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ABSTRACT 

Composite construction is well-known to be an economical solution by 

utilizing composite action developed between steel and concrete which has resulted in 

significant savings in steel weight and reduction in overall beam depth. The advantages 

of composite construction have contributed to the dominance of multi-storey buildings 

for medium-rise construction in some countries.  However, the use of composite beam 

with cold-formed steel (CFS) lipped channel section is yet to be established as the 

structural behaviour of such beam is not well understood. Therefore, this study 

presents and discusses the behaviour of composite beam proposed for cold-formed 

steel section attached to profiled metal decking slab with an innovative shear 

connector. The composite beam comprises of a profiled deck slab arranged 

perpendicular to two CFS lipped channel sections acting as beam members infilled 

with self-compacting concrete (SCC), and a U-shaped ribbed rebar as shear connector. 

The study comprised of two components: experimental and theoretical works. The 

experimental work consists of fourteen full-scale specimens of the same dimensions 

(4300 mm x 1500 mm) which were prepared and tested for four-point bending test to 

investigate the structural behaviour and failure modes of the proposed composite beam 

system. The specimens are varied based on beam depth (250/150 mm), reinforcement 

ratio (2.5/1.9), size of shear connector (16/12 mm diameter), beam configuration 

(back-to-back/toe-to-toe) and types of slab (composite/solid) to study the influences 

on the ultimate load capacity of the composite specimens. The results showed that slab 

type, beam configuration, shear connector size and beam depth have significant 

influences on the ultimate load capacity. Changing from solid slab to composite slab 

could save about 25% of concrete volume. However, this change could also result in 

reduction of the ultimate moment resistance (34.1%) based on beam configuration. 

The results also show that the effective area ratio reduced with an increase in the beam 

depth. It was noted from all parameters that beam configuration has greater influences 

on the ultimate moment resistance.  Parameter such as back-to-back arrangement has 

recorded higher increment ranging from 23.3-42.8%. In all specimens, shear connector 

of size 12 mm proven to be the optimum design configuration and provides a 

preferable flexible failure mode as compared to concrete brittle failure of shear 

connector size 16mm. It can be concluded that the proposed composite beam with 

cold-formed steel section is strong enough to be used as main beam. From the 

comparison between the experimental result and theoretical prediction using 

conventional method in EC4. It is found out that the conventional method was not able 

to predict the ultimate capacity of this composite beam. Hence, a modification had 

been made to the existing formula. Close agreement is recorded between experimental 

result and the proposed theoretical model in calculating the ultimate moment resistance 

of the proposed composite beam. 
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ABSTRAK 

Pembinaan komposit telah terkenal sebagai pemilihan yang kos efektif hasil 

daripada tindakan komposit antara keluli dan konkrit yang mana dapat mengurangkan 

kedalaman rasuk dan memberi penjimatan ketara ke atas berat sendiri keluli. 

Kelebihan yang ada pada pembinaan komposit telah menyumbang kepada dominasi 

dalam pembinaan bangunan keluli bertingkat separa tinggi di beberapa negara. Walau 

bagaimanapun, penggunaan rasuk komposit dengan keluli tergelek sejuk (CFS) dalam 

bentuk C masih belum diguna pakai kerana kelakuan struktur rasuk tersebut tidak 

difahami dengan baik. Oleh itu, kajian ini membentangkan kelakuan rasuk komposit 

menggunakan keratan keluli tergelek sejuk dan digabungkan dengan papak komposit 

yang inovatif. Rasuk komposit terdiri daripada papak komposit yang disusun serenjang 

ke atas dua keratan CFS berbentuk C yang bertindak sebagai anggota rasuk yang 

dipenuhi dengan konkrit berupaya mampat sendiri (SCC), dan tetulang keluli 

berbentuk U sebagai penyambung ricih. Kajian ini terdiri daripada dua komponen: 

kerja eksperimen dan analisa teori. Kerja eksperimen merangkumi empat belas rasuk 

komposit berskala penuh dengan dimensi yang sama (4300 mm x 1500 mm) dan diuji 

bawah ujian lenturan empat titik bagi mengkaji tingkah laku struktur dan mod 

kegagalan sistem rasuk komposit. Spesimen-spesimen ini adalah berbeza mengikut 

kedalaman rasuk (250 / 150 mm), nisbah tetulang (2.5 / 1.9), saiz penyambung ricih 

