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ABSTRACT 

Inevitable concrete microcracks remain as a challenge to civil engineers as they 

are considered as a threat to structures durability. One of the most common approach 

is to incorporate ureolytic bacteria in concrete matrix to hydrolyse urea resulting in the 

self-healing of concrete cracks through the formation of calcium carbonate. Despite 

that, the issue revolving around the efficacy of crack self-healing remains important. 

The existing works are still suffering from a better understanding of the factors 

affecting the fundamental reactions involved as well as bacterial growth in concrete 

environment. In this study, a comprehensive investigation was conducted to explore 

the bacterial growth and the influential factors on the evolution of urea hydrolysis 

aimed to accurately promote calcium carbonate precipitation inside concrete using 

native bacteria. Subsequently, native ureolytic bacterium species was isolated, 

identified by 16S rRNA gene sequencing and deposited in the gene bank database 

under the accession number of MK357893. The bacterial growth was examined in a 

condition similar to that of concrete in which modified Luria Bertani (LB) broth was 

utilised to cultivate the bacteria with static incubation. The ureolytic activity was also 

investigated at pH values of 7 - 13 as well as different concentrations of urea, calcium 

and nutrient. The Nessler method and an inductively coupled plasma atomic emission 

spectroscopy (Agilent 700 ICP-OES) technique were used to measure the evolution of 

urea hydrolysis and calcium carbonate changes in such conditions. In addition, the 

extent of microbial activity impact on the compressive strength of concrete 

incorporated with spores, vegetative cells and urea-vegetative cells solution was also 

evaluated separately. Similarly, the self-healing of an artificial cracked bio-concrete 

of 0.4 mm was also monitored and evaluated every two weeks by scanning electron 

microscopy (SEM) with energy dispersive X-ray analysis (EDX) and X-ray diffraction 

(XRD). In the same context, a system of equations, rationally based on physic-bio-

chemical issues, was developed in order to quickly predict a complete understanding 

of the bio-based healing process. Later, both finite element and finite difference 

methods were implemented to solve these equations. The results indicated that the 

bacterium was able to survive as dormant without any reproduction at pH of 12 - 13. 

While, the optimum bacterial cells concentration was found to be 2 × 107 cells/mL at 

pH of 9 - 11. In addition, the favoured urea hydrolysis culture conditions were obtained 

as follows: pH of 9, concentration of calcium ions not exceeding 150 mM, urea 

concentration of 333 mM and optimum cells concentration of 2 × 108 cells/mL. 

Subsequent findings also revealed that compressive strength of the concrete 

incorporated with spores, vegetative cells and urea-vegetative cells was improved by 

9%, 10% and 15% compared to that of the control specimens respectively. Moreover, 

the predicted healing ratio of 0.4 mm crack width was completely achieved after 60 d 

at the crack mouth, whereas the healing ratio was less than 15% at the deeper part of 

the concrete surface. This finding was also proved through the experimental work in 

which the actual crack mouth was fully healed after 70 d. In addition, further studies 

could be focused on providing a suitable technique to host bacteria for a long term as 

well as to encourage the bacteria to effectively implement its ureolytic activity inside 

the concrete matrix. 
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ABSTRAK 

Retak-retak konkrit mikro yang tidak dapat dielakkan kekal sebagai cabaran 

kepada jurutera awam kerana ia dianggap sebagai ancaman kepada ketahanan struktur. 

Salah satu pendekatan yang paling biasa adalah untuk memasukkan bakteria ureolitik 

dalam matriks konkrit untuk menghidrolisis urea yang mengakibatkan pemulihan 

konkrit sendiri melalui pembentukan kalsium karbonat. Dengan itu juga, isu berkaitan 

keberkesanan pemulihan-sendiri di sekeliling retak adalah sangat penting. Kerja-kerja 

yang ada masih kurang pemahaman yang lebih jelas mengenai faktor-faktor yang 

mempengaruhi tindakbalas asas yang terlibat serta pertumbuhan bakteria dalam 

keadaan yang keras seperti persekitaran konkrit. Dalam kajian ini, siasatan menyeluruh 

