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Abstract. MSN and SiO2 catalyst were investigated on side chain toluene alkylation with 

methanol reaction. Characterization of the catalyst were carried out by XRD, N2 physisorption 

analysis, FTIR spectroscopy. A pyrrole adsorption FTIR study reveals shifting of perturbed NH 

stretching increasing slightly in MSN compared to SiO2 catalyst revealed that MSN possessed 

higher basic sites than SiO2. N2 adsorption desorption isotherm analysis showed that MSN 

possessed higher surface area than SiO2 as well as increased the amount of mesopores in 

catalyst. The catalytic side chain toluene alkylation with methanol reaction was conducted in 

the range of 523K-673K under atmospheric pressure. MSN exhibits the highest catalytic 

performance compared to SiO2 catalyst. 

1. Introduction 

Production of polymer materials like styrene-butadiene-styrene (SBS) rubber, polystyrene and resin 

has gained much courtesy from community nowadays [1]. Styrene monomer serve as the starting 

material for the production of commercial polymers and commercially derived from the Friedel Craft 

Alkylation of benzene with ethylene. However, multistep of styrene creation in this process and higher 

consumption of energy due to difficulty of obligation of ethylbenzene products ratio. Plus, operation 

of this reaction occurred at higher temperature which more than 550 ºC limits its applications [2]. To 

address these obliges, current researcher moves to alternative side chain toluene alkylation with 

methanol as it provide reliable way to obtain styrene products. Unfortunately, attempts to design robust 

catalyst for this reaction still remained being an obstacle which until now the yield of styrene obtained 

still not reached satisfaction level (< 20%) due to ineffectively catalyst used and rapid deactivation of 

the catalyst [1–3].  

 Side chain toluene alkylation with methanol was extensively known required basic sites and Lewis 

acid sites to accelerate the reaction [4]. Owning the basic sites in the catalyst may proceed the styrene 

product to convert into ethylbenzene consequently from hydrogen carrier gas or originated from 

resulted hydrogen molecule formation from decomposition of formaldehyde. Thus, ethylbenzene 

product formation in this process is inevitable. Additionally, Bronsted acid sites in catalyst will lead to 

the occurrence of side reaction and emerging of xylene and hydrocarbon product [5]. Hence, it is crucial 
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to design a catalyst which possessed the criteria to be good catalyst for toluene side chain alkylation to 

attain higher selectivity of desired products.   

 Based on the literature, many efforts of evolving catalyst have been done to evaluate the catalytic 

performance of side chain alkylation. The effort involving alteration of the Cs-X with variety of 

elements together with metal or non-metal besides changing the preparation method such as ion 

exchange, impregnation ad physical mixing [6]. Up to now, no documentation reported on the use of 

silica catalyst to evaluate side chain alkylation. Herein, the metal free of SiO2 and MSN catalyst were 

applied in order to inspect the catalytic performance from both catalyst towards toluene side chain 

alkylation with methanol. 

2. Experimental 

Mesoporous MSN were prepared referring to the previous work [7]. The cetyltrimethylammmonium 

bromide, CTAB (surfactant), ammonium hydroxide solution, NH4OH and ethylene glycol (EG) were 

mixed in water (700mL). The molar composition of them were 0.0032:0.2:0.2:01 respectively. The 

mixture was mixed for 30 minutes together with heating until clear and homogenous solution observed. 

After that, 1 mmol of 3-aminopropyltriethoxysilane (APTES) and 1.2 mmol tetraethylorthosilicate 

(TEOS) were slowly added under vigorous stirring for 2 hours until whitely solution observed. The 

mixture underwent centrifugation and washed with distilled water. The product underwent drying 

process overnight at 383K followed by calcination process at 823K for 3 hours to eliminate the 

surfactant.  

Catalytic side chain toluene alkylation with methanol was conducted in reactor known as micro 

catalytic pulse within temperature 523–673 K. Initially, air stream was flew on 200 mg of catalyst for 

1 hour at 723K and cooling to desired temperature after catalyst treatment. As soon as temperature was 

stable, toluene and methanol mixture was injected into the reactor at a flow rate 40 mL/min at reactant 

ratio of 1. The gas chromatograph equipped with a FID (7820N Agilent Gas Chromatograph) was used 

to analyze the outlet gas. The conversion of methanol and toluene (Xmethanol and Xtoluene), selectivity of 

styrene, ethylbenzene, and other product as well as yield of styrene and ethylbenzene were calculated 

using equations: 

 

 

                                            𝑋methanol =  
∑ all products

∑ all products + methanol
                                                         (1) 

 

                                               𝑋toluene =  
∑ all products

∑ all products + toluene
                                                             (2) 

 

                                          𝑆styrene =  
∑ styrene

∑ all products
   × 100%                                                                   (3) 

 

                                    𝑆ethylbenzene =  
∑ ethylbenzene

∑ all products
   × 100%                                                            (4) 

 

 

                                    𝑌styrene =  
𝑆styrene

100
  ×   𝑋𝑡𝑜𝑙𝑢𝑒𝑛𝑒                                                                               (5) 

 

                                    𝑌ethylbenzene =  
𝑆ethylbenzene

100
  ×   𝑋toluene                                                            (6) 
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3. Results and discussions 

3.1 Crystallinity and textural properties of catalysts 

Low angle XRD pattern was shown in Figure 1. MSN catalyst exhibited three respective peaks at 2θ = 

2.4, 4.05, and 4.7º indicate the p6mm hexagonal symmetry in the mesostructured silica of the MSN 

[8–10]. While, no diffraction peak below than 2θ=10 was observed in SiO2.  