(garis pusat 16 / 12 mm), konfigurasi sususan rasuk (back-to-back / toe-to-toe) dan 

jenis papak (komposit / pepejal) untuk mengkaji pengaruh ke atas rintangan beban 

muktamad rasuk komposit. Keputusan menunjukkan bahawa jenis slab, konfigurasi 

rasuk, saiz penyambung ricih dan kedalaman rasuk mempengaruhi rintangan beban 

muktamad. Perubahan dari papak padu ke papak komposit dapat menjimatkan 25% 

jumlah kuantiti konkrit. Walaubagaimanapun, perubahan ini juga mengakibatkan 

pengurangan rintangan lenturan muktamad (34.1%) berdasarkan konfigurasi rasuk. 

Keputusan juga menunjukkan bahawa nisbah luas berkesan berkurangan dengan 

peningkatan kedalaman rasuk. Daripada semua parameter, konfigurasi rasuk memberi 

pengaruh ketara ke atas rintangan lenturan muktamad rasuk komposit. Parameter 

seperti susunan CFS secara back-to-back telah mencatatkan peningkatan yang lebih 

tinggi iaitu dalam julat 23.3-42.8%. Dalam semua spesimen, saiz penyambung ricih 

12 mm adalah konfigurasi reka bentuk paling optimum dan memberikan kegagalan 

fleksibel yang lebih baik berbanding dengan kegagalan konkrit bagi saiz penyambung 

ricih 16 mm. Boleh disimpulkan bahawa rasuk komposit yang dicadangkan dengan 

keratan keluli tergelek sejuk adalah sesuai untuk digunakan sebagai rasuk utama. 

Daripada perbandingan antara keputusan eksperimen dan analisa teori menggunakan 

kaedah dalam kod amalan EC4, didapati bahawa kaedah konvensional tidak dapat 

menganggarkan rintangan lenturan muktamad rasuk komposit ini. Oleh itu, 

pengubahsuaian telah dibuat ke atas kaedah yang sedia ada. Kesetaraan telah dicapai 

antara keputusan eksperimen dan kaedah teori yang diubahsuai dalam mengira 

rintangan lenturan muktamad rasuk komposit yang dicadangkan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Today, there is an ever-increasing effort to improve building construction 

efficiency, using innovative building construction methods to reduce time and cost. In 

steel construction, there are two main types of structural members. One is the familiar 

group of hot-rolled steel (HRS) and component members of built-up sections from 

plates usually meant for heavy loading structures. The other, a less familiar but of 

growing importance, is thin sections known as cold-formed steel (CFS) section usually 

or also known as light-weight structures. However, the latter method of construction 

is getting popular in our present era of building constructions Irwan, (2011). In the 

mid-20th century, the structural use of CFS sections was further extended for 

commercial and industrial building constructions Hancock et al., (2001); Riley and 

Cotgrave, (2014). Recently, the use of CFS sections as a construction material is not 

only limited to roof structure but also as wall panelling and floor slab as the strength 

and the capacity of the sections have been improved due to the quality assurance of 

manufacturing and method of construction (Yu, 2019). 

