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ABSTRACT 

Grouted splice connections are widely used in joining precast concrete wall-

to-wall and wall-to-column connections. However, not many studies on grouted 

splice connections could identify and predict their minimum bar embedded lengths 

and ultimate strength precisely which may lead to catastrophic failures in the 

structure. Moreover, the majority of the published studies are limited to conventional 

steel products which could not predict satisfactorily the behavior and performance of 

the grouted splice connections particularly when new materials and methods are 

adopted. In this regard, the main aim of this study was to investigate the behavior and 

performance of grouted splice connections using sleeves manufactured with steel 

pipes and new sheet materials of Carbon Fiber Reinforced Polymer (CFRP) and 

Glass Fiber Reinforced Polymer (GFRP) sleeves. In order to predict the behavior and 

performance of the proposed FRP grouted splice connections, empirical 

relationships, Artificial Neural Network (ANN), and Finite Element Method (FEM) 

were developed. In Phase 1 of this study, a total of 165 grouted splice connections 

with different shapes, diameters, embedded lengths, and sleeve materials were tested 

to failure under incremental tensile load. In Phases 2 and 3, the experimental results 

obtained from Phase 1 were used as raw data to establish the analytical behavior and 

performance of the grouted sleeve connections using ANN and FEM, respectively. 

The results of Phase 1 show that the CFRP sleeves provided better confinement 

effect, hence contributed higher bond and tensile strengths compared to GFRP 

sleeves with similar design parameters. New equations were developed based on 

experimental results in Phase 1 and had shown good prediction of the ultimate tensile 

strengths of the proposed connections with the reliability ratios close to 1.0. Then in 

Phase 2, the analytical results demonstrate the superiority of ANN model compared 

to the other methods in predicting the ultimate tensile strength and behavior of all the 

proposed connections. The advantage of ANN model is the minimum reliance on the 

experimental data in estimating the performance of the specimens. The FEM results 

of Phase 3 indicate that the predicted behaviors of the grouted splices are in line with 

the experimental results. Also, the FEM results show the importance of providing 

adequate confinement at regions near the center of the sleeve where the highest stress 

concentration occurs. In conclusion, CFRP sheets generated the highest confinement, 

while the embedment length, interlocking mechanism and shape of the FRP sleeves 

contributed the highest impact on the bond strength, axial stiffness, ultimate tensile 

strength and ductility of the proposed FRP specimens. Finally, although the proposed  

empirical relationships predicted acceptable ultimate tensile strength of FRP 

specimens with high accuracy, the ANN model found to be more superior and it can 

be used with minimum dependency on experimental data.  
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ABSTRAK 

Sambungan sambat berturap digunakan secara meluas bagi menyambungkan 

konkrit pratuang dinding-ke-dinding dan dinding-ke-tiang. Bagaimanapun, tidak 

banyak kajian mengenai sambungan sambat dapat mengenal pasti dan meramalkan 

minimum panjang tambatan dan kekuatan tegangan muktamad dengan tepat yang 

boleh menyebabkan kegagalan bencana dalam struktur. Lebih-lebih lagi, sebahagian 

besar kajian yang diterbitkan hanya terhad kepada produk keluli konvensional dapat 

tidak meramalkan tingkah laku dan prestasi dengan memuaskan terutamanya apabila 

bahan dan kaedah baru digunakan. Dalam hal ini, objektif utama kajian ini adalah 

untuk mengkaji tingkah laku dan prestasi sambungan sambat berturap menggunakan 

selonsong daripada paip keluli dan bahan kepingan baru Karbon Tetulang Gentian 

Kaca (CFRP) dan Polimer Tetulang Gentian Kaca (GFRP). Untuk meramalkan 

tingkah laku dan prestasi sambungan FRP yang dicadangkan hubungan empirical, 

Rangkaian Neural Buatan (ANN) dan Unsur Terhingga (FEM) telah  dibangunkan. 

Dalam kajian Fasa 1, sejumlah 165 sambungan sambat berturap dengan bentuk, 

diameter, dan selongsong bahan yang berbeza telah diuji sehingga gagal di bawah 

beban tegangan bertambah untuk menyiasat kelakuan dan prestasi sambungan. 