telah dijalankan untuk meneroka pertumbuhan bakteria dan faktor-faktor yang 

berpengaruh terhadap evolusi hidrolisis urea yang bertujuan untuk menggalakkan 

pemendakan kalsium karbonat dengan tepat di dalam konkrit menggunakan bakteria 

tempatan. Selepas itu, spesies bakteria ureolitik asli telah diasingkan, yang 

dikenalpasti melalui penjelmaan gen 16S rRNA dan didepositkan dalam pangkalan 

data bank gen di bawah nombor penyertaan MK357893. Pertumbuhan bakteria 

diperiksa dalam keadaan yang sama dengan konkrit di mana campuran Luria Bertani 

(LB) diubahsuai digunakan untuk memupuk bakteria dengan inkubasi statik. Aktiviti 

ureolitik juga dikaji pada nilai pH 7 - 13 serta kepekatan urea, kalsium, dan nutrien 

yang berbeza. Kaedah Nessler dan teknik spektroskopi pelepasan atom plasma 

(Agilent 700 ICP-OES) secara penyatuan induktif digunakan untuk mengukur evolusi 

urea hidrolisis dan perubahan kalsium karbonat dalam keadaan sedemikian. Di 

samping itu, sejauh mana pengaruh aktiviti mikrob pada kekuatan konkrit yang 

digabungkan dengan spora, sel-sel vegetatif dan larutan sel urea-vegetatif juga dinilai 

secara berasingan. Begitu juga pemulihan-sendiri retak konkrit-bio buatan 0.4 mm 

juga dipantau dan dinilai setiap dua minggu dengan mengimbas mikroskop elektron 

(SEM) dengan analisis sinar-X penyebaran tenaga (EDX) dan difraksi sinar-X (XRD). 

Dalam konteks yang sama, sistem persamaan, secara rasional berdasarkan ciri-ciri 

fizik-bio-kimia, telah dibangunkan untuk meramalkan dengan cepat pemahaman 

lengkap tentang proses pemulihan berasaskan bio. Kemudian, kedua-dua kaedah unsur 

terhingga dan kaedah pembezaan terhingga telah dilaksanakan untuk menyelesaikan 

persamaan ini. Keputusan menunjukkan bahawa bakteria dapat bertahan hidup sebagai 

tidak aktif tanpa sebarang pembiakan pada pH 12 - 13. Juga, kepekatan sel bakteria 

optimum didapati 2 × 107 sel/ml pada pH 9 - 11. Selain itu, keadaan semaian hidrolisis 

urea yang didapati adalah seperti berikut: pH 9, kepekatan ion kalsium tidak melebihi 

150 mM, kepekatan urea 333 mM dan kepekatan sel optimum 2 × 108 sel/ml. 

Penemuan selanjutnya  menunjukkan kekuatan mampatan konkrit yang dicampurkan 

dengan spora, sel-sel vegetatif dan sel-sel urea-vegetatif telah masing-masing 

meningkat sebanyak 9%, 10%, dan 15% berbanding spesimen kawalan. Selain itu, 

ramalan nisbah penyembuhan lebar retak pada bukaan retak yang dicapai selepas 60 

hari ialah 0.4 mm, manakala nisbah penyembuhan adalah kurang daripada 15% pada 

bahagian permukaan konkrit yang lebih dalam. Penemuan ini juga dibuktikan melalui 

kerja eksperimen di mana bukaan retak sebenar pulih sepenuhnya selepas 70 d. Di 

samping itu, kajian lanjutan boleh difokuskan untuk menyediakan teknik yang sesuai 

untuk menyimpan bakteria untuk jangkamasa panjang serta menggalakkan bakteria 

untuk melaksanakan secara berkesan aktiviti ureolitiknya di dalam matriks konkrit. 
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material. Such notable results could inhibit the water or aggressive chemical flow to 

attack the concrete reinforcement.  

The potential ability of bacteria to seal cracks through the formation of calcium 

carbonate was intensively investigated through different mechanisms such as sulphate-

reduction bacteria (Jonkers et al., 2010; O’Connell et al., 2010), oxidation of organic 

acids (Khaliq and Ehsan, 2016; Lors et al., 2017; Luo et al., 2015a), nitrate reduction 

bacteria (Erşan et al., 2016a; Erşan et al., 2016b) and ureolytic bacteria (Achal et al., 

2013; Balam et al., 2017). The formation of microbial calcium carbonate is fully 

dependent on the bacterial activity. For example, ureolytic bacteria releases urease 

enzyme to decompose the urea into carbonate ion, which eventually precipitates 

CaCO3 through the reaction between carbonate and calcium ions. This phenomenon is 

commonly known as metabolic activity or ureolytic activity. In addition, ureolytic 

bacteria is able to form spore in concrete, which enables it to survive the harsh concrete 

environment for many years until cracks occur. Subsequently, with water, the nutrient 

spores activate, multiply and produce limestone in response to the hydrolysis of urea 

in the presence of sufficient amount of calcium ion, as shown in Figure 1.1. This 

microbial self-healing technique presents several benefits including the possibility to 

last for a longer period of time and both fast and active crack repair properties. In 

addition, it is also environmentally friendly. 