Hot-rolled steel sections are formed under high temperatures up to 1400℃ in a 

blast furnace or electric arc furnace, while the CFS sections are manufactured at room 

temperature. The difference of the manufacturing process makes the properties be of 

hot-rolled and CFS disparity in strength, structural performance, and failure mode. The 

typical thickness of the CFS section is ranged from 0.9mm to 4mm. CFS is usually 

galvanized to protect the members from corrosion which increases its corrosion 

protection. In the forming process, due to cold working by the process of strain 

hardening, the yield strength of the steel tends to increase. There are three methods to 

manufacture the CFS sections: cold roll forming, press braking, and bending brake 

operation. Among them, cold roll forming and press breaking as in Figure 1.1 is widely 
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used to produce building components (structural members, roof truss, wall panel, 

frames of windows and doors, etc.).” 

 

Figure 1.1 The forming methods of cold-formed steel 

In the past, CFS sections were used as secondary structural members, for 

example, roof purlin and side rail for wall cladding. The thin-walled section tends to 

limit the structural performance of CFS sections by premature buckling and instability. 

Over the past two decades, the increasing applications of CFS in the construction 

industry have brought to more innovative researches in progress Lau and Hancock, 

(1987); LaBoube, (1993); Rogers and Hancock (1997); Wilkinson and Hancock 

(2000); El-Kassas, Mackie et al., (2002); Schafer, (2002); Holesapple and LaBoube 

(2003); Stephens and LaBoube, (2003); Yu and Schafer, (2003); Young, (2004); 

Young and Ellobody, (2005); Guzelbey, Cevik et al., (2006); Yu and Schafer, (2006); 

LaBoube and Findlay, (2007); Dubina, (2008); Pala, (2008); Ranawaka and 

Mahendran, (2009); Kumar and Kalyanaraman, (2012); Macdonald and 

Heiyantuduwa, (2012) to ensure the stability and reliability of the constructed steel 

structures. As the industry demand grows gradually, many research studies were done 

to minimize the safety issue and exhilarated the use of CFS members as primary 
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structural members. However, the main limiting features of CFS are the thinness of 

the section that makes it susceptible to torsional, distortional, lateral-torsional, lateral-

distortional and local buckling problems Irwan, et al., (2011) and its inability to be 

welded. The structural behaviour and performance of such thin-walled, cold-formed 

structural members under loads differ in several significant respects from that of heavy 

hot-rolled steel sections. As a result, design specifications for heavy hot-rolled steel 

construction cannot possibly cover the design features of CFS construction 

completely. The current codes of practice cover the design considerations for plain 

CFS members subjected to compression, tension, bending, shear or combinations. 

However, the use of CFS members in composite with concrete is still very limited. 

This is due to the fact that no standard specifications have been established for CFS 

sections as composite members. 

 The thinness of the CFS section which is classified as slender section makes it 

susceptible to torsion, distortional, lateral torsion, lateral distortional and local 

buckling Irwan et al, (2011) resulted in the profile failed before reaching its yield 

strength. The resistance of CFS sections to such instability problems could be well 

improved by using the composite construction method. The composite action of CFS 

should be integrated together with concrete to form into a composite beam system by 

means of a shear connector. Therefore, two CFS lipped channel sections arranged 

back-to-back to form an I-section or arranged as toe-to-toe to form a box-section filled 

with concrete to form composite beams. These proposed composite beams are then 

connected to the slab by re-bars bent into U-shape as shear connectors.  The proposed 

system of these composite construction should be able to form into symmetric sections 

and increase significantly lateral-torsional resistance and pre-mature failure due to the 

thinness of the section. Thus, the potential of buckling at the CFS section could be 

prevented as well as producing prefabricated construction and more robust. These two 

advantages possess by the system, promote the use of CFS sections in a wider range 

of structural applications Irwan, et al., (2009); Irwan, et al., (2011); Lawan et al., 