 

 
 

Figure 1. Low angle XRD diffractogram of MSN and SiO2. 
 

Isotherm with type II was revealed in SiO2 with H3 hysteresis loop corresponded to macroporous 

with irregular system of pores material [11]. Meanwhile, MSN catalyst showed isotherm type IV with 

an hysteresis loop H1 reflected to the attributes of mesoporous materials with exceptionally uniform 

round and hollow pores [8,9]. Capillary condensation with two steps at P/Po = 0.3 was found in MSN 

catalyst due to mesoporous (intra- particles) in MSN and (P/Po = 0.9) which at high partial pressure 

attributed to interparticle textural porosity [9]. Besides, SiO2 catalyst demonstrated a little narrow 

capillary condensation with steady slant at high partial pressure which revealed to the nearness of pores 

with multidimensional tube-shaped channels [7–9]. 

 

 
Figure 2. Isotherm data and pore size distribution of catalyst (A) SiO2 (B) MSN. 
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As per the isotherm results, the (NLDFT) method was applied for pore distribution identification. 

It was proved the existence of mesopore in both catalysts. A narrow peak distribution with 4-5nm in 

MSN attributed to the pores which originated from self-assembly of surfactant during the synthesis 

procedure. The lessened of micropore volume in MSN due to the increment of mesopores volume in 

that catalyst. SiO2 catalyst pore distribution was much lower compared to MSN likely because of 

amorphous structure of SiO2 [7]. MSN catalyst possessing high pore volume as well as surface area 

(851 m2/g) than SiO2 which have 473 m2/g surface area as analyzed in Table 1.  
 

Table 1   Properties of catalysts. 

 

 

3.2 Chemical properties of catalysts 

Highest peak intensity in SiO2 observed in Figure 2A clarified SiO2 catalyst owned high basicity. The 

band at 3800–3400 cm−1 which was indexed to the vibration of the NH band stretching in pyrrole which 

binding with the oxygen structure through hydrogen bonding and connection by via aromatic system 

with the non-framework cations which happened concurrently and impact one another [11,12]. The 

shifting of peak intensity of each catalyst was identified in order to determine the basic sites of each 

catalysts. The intensity peak at 3436 and 3409 cm−1 for SiO2 and 3459 cm-1 for MSN catalyst. 

According to the former study, the strength of the catalysts was observed by the interaction of H atom 

with basic sites in pyrrole [12,13]. MSN catalyst has revealed the deviation of stretching of NH 

vibration, ΔV (NH) = −71 cm−1 and ΔV (NH) = −94 and -121 cm−1 for SiO2. As observed, SiO2 has 

two type of basic sites indicated that presence of two difference nature of basic sites. Thus, it proved 

that SiO2 have strength basic sites rather than MSN.  

 
Figure 3. (A) FTIR pyrrole for both catalyst (B and C) FTIR spectra in evacuated system for SiO2 and 

MSN catalyst. 

 

FTIR results in evacuated system in both MSN and SiO2 catalysts were shown in Figure 3B and 

3C. Commonly, spectra of both catalysts demonstrated the presence of five bands at 3740, 3700, 3660, 

3610, 3545 and broad band at 3480 cm-1. It were corresponded to the terminal silanol group, 

34003500360037003800

Wavenumber (cm-1)

0.3

3700

3660

3610

3545

3480

3740

34003500360037003800

Wavenumber (cm-1)

0.6

3700
3660

3610

3740

3545

3480

3200340036003800

A
b
s
o
rb

a
n
c
e

Wavenumber (cm-1)

MSN

3530

3409

SiO2

3436

3459

A B C

Catalyst Surface 

area 

(m2/g) 

Mesopore volume 

(cm3/g) 

Micropore volume 

(cm3/g) 

Total pore 

volume 

(cm3/g) 
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perturbation of OH through lattice defects, hydroxyl group species, bridging hydroxyl, perturbation of 

H-bond interaction with the mesoporous channels and silanol group respectively [8–11,14,15].  

According to the result observed, it showed that the intensity of every single peak in FTIR spectra in 

evacuated system augmented two times from SiO2 to MSN catalyst.  