Dalam Fasa 2 dan 3, keputusan ujikaji yang diperolehi dari Fasa 1 telah digunakan 

sebagai data mentah untuk menentukan kelakuan analitikal dan prestasi sambungan 

selonsong menggunakan kaedah ANN dan FEM. Keputusan kajian Fasa 1 

menunjukkan selonsong CFRP memberikan kesan pengurungan lebih baik,  serta 

menghasilkan kekuatan ikatan dan kekuatan tegangan yang lebih tinggi berbanding 

GFRP bagi konfigurasi yang sama. sambat lain. Persamaan baru juga telah 

dibangunkan berdasarkan keputusan ujikaji Fasa 1 dan telah menunjukkan ramalan 

yang baik dalam menentukan kekuatan tegangan muktamad bagi sambungan yang 

dicadangkan dengan nisbah kebolehpercayaan menghampiri 1.0. Kemudian dalam 

Fasa 2, hasil analitikal menunjukkan keunggulan model ANN berbanding kaedah 

lain dalam meramalkan kekuatan tegangan muktamad dan tingkah laku semua 

sambungan yang dicadangkan. Kelebihan model ANN adalah pergantungan minima 

data ujikaji dalam menganggarkan prestasi sambungan. Keputusan FEM bagi kajian 

Fasa 3 pula menunjukkan tingkah laku yang diramalkan FEM adalah sejajar dengan 

keputusan ujikaji. Selain itu, keputusan FEM menunjukkan kepentingan 

menyediakan pengurungan yang mencukupi di kawasan pertengahan selongsong di 

mana penumpuan tegasan tertinggi berlaku. Kesimpulannya, lembaran CFRP 

memberikan pengurungan tertinggi, manakala panjang tambatan, mekanisme saling 

mengunci dan bentuk sambungan FRP menyumbang kesan tertinggi pada kekuatan 

ikatan, kekukuhan paksi, kekuatan tegangan muktamad dan kemuluran spesimen 

FRP yang dicadangkan. Akhirnya, walaupun hubungan empirikal yang dicadangkan 

meramalkan kekuatan tegangan muktamad mutlak spesimen FRP dengan ketepatan 

yang tinggi, model ANN didapati lebih unggul dan dapat digunakan dengan 

pergantungan minimum pada data eksperimen. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1 Introduction 

 

Numerous advantages of precast concrete systems made them a promising 

alternative choice to their conventional reinforced concrete counterparts in the 

construction industry. Precast concrete systems have the potential to increase the 

quality of building components by producing them under the controlled environment. 

Moreover, the precast systems can provide significant benefits for engineers, labors, 

and public by improving the quality, constructability, work zone safety and 

minimizing the environmental impacts, construction costs, and traffic disruptions. In 

this regard, the main objective of Construction Industry Development Board (CIDB) 

of Malaysia is to develop the capacity and capability of the construction industry 

through enhancing the quality and productivity by expanding the employment of 

precast concrete systems [1]. 

 

The chronology of the Industrialized Building Systems (IBS) in Malaysia 

goes back to 1960s. Sufficient exposure and incentives are pouring in to encourage 

industry players to make a paradigm move – from conventional to IBS construction. 

In this regard, about 22.7 acres of land in Jalan Pekeliling, Kuala Lumpur was 

dedicated to the first IBS project during the 1st and 2nd Malaysian Plan (1960–1965 

and 1966–1970) to build quality and affordable houses in a shorter period of time. 

This project comprised of 7 blocks of 17 stories flat consisted of 3000 units of low-

cost flat and 40 shops lot [2-4]. Due to the problems related with some of the foreign 

prefabricated systems in 1960s and 1970s, identifying newer, better, and innovative 

technologies which are suitable with Malaysian climate and social practices has been 

the main objective for the construction industry in Malaysia. To promote the IBS 
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usage in the industry, the IBS Strategic Plan was introduced in 1999 [2]. This was 

followed by developing IBS Roadmaps 2003-2011 and 2011-2015 to enhance the 

efficiency, quality, sustainability, competency and research and development 

programs. To increase the contribution of the IBS industry, the Malaysian 

government mandated that all public-sector projects must attain no less than 70% 

IBS-content under the Treasury Circular SPP 07/2008 [1].  