(2015); Alhajri et al., (2016); Bamaga et al., (2019). Since the governing failure mode 

of CFS thin-walled elements is buckling (either local, distortional or global), intensive 

experimental research was carried out on the effect of secondary structures, which can 

significantly increase the capacity of the CFS designed as composite construction. 
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Composite construction has become a popular method in recent years and has 

largely accounted for the dominance of steel frames in many countries. Composite 

steel-concrete beams are widely used due to savings in steel weight, higher stiffness, 

longer spans, and rapid erection, etc.; some of the advantages of construction. A 

composite floor system conventionally consists of a reinforced concrete slab that is 

supported on a set of steel joists. Steel and concrete parts should be fully connected 

such that shear flow can be transferred between them. The composite integrity is 

provided by shear connectors. The basic idea in composite construction is to use the 

advantages of both steel and concrete materials while avoiding their inherent 

disadvantages. The ability of composite slab to carry the loads depends on the degree 

of shear connectors provided between the concrete and the steel. Therefore, whenever 

the interaction between these two materials increased, the capacity, stiffness, and 

efficiency of the composite slab also increased. In order for composite action to be 

integrated between steel and concrete, shear connectors should be provided so that the 

tension in steel and the compression in concrete can be fully utilized. A typical steel-

concrete composite cross-section in composite beam construction is depicted in Figure 

1.2.” 

 

Figure 1.2 Steel-concrete composite cross-section 

Composite construction using the CFS section and concrete began in Europe 

in the mid-1940s was used as a floor system Allen, (2006) and Talal, (2014). 

Composite action is categorized by an interactive behaviour between structural steel 

and the concrete designed to utilize the best load resistance capability. Sections are 

more durable, stiffer and stronger than using single materials, resulting in lower 

Steel profile 

Shear connector Concrete slab Shear connector Concrete slab 

Steel profile 

Plate deck 
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material cost, with an estimated cost savings of 10–30% in comparison with 

conventionally fabricated sections and more than 30% compared with standard hot-

rolled beams Dan Dubina et al., (2015). For the structural components to act 

compositely, a mechanical means of the shear connection must be provided Prakash et 

al., (2012). The most generally used shear connectors are the headed studs shear 

connectors which are commonly provided at the interface between the concrete and 

the steel to resist the longitudinal shear (Lim et al., 2013).” 

Steel is a material that works very well in tension with the plastic stress 

distribution in the composite slab. The proportions of the concrete slab and steel 

section refer to that the plastic neutral axis usually lies within the concrete slab. 

Therefore, all steel is in tension. The concrete material works well in compression but 

has insignificant resistance to tension. Hence for construction purposes, it 

conventionally depends on the profiled steel deck to carry the tensile forces (this is the 

role played by the steel deck as part of the composite cross-section which is also 

efficient to provide laterally restrained). The steel part of a cross-section undergoes 

tension, and concrete undergoes the compression force. 

The design of shear connectors is a vital aspect in the design of composite 

beams. Shear connectors can resist the horizontal shear and provide vertical 

interlocking between the concrete slab and steel beams to produce a composite section 

that acts as a single unit. For conventional hot-rolled steel composite structures, 

extensive research has already been carried out to develop the most efficient and 

commercially viable shear connectors. Welded headed shear studs are most 

prominently used in conventional composite structures as shear connectors. Due to the 

thinness of the CFS sections, welding of shear studs is not viable Hanaor, (2000); 

hence, the development of shear connectors for CFS and concrete composite structures 

is of utmost importance and require further research. 

Therefore, this research investigates the structural performance of CFS with 

Self-Compacting Concrete (SCC) as a composite beam system, focused on full-scale 

testing on a new type of composite beam system with CFS connected together to SCC 

slab by means of an innovative type of shear connector. The proposed composite beam 
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system is illustrated in Figure 1.3 and detailed in Chapter 3. The structural system 

components consist of CFS beams comprised of two back-to-back and toe-to-toe C-

sections arranged together and connected to a corrugated steel deck as SCC slab 

(which acts as formwork for the concrete slab). Bent-up deformed rebar is proposed 

as a shear connector connected to the SCC slab and proposed boxed section as a beam. 

