and written in dict file to be recalled by the solver in the next stage. Some important 

settings were added into the simulation case setup to simulate the dynamic motion of flooding of 

FESU, which were dynamic meshing, wave generation and turbulence flow. Different cases were 

coupled into the OpenFOAM v1806+, which included floatingObject (for dynamic meshing), 

waveExampleStokeV (for wave generation) and DTCHull (for turbulence model case). 

Geometry of the model was constructed using FreeCAD, which is an open source package, and 

meshed with the blockMesh and snappyHexMesh in OpenFOAM [10]. The interFoam solver was 

consolidated to merge with interDyMFoam to solve dynamic meshing problem, and separated into two 

stages. The first function stage of the solver was to solve the problem of initial sinking of object into 

water due to setting of zero pressure on the object surface at the initial setting. It allowed the pressure 

surrounding the object to develop and rise automatically without significant sink motion of object at 

the beginning that might radiate wave. The second stage of the solver took over by continuing the 

simulation until the end of simulation. 

 

 

 

 
Figure 3. Flooding of FESU compartment (left: in simulation; right: in experiment) 

4.  Damage stability of FESU model 

4.1 Visual comparison between experiment and simulation  

The results of simulations and experiments had been compared in frame-to-frame. As shown in Figure 

3, one typical case for progressive flooding of FESU was observed in both simulation and experiment. 

The simulation successfully simulated the air bubble formation on the top surface of the FESU 

damaged compartment. The flow rate and FESU roll angle matched well. It is noteworthy that the time 
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of each case study was limited to 16 seconds because longer simulations had been found to diverge the 

accuracy of simulation results due to the highly skewed meshing during the yawing motion of the 

FESU model. 

 

4.2 Time of flooding until new equilibrium state 

The time of flood is an important parameter to determine survivability during a flooding incident. The 

compartment was assumed to be completely flooded when the water inflow rate reached below 5×106 

m3s-1, whereas time to flood for the cases longer than 16 seconds were not considered due to the 

limitation of the simulation time length. The plot of time to flood with respect to air outlet area and 

water inlet area is shown in Figure 4. The reduction of water inlet area resulted in reduction in water 

inflow time, while reduction of the air outlet area decreased the rate of air escaping from the 

compartment, hence it increased the time for the compartment to be flooded. The FESU model gained 

its new equilibrium state after 94.4% of the compartment had been flooded. 

 
Figure 4. Surface plot of time to flood with respect to air outlet area and water inlet area  

 

4.3 Flow rate of flood water into FESU 

Figure 5 shows the flow rate for varying inlet diameter D with constant air outlet, A=1cm2. It was 

observed that as area of the air outlet was kept constant at A=1cm2 and the diameter of water inlet 

reduced, the maximum flow rate decreased accordingly, especially for the case of 1cm diameter, 

where the flow rate remained almost constant throughout the simulation period. Figure 6 shows the 

flow rate of varying air outlet area A with constant water inlet diameter D=4cm. A similar trend was 

observed as the flow rate initially rose until a maximum was achieved, then it decreased until the 

compartment was completely flooded. As the area of air outlet decreased, the maximum flow rate 

decreased. For the case of side length ls=0.25cm, the flow rate dropped steeply from initial high value 

of 2.7×104 m3s-1 at 0.15s to a low value of 1.0×104m3s-1 at 2s. This was because the air bubbles were 

escaping from the water inlet hole due to the pressure of trapped air inside the damaged compartment. 

 

 

 

 
Figure 5. Flow rate for varying inlet diameter D 

with constant air outlet, Aa=1 cm2 
 

Figure 6. Flow rate of varying air outlet area A 

with constant water inlet diameter Dw=4cm 

 

4.4 Pitch and roll motions of FESU 

In the transient stage of damage condition, the experiment and simulation results of pitch and roll of 

the FESU model in still water had been compared. A similar trend was observed although simulation 

results deviated. Maximum pitch angle θ=15° and maximum roll angle ϕ=5° were recorded for the 
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motions of FESU under the damage condition. However, the cases took longer duration than the 

simulation and experiment time-length to reach these maximum angles when the air outlet 

(Aa=0.0625cm2) or water inlet (Aw=0.79cm2) was too small. There was a deviation due to unavoidable 

initial fluctuation exerted on the floating FESU model in the experiment when the blockage of water 

inlet was removed and due to the wall effect of the reflective waves. The air bubble flowing out from 

water inlet could cause large variations in the experiment for the roll and pitch motions of FESU. 

 

 

 

 

 

Figure 7. Pitch, roll and heave motion, and flow 

rate of flood water in beam wave condition 

Figure 8. Pitch, roll and heave motion, and flow 

rate of flood water in head wave condition 
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4.5 Damaged stability of FESU in beam wave and head wave 

Figure 7 and Figure 8 shows that the motion of the FESU and the flow rate of flood water under beam 

wave and head wave conditions, respectively, which vibrated along a similar path as in the case of still 

water condition. The roll and pitch motions were affected by the flood water and inner free surface 

sloshing, which induced vibration along the initial path. A lagging time existed between the wave 

elevation and motions of the FESU. As the amplitude of vibration in roll and pitch motions increased 

with time, the amplitude increased. In Figure 8, the volume flow rate for the head wave condition 

fluctuated in a non-repeating pattern, as a large final yaw angle was obtained. The pitching amplitude 

was much higher compared to the rolling amplitude as the induced wave was in the head wave 

direction. The roll motion was slightly affected by the flood water and sloshing effect, where only 

limited effects were observed in the first 10 seconds. 

5.  Conclusion 

The simulation results of the damage stability in calm water followed a similar trend shown by the 

experimental results. The volume flow rate and time of flooding are dependent on the water inlet area 

and air outlet area. Air bubbles are useful to reduce the time of flooding. At higher flood water 

volume, amplitude of roll and pitch motion in the waves are higher. Sloshing of floodwater can also 

cause the ship’s structure to vibrate in a secondary vibrational motion. The coupling effect of wave 

loading, ship dynamic and flood water movement, resulted in changing water pressure near the 

damage hole. Effects of the damage area could be simulated for the FESU model, implying the 

suitability of studying the dynamic behaviours of a damaged FESU in the transient state under varying 

damage scenarios by OpenFOAM simulation. Simulation should also be conducted for different ship 

models to investigate the dynamic behaviours of different floating structures, to assess the 

survivability of various structures under damage scenario. 
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