 

In recent years, IBS precast components are used in construction projects to 

offer solutions to overcome the increasing demands for schools, hospitals, colleges, 

universities and private buildings. It was only possible through expanding knowledge 

through intensive research on local IBS technologies.  

 

The connections are the most important components of precast concrete 

systems, as the overall integrity of the precast structure is largely governed by its 

connections. Connections alone can dictate the type of precast frame, the limitations 

of that frame, and the erection progress which emphasizes the importance of 

connections in precast concrete systems [5,6]. Hence, addressing the effectiveness of 

precast connections in transferring the forces between individual building 

components (is a research area that) needs further investigations. In this regard, 

current research is carried out to develop and study grouted splice connections to join 

precast concrete components. 

 

There are different ways to have a satisfactory connection, such as welding, 

bolting, or grouting. The used method should be simple and applicable on site. 

Grouted splice connections can be completed much faster with significant reduction 

in the required embedded length of the reinforcement bars compared to conventional 

methods such as cast-in-place concrete [4]. This fact makes the splice connections a 

good choice for heavily reinforced structures. 

 

There are two different types of connections: conventional method or lapping 

reinforcement bar, and mechanical connections. Grout filled splices connection is a 

form of mechanical connection which have been used to connect precast members 
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and they have been used to overcome the issues related to the long embedded length 

of lapping systems. During the fabrication, sleeves are pre-embedded in one end of 

the precast member and projecting steel bars are inserted into the sleeves to fit two 

sides of the members. Then, the space between the bars and sleeves is filled with 

non-shrink grout (see Figure 1.1). By having a good installation of the connection, 

the sleeves can withstand applied forces and they can develop the full strength of the 

bars to have a monolithic behavior as cast in situ concrete. 

 

           

Figure 1.1 Installation of grouted splice connections [6] 

 

 

Several types mechanical connections are available on the market such as 

Lenton Interlok® [7, 8], NMB Splice-Sleeve® [9], Quick-Wedge©, BarSplice 

Products Inc, etc. The main problem related to such proprietary products is that little 

information has been published about the mechanism of the connection system. 

Moreover, they could only be purchased from certain companies which belong to 

foreign countries, therefore developing a new type of sleeve connection which could 

be cost effective and simple to produce is necessary for countries like Malaysia. 

 

The effectiveness of the splice connection largely depends on the generated 

bond between reinforcement bar and the surrounding grout. Hence, a satisfactory 

splice connection should be able to provide structural continuity by providing 
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adequate bond strength with short development length. In this regard, six types of 

splice connections were introduced in this research to study the factors that might 

affect their behaviors and feasibility under incremental tensile load.  

 

1.2 Problem Statement 

 

Components in precast concrete systems are prefabricated, so lapping length 

may not be appropriate for precast concrete systems as the lapping method requires 

significant lapping length. Although the general structural behavior of precast 

components is similar to members that are monolithically cast in place, the major 

difference is the nature of connections. Hence, details of precast concrete 

connections are especially important to ensure equivalent behavior of a 

conventionally designed, cast-in-place, monolithic concrete structure [10]. While the 

continuity in cast-in-place systems is achieved by providing lapped reinforcement 

bars to have a monolithic system, it can be achieved by utilizing grouted splice 

connections with shorter anchorage lengths in precast systems. 

 

However, limited information is provided by design codes as practical 

solutions for designing a splice connection which might be due to the proprietary and 

confidential nature of these products. On the other hand, available studies about the 

performance of the spliced connections are restricted to the small scale experimental 

studies with limited design parameters which might not be suitable to predict the 

acceptability of the connections [11-13].  

 

Furthermore, the majority of the published articles are mainly focused on 

grouted splices produced from steel pipes. Steel pipes cannot generate required 

interlocking mechanism between their inner surface and the grout. Hence, several 

methods have been used by previous researches to provide adequate interlocking 

mechanism. Among the proposed methods, welding gained more attention due to its 

advantage over other methods like threading. This might be due to this fact that 

compared to best-quality thread, providing interlocking mechanism by welding is 
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cost effective and it permits the use of thinner pipes as it does not cause mechanical 

weakening.  