Self-drilling fasteners are used for connecting all the steel parts. The findings from this 

study may magnify the use of CFS in the construction method in a composite beam 

with CFS sections and may also promote the use of the proposed bent-up rebar as shear 

connection enhancement as an alternative in composite construction for small and 

medium-size buildings as well as lightweight industrial constructions. 

 

a) Proposed Composite Beam 

 

Figure 1.3 Proposed floor system. a) back to back, b) toe-to-toe 

b) Back-to-back composite beam 

c) Toe-to-toe composite beam 
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1.2 Problem Definition 

  The use of CFS as construction materials is known to have significant 

advantages such as lightweight, cost-effective, easy to handle, and environmentally 

friendly.  Such significant advantages, however, could not be fully utilized due to the 

thin section classified as a slender section.  As explained earlier, thin sections tend to 

fail due to pre-mature failure due to buckling and deformation.  The cross-section 

failed below the elastic stress in bending and compression.  However, the main limiting 

feature of CFS as reported by many researchers Yamaki, (1959); Timoshenko and 

Gere, (1961); Schafer, (2002); Dubina and Ungureanu, (2002); Yu and Schafer, 

(2006); Li & Schafer, (2010); Irwan, et al., (2011); Bonada et al., (2018) is the thinness 

of the section that makes it susceptible to torsional, distortional, lateral-torsional, 

lateral-distortional, local buckling problems and inability to weld. As a result, 

composite construction method is proposed so that the strength of the section can be 

improved.  In this study, a new type of composite beam was proposed comprised of 

partially encased built-up CFS beams with Self-Compacting Concrete (SCC) slab to 

generate composite action between CFS and SCC slab by means of a new proposed 

shear connection. The proposed shear connector was developed from a U-shaped bent 

ribbed re-bar to eliminate the need for welding. The shear connector should be able to 

increase the surface area and hence enhance the shear connection between steel and 

concrete. The need for this new shear connector instead of the common headed stud is 

mainly to solve the problem of thin sections weldability. Therefore, this issue could be 

studied by partially encasing the CFS with cohesive concrete known as SCC which 

could be compacted by its own self-weight while its homogeneity is maintained. Tap-

screws were used in the formation of a boxed CFS beam to enhance the interaction 

between the CFS and SCC as well as to eliminate local buckling of CFS.  The proposed 

composite beam section should be able to increase the flexural strength and reduce the 

deflection of the beam and significantly increase the stiffness of the proposed 

composite beam system.   

The research questions are as follows:  

1. How does the composite double beam using double back-to-back and toe-

to-toe lipped C-channel profiles behave under bending? 
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2. Can the proposed configurations of the composite beams be used as an 

alternative to hot-rolled steel and whether it can be applied to medium 

level buildings? 

3. Is it possible for the proposed bent-up rebar to be used as a shear 

connector? 

4. Can the proposed composite configuration significantly increase the 

capacity and stiffness of the CFS? 

1.3 Objectives Research  

 The objectives of this study is to investigate the behaviour and performance of a 

composite beam with partially encased CFS section with SCC slab, using re-bars as 

shear connectors, to provide composite action and to improve the understanding of the 

parameters that affect the capacity of the composite beam. The objectives of this 

research are detailed as follows: 

1)  To carry out full-scale experiments in order to assess the structural behaviour of 

the proposed composite beam with partially encased CFS section profiles and 

SCC slab, 

2) To investigate the performance of the bent-up deformed rebar as a shear 

connector, to be used in the proposed composite beam, 

3) To validate the performance of the proposed CFS-SCC composite beam system 

by comparing with theoretical predictions based on Eurocode 4, 

4) To propose a new formulation to predict the moment resistance of the proposed 

composite beam with CFS. 
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1.4 Scope of the Study 