3.3 Catalytic testing 

Evaluation catalytic performance of side chain toluene alkylation with methanol was performed at 

temperature range of 523–673 K using micro catalytic pulse reactor. The methanol conversion, toluene 

conversion and the yield of the ethylbenzene with styrene product was portrayed in Figure 4. As the 

results, Figure 4A illustrates that the methanol conversion over silica catalyst which SiO2 and MSN 

catalyst. As temperature increased, it was found that the methanol conversion was kept increasing until 

over MSN catalyst which shows declining of methanol conversion at 673K. It might be due to the 

lower basic sites possessed in the MSN catalyst. It verified that the basic sites was consumed for the 

formaldehyde formation via aldol-type condensation as the temperature increase  [3,4,16]. As depicted 

in the pyrrole probed FTIR spectroscopy (Fig 2A), it revealed that the SiO2 have more basic sites rather 

than MSN catalyst. It could be the cause of fully converted of methanol.  

 

 
 

Figure 4. Catalytic toluene side chain alkylation performance (A) Methanol conversion (B) Toluene 

conversion (C) Styrene and ethylbenzene yield. 
 

Furthermore, Fig 4B demonstrated the toluene conversion over SiO2 and MSN catalyst within 

temperature range 523-673K. It was found that toluene conversion was slightly increased from 523K 

to 673K. It was due adequate amount of basic sites in SiO2 resulted in higher formation of benzyl anion 

and 2-phenylethanol intermediates [6,17]. However, MSN catalyst showed lower conversion of toluene 

at each temperature compared to SiO2 catalyst. It might be due to fewer basic sites in MSN as evidenced 

by FTIR adsorbed pyrrole. Preceding work stated that occurrence of less basic sites suppressed the 

ability of the basic sites to convert toluene into the benzyl anion intermediates [3,5].  
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Table 2 Distribution of products in side chain toluene alkylation at 523-673K. 

 

Fig. 4C illustrated the products of styrene and ethylbenzene which considered to be desired product 

in the reaction process. From the result above, it was discovered that MSN formed more styrene and 

ethylbenzene product. It was due to the controllable of basic sites in selectivity of styrene and 

ethylbenzene product in MSN. It can be proved in Table 2 which showed increase of higher desired 

product selectivity from 0.335 % to 7.72% styrene and ethylbenzene selectivity. From Table 2, SiO2 

produced more hydrocarbon product and decreasing selectivity about 44.3% at 673K in MSN catalyst.  

The presence of additional basic sites would lead to the side reaction resulted in higher production 

of hydrocarbon and benzene product along with quenching the xylene product [5]. Remarkably, no 

production of styrene product observed in SiO2 catalyst compared to MSN catalyst suggesting the basic 

sites possessed in SiO2 has no ability to transfer hydrogen to form ethylbenzene. Higher hydrocarbon 

product by SiO2 might be due to the micropores in the catalyst that will cause diffusion limitations of 

products. Thus, the formation of hydrocarbon product due to favourable of thermal cracking process. 

These outcome shows coinciding with N2 adsorption-desorption result which revealed that desired 

product favour in high mesopore catalyst. 

 

4. Conclusions 

Catalytic performance of toluene side chain alkylation with methanol over silica catalyst (SiO2 and 

MSN) were successfully evaluated at atmospheric pressure. The results revealed that a significant 

enhancement of MSN catalyst towards yield of styrene and ethylbenzene product compared to SiO2. 

Fascinatingly, it can be summarized that basicity plays a noteworthy part in dehydrogenation of 

SiO2 catalyst: 

Temperature (K) 523 573 623 673 

Methanol conversion (%) 63.9 93.8 94.9 100 

Toluene conversion (%) 25.4 41.8 68.5 85.5 

Selectivity of products: 

Hydrocarbon 0.224 28.4 90.7 95.7 

Benzene 95.5 69.6 7.78 3.98 

Ethylbenzene 0.00 0.00 0.00 0.00 

Styrene 4.24 2.08 1.57 0.335 

Yield of products: 

Hydrocarbon 0.057 11.9 62.1 81.8 

Benzene 24.3 29.1 4.92 3.40 

Ethylbenzene 0.00 0.00 0.00 0.00 

Styrene 1.08 0.869 1.08 0.304 

MSN catalyst: 

Temperature (K) 523 573 623 673 

Methanol conversion (%) 34.0 46.5 80.3 75.2 

Toluene conversion (%) 21.7 33.5 32.9 33.3 

Selectivity of products: 

Hydrocarbon 4.83 29.3 35.3 42.4 

Benzene 81.1 66.5 60.5 49.9 

Ethylbenzene 3.91 1.20 1.19 2.85 

Styrene 10.1 3.02 2.98 4.87 

Yield of products: 

Hydrocarbon 1.05 9.82 11.6 14.1 

Benzene 17.6 22.3 19.9 16.6 

Ethylbenzene 0.848 0.402 0.392 0.949 

Styrene 2.19 0.10 0.980 1.62 
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methanol to formaldehyde and hydrogenation of styrene to form ethylbenzene in order to improve the 

catalytic performance. Despite of basicity, presence of mesopores also contribute to the augmentation 

of the selectivity styrene and ethylbenzene product. From the results obtained, it also can be clinched 

the basic sites in the catalyst also will lead to the formation of the hydrocarbon product and fast 

decomposition of formaldehyde into the carbon monoxide and hydrogen.  
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