 

The issues related to the research are: 

 

1. The embedded lengths used in precast grouted splice connections are much 

shorter than the embedded lengths offered by design standards. Hence, 

ensuring the ability of the grouted splice to develop the full strength capacity 

and maintaining the structural continuity of the spliced bars is a critical issue 

in practice. In this regard, further research is required to study the 

acceptability of the short embedded lengths and subsequently identifying the 

minimum bar embedded lengths of the grouted splices able of developing full 

tensile strengths of the spliced bars. 

2. During the design process, if the ultimate strength of the grouted splice 

connection is not determined precisely, it may lead to catastrophic failures in 

the structure. In order to obtain reliable predictions of the ultimate strength of 

the grouted splices with different design parameters, analytical research are 

conducted and equations are derived by analyzing the experimental results of 

the current study. 

3. In practice, predicting the behavior of the grouted splice is the key issue to 

assure designers and contractors in using grouted splices. To do this, an 

extensive experimental and analytical research is carried out to justify the 

load responses of the grouted splices with different design parameters under 

incremental tensile load. 

4. The majority of the published studies are limited to conventional steel 

products and they did not cover the practicality of the alternative materials 

and design parameters. Hence, further investigation is required to understand 

the effects of different combination of confining materials on the 

performance and behavior of the spliced connections. 
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1.3  Objectives 

 

The specific objectives of the research are: 

 

1. To study experimentally the behavior, performance, and satisfactory design 

parameters of the proposed grouted splice connections using FRP sheets as 

the confinement and subjected to incremental tensile load. 

2. To develop empirical relationship of the behavior of the proposed grouted 

splices based on the experimental results. 

3. To predict the behavior and performance of the proposed FRP grouted splice 

connections using Artificial Neural Network (ANN). 

4. To investigate the behavior of the FRP grouted splice connection such as 

load-displacement, types of failure, and ultimate tensile strength using Finite 

Element Method (FEM). 

5. To compare the results of the proposed empirical relationship, neural network 

model, and finite element method with the experimental results of the 

proposed FRP grouted splice connections. 

 

1.4 Scopes of Research 

 

The scope of the research program is limited to the following: 

 

1. Steel reinforcement bars with diameter of 16 mm were used for all grouted 

splices. 

2. The sleeve diameter of the proposed grouted splices ranging from 37 mm to 

75 mm. 

3. The embedded lengths of 75 mm, 125 mm, and 175 mm were considered for 

the proposed grouted splices. 

4. One type of grout was used to prepare the proposed grouted splices. 



 

7 
 

5. Mild steel pipes, two types of aluminum tubes (rigid and flexible corrugated 

tubes), glass and carbon fiber reinforced polymers were used to prepare the 

proposed grouted splices. 

6. Grouted splices were subjected to incremental tensile load and other load 

cases were not considered. 

7. Artificial neural network and finite element methods were used to predict the 

behavior and performance of FRP grouted splice connections only. 

 

1.5 Thesis Outline 

 

The general aim of this thesis was to study the behavior of the grouted splice 

connections under incremental tensile load until failure. This thesis comprises of 

eight chapters covering three phases of this study.  

 

A brief introduction of the grouted splice connections, relative problem 

statement, the objectives and scopes of this study are presented in Chapter 1. 

 

Chapter 2 presents the review of the available literature and the present state 

of knowledge regarding grouted connections and proposed methods for studying and  

analyzing the behavior of these type of connections. 

 

Chapter 3 describes the experimental program, including the details of test 

specimens, different variables considered in the proposed connections, material 

specifications, instrumentations, test setup and procedures. 

 

Chapter 4 covers Phase 1 of this study and presents the results and discusses 

the effects of various designs on the responses of the grouted splice connections 

when subjected to incremental tensile load. Moreover, an empirical relationship was 

developed in this phase of research to verify and predict the ultimate strength as well 

as the load-displacement responses of the grouted splices under incremental tensile 

load. 
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