The scope of this study consists of an experimental investigation and 

theoretical validation. The experimental program is designed to provide a better 

understanding of the structural performance of the proposed composite beams. Full-

scale tests were conducted to investigate the structural behaviour of the proposed 

composite beam system comprised of profiled metal decking slab with self-

compacting concrete (SCC), integrated together with two parallel CFS built-up beams 

infilled with SCC by means of U-shaped rebar as shear connectors. A total of fourteen 

specimens were prepared and tested until failure occurred to get a better understanding 

of the performance behaviour. All specimens had the same length of 4000 mm from 

support to support. In addition, the concrete slab in each specimen was 100 mm thick 

and 1500 mm wide. Full-scale simply supported beam specimens of 4000 mm length 

between supports are tested using a four-point load system. The beam is subjected to 

two-point loads in one-fourth of the span (1000 mm from each support). This system 

of loading produces a constant region of a pure bending moment between the point 

loads. Hence, the ultimate flexural capacity of the proposed composite beam is 

determined. A profile metal deck was installed to form the concrete slab that was 

oriented perpendicular to the steel composite beams. The slab was reinforced by two 

layers of steel mesh arranged at the top and bottom of the solid slab and one layer at 

the top of the composite slab which had a nominal cover of 20 mm. The steel mesh 

(A142) was spaced at 200 mm in both the longitudinal and transverse directions with 

a diameter of 6 mm. 

The proposed composite beam comprises two CFS beams each consists of two 

cold-formed lipped steel C-sections oriented back-to-back to form an I-section beam 

or toe-to-toe to form a box-section beam, all beams were infilled with SCC to make a 

composite beam. Two composite beams were arranged parallel to each other and 

spaced at 750 mm. Two of these composite beam sections were placed perpendicularly 

to the profiled metal decking. Two different depths of the CFS box beams were 

considered: 250 mm and 150 mm. A CFS lipped channel section (C75) was used as a 

stiffener along with a rebar diameter of size 12 mm, which were installed as 

longitudinal reinforcements in the infilled CFS composite box sections, size 250 mm. 
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Only two sample used rebar size 20 instead of C75 as reinforcement. For a beam of 

size 150 mm, a rebar size of 16 mm in diameter was used as longitudinal 

reinforcement.  

A novel shear connector was used in this research, which was made up of U-

shaped bent ribbed rebar, to increase the surface area of the shear connector between 

the steel and concrete. Two different nominal diameters of the shear connectors were 

used (size 12 and 16 mm) at a longitudinal spacing of 332 mm. The shear connectors 

were installed between the slab and the infilled CFS composite beams by making a 

small cut on the top surface of the CFS beams. 

The theoretical validation of the proposed modified equation to predict the 

strength capacity of proposed shear connectors depending on their mechanism to resist 

the longitudinal load. A comparison between theoretical values and experimental 

results is conducted to validate the use of the modified method as well as the current 

design methods of a composite beam for designing the proposed composite cold-

formed steel-concrete beams. 

1.5 Significance of the Study  

Composite beams are known to be stiff, cost-effective and, material savings 

and efficiency in strength are widely used in the construction industry (Lee et al., 

2014). However, the use is very much popular with the Hot-Rolled Steel Section where 

a standard shear stud can be welded to the top flange of the steel beam.  However, the 

use with CFS is not that popular as the section is limited due to its thin section and the 

shear stud cannot be welded to the CFS section.  The primary advantages of cold-

formed steel are lightweight, high strength and stiffness, ductility, uniform quality, 

dimensional stability, ease of prefabrication and mass production, economy in 

transportation and handling can be fully utilized if the sections are designed as 

composite construction knowing that the conventional shear connectors are not 

applicable when using CFS due to inability to weld and the CFS susceptibility to 

buckling due to its thinness, modification to the current method of composite beam 
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has to be introduced. An innovative shear connector that can be installed without the 

need to weld has to be adopted in this research. Partially encase the CFS beam with 

the use of tap-screw in the CFS web in order to enhance the CFS-SCC interaction and 

therefore delaying or preventing the premature buckling failure of the CFS beams. 

Therefore, the validation of using CFS sections with concrete as a composite 

beam could significantly increase their strength and stiffness capacities Bamaga et al., 

(2013); Saggaff et al., (2015); Lawan et al., (2015); Bamaga et al., (2019). The concrete 

slab could provide lateral bracing that prevents the CFS section to fail under lateral-

torsional buckling. Also, it could improve the resistance of the top flange and reduce 

its tendency to buckle under compression.  The proposed study in this thesis should be 

able to provide an alternative construction method in the steel construction industry 

that provide cheap and easy to handle structural members.  The system can also 

enhance the construction method as one of the Industrialised Building System (IBS) 

which can be produced in the factory and assemble on-site. 

1.6 Thesis Outline  

Chapter 1 a brief overview of the manufacture and history of CFS members 

and composite structures is presented, and the problem was identified. The research 

objectives and scope are stated, and the thesis outline is presented. 

Chapter 2 presents a comprehensive literature review on the composite 

structures and its components as well as the behaviour or CFS based on experimental, 

numerical and analytical investigations conducted by previous researchers. Current 

design methods and material characteristics. 

Chapter 3 describes the experimental investigation performed of composite 

CFS flexural members and composite action, along with the material properties and 

the test procedure of a built-up CFS with SCC.   
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Chapter 4 presents and discusses the experimental results of materials 

properties tests for the materials used in the study. Results and discussion of the 

experimental investigation as well as their modes of failure are also discussed. 

Theoretical calculations for the CFS section, validation analysis and calculations of 

the proposed CFS-SCC composite beams using a modified method in comparison to 

the current design codes and methods. Comparison between experimental, theoretical 

and other researches is also conducted. 

Chapter 5 Provide Conclusions and Recommendations provides an overview 

of the developed work and a summary of the most significant findings of this research 

and presents recommendations for possible future research. 
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APPENDIX A 

Self-Compacting Concrete Detailed Mix Design 

 

 
Design Calculation 

 

 

1.1 Characteristic Strength (BS 8110-1 & BS 

5328-1) 

1.2 Proportion of results below characteristic 
strength 

Issue date: 

 

 

(Specified) 

 

 

 

= 
= 

 

 

 

40,0 N/mm2 

5% 

17/01/2018 

 

 
 

1.3 Margin  = 7,5 N/mm2  

1.4 Free Water / Cement Ratio (A) = 0,44  

2.1 Admixture Type (dosage Rate Per 1 m3) 
    

Superplasticiser  = 4,69 Liter (AF333) 

Water Reducer  = 1,03 Liter (WR96M) 

2.2 Specific gravity of cement  = 3,00  

2.3 Specific gravity of combined (D) = 2,61 (SS)  

3.1 Maximum aggregate size (Specified) = 10,0 mm  

3.2 Grading of fine aggregate     
3.3      Proportion of fine (B) = 60%  

3.4      Proportion of course (C) = 40%  

4.1 Workability: slump (Specified) = 600 +/- 50  

4.2 Air Content (estimated) (E) = 8%  

4.3 Free water requirement (F) = 206 kg/m3 
 

4.4 Cementitious content (G) = 470 kg/m3 
 

4.5 Total aggregate content (H) = 1628 kg/m3  
4.6 Total concrete volume     

4.7 Fine aggregate (H x B %) (J) = 978 kg/m3 
 

4.8 Coarse Aggregate (H x C%) (K) = 650 kg/m3  

5.1 Designed Density of Concrete (F + G + J + K) 
 

= 2304 kg/m3  

 
 

    

SUMMARY     

Grade  = 40 N/mm2  
Specified  = 600 +/- 50  

Batch Weights (SSD) for one cubic metre of 
concrete 

    

Cementitious (Mascrete Eco)  = 470 kg/m
3
  

Fine Aggregate - Sand  = 978 kg/m3  

Coarse Aggregate (10 mm) 
Admixture 

 = 650 kg/m3  

Superplasticiser  = 4,69 Liter (AF333) 
Water Reducer  = 1,03 Liter (WR96M) 
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APPENDIX B 

Design Calculations of Cold-Formed Steel Section Design 
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APPENDIX C 

Design Calculation of Composite beam 

Example (CBS-CS-BB-250-12-C75+Ø12) (CBS1) 

 

INPUT 

Beam data 

h  Total height = 250 mm 

b  Width of flange = 150 mm 

c  Edge fold = 20 mm 

r  Internal radius = 5 mm 

t  Nominal thickness = 2.4 mm 

nomt  Steel core thickness = 2.36 mm 

ybf  Yield strength = 524 N/mm2 
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sE  Modulus of elasticity = 216963 N/mm2 

  Angle = 90° 

effA  Section area = 1724.6 mm2 

effI  Second moment of area = 15.8E+06 mm4 

effW  Elastic section modulus = 11.3 E+4 mm3 

Slab data 

L  Length = 4000 mm 

effb  Width = 750 mm 

ch  Depth of concrete flange = 50 mm 

ph  Depth of steel sheeting height  = 50 mm 

'd  Concrete cover = 25 mm 

ckf  Compressive strength of concrete = 55.6 N/mm2  

cE  Modulus of elasticity = 35056 N/mm2 

,pI steelM  Moment resistance of the CFS beam = 57.3 kNm 

Shear connector data 

d  Diameter = 12 mm  

yrf  Yield strength = 656.6 N/mm2 

,Rd sP  Shear resistance of shear connector = 50.7 kN 

n  Number of shear connectors = 26 

Reinforcement data 

d  Diameter = 12 mm 

yrf  Yield strength = 656.6 N/mm2 



 

253 

n  Number of rebars = 2 

rA  Section area = 113.0 mm2 

Partial safety factors 

mo  Safety factor = 1.0 

a  Safety factor of steel = 1.05  

v  Safety factor = 1.25 

c  Safety factor of concrete = 1.5 

COMPOSITE DESIGN 

1. Compressive resistance of slab cR  

0.85 ck eff c

c

c

f b h
R


=  = 1182.2 kN 

2. Tensile resistance of steel section sR  

s s r stR F F F= + +  

. . .s s yb r yr st ystR A f A f A f= + +  = 1384.6 kN 

3. Moment resistance with full shear connection ,pI RdM  

Since cR  < sR  the plastic neutral axis (P.N.A.) lies in the steel flange, 

therefore the moment resistance of the composite beam is: 



 

254 

 

( )
2

,
2 2 4

s cc
pI Rd c p s

f y

R Rh h
M R h R

b p

− 
= + + − 

 
 = 236.8 kNm 

The plastic neutral axis depth is: 

2

s c
p

f y

R R
y

b p

−
=  = 56 mm 

4. Shear connector resistance 
QR  

The shear resistance of shear connector was obtained experimentally from 

push-out test, and it had a value of 50.7 kN per connector. Hence the total 

shear connector resistance is: 

Q RdR nP=  = 1319.7 kN 

5. Degree of shear connection   

There is a minimum degree of shear connection which for beams with a span 

equal or less than 5 m is 0.4. 

QR

R
 =  

R  is the bending resistance of the critical cross-section which is limited 

either by the resistance of the concrete slab ( cR ) or by the resistance of the 

steel beam( sR ). 

  = 1.116 

 

ch   

ph   

h   

cR   

sR   

.N A   
py   

effb   

fb   
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The degree of shear connection cannot be higher than 1 and less than a 

minimum equal to 0.4. 

2p = −  = 0.88 

6. Moment resistance with partial shear connection 
,c RdM  

Using the linear interaction method, the moment resistance of a composite 

beam is obtained as follows: 

( ), , , ,c Rd pI steel pI Rd pI steelM M M M= + −  = 217 kNm 

This resistance is per half of the composite specimen 

,exp

,2

u

c Rd

M

M  = 

443.1

2*217.0
 = 1.02 
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