 

Figure 1.1 Crack healing evolution via ureolytic bacteria 

The effectiveness of microbial calcium carbonate was evaluated through either 

roughly quantifying the width of sealed cracks using microscopic technique or 

assessing concrete strength enhancement and durability aspects in the literature. From 

the viewpoint of cracks remediation visualisation using photographic imaging, it was 

reported that a 0.46 mm of concrete crack-width was completely healed after 100 d via 
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Bacillus alkalinitrilicus (Wiktor and Jonkers, 2011). At the age of 28 d, crack widths 

of up to 0.79 mm were also completely healed via another bacterial species namely 

Bacillus cohnii (Zhang et al., 2017). On a similar note, the ability of ureolytic bacterial 

to heal widths of up to 0.97 mm in 8 weeks of water submission has been proven 

(Wang et al., 2014c). The same ureolytic bacterial species has also demonstrated its 

ability to almost completely heal crack widths of 0.5 mm in just 7 d (Wang et al., 

2014a). In addition, Krishnapriya and Babu (2015) also demonstrated that after 61 d, 

the bio-calcite product started to precipitate via ureolytic bacteria. In addition, they 

emphasised that at the age of 81 d, crack widths of 0.3 mm were completely healed. 

In the same context, nitrate reducing bacteria also showed its capability to heal crack 

widths of 0.46 mm in 56 d (Erşan, et al., 2016a).  

From the point of bacterial efficiency in terms of concrete strength, there are 

uneven improvements in the compressive strength of bio-concrete. The improvements 

in the compressive strength are approximately ranging from 6% to 53%. For example, 

Lysinibacillus sp. I13 has proven its capability to increase the compressive strength of 

concrete by 34.6%, compared to that of the control specimens (Vashisht et al., 2018). 

The enhancement of concrete strength incorporating with B. megaterium MTCC 1684 

was also 16% higher than control specimens (Krishnapriya and Babu, 2015). On 

contrast, live cells and dead cells of B. subtilis ATCC 168 did not show any 

improvement in compressive strength of cement mortar (Pei et al., 2013). In addition, 

concrete specimens incorporating encapsulated B. subtilis showed noticeable 

improvement in their compressive strength, from 9.8% to 12%, in comparison to the 

control specimens.  

On the other hand, limited researchers have also focused on the factors 

affecting CaCO3 precipitation  such as curing condition, cracking age and reactants 

concentration (Ling and Qian, 2017; Xu et al., 2018; Zhang, et al., 2017). These 

researches were sought to explore the effect of these conditions on the microbial 

calcium carbonate productivity. However, further studies are still urgently required to 

fully understand the evolution and behaviour of calcium carbonate precipitation in 

minimal conditions such as high pH. 
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1.2 Problem Statement 

Inevitable microcracks remain as a challenge to civil engineers. They are 

considered as a threat to the durability of structures. This fact has fuelled researchers 

to explore a solution to produce smart sustainable and green concrete materials. In 

recent years, bacteria-based crack healing was extensively investigated in the 

literature. However, the evolution of microbial calcium carbonate inside the concrete 

crack is still questionable and unravelled. More knowledge regarding the factors 

affecting the rate of the microbial calcium carbonate precipitation as well as the 

bacterial growth are still in urgent demand. This is because the existing literatures have 

only evaluated the effectiveness of crack-self-healing through either approximately 

quantifying the width of sealed cracks using photographic imaging or assessing 

concrete strength enhancement and durability aspects. 

Indeed, these methods are not able to shed light on microbial activity, which is 

the main sole of inducing calcium carbonate in a harsh condition, such as concrete. 

The fundamental reactions involved as well as bacterial growth are still not 

understood. The extent of ureolytic activity impact and their environmental factors on 

crack remediation are still not unclear. Relatedly, there is a need to further examine 

the extent of the possibility of the concrete environment to host bacteria and their 

influential factors on the metabolic activity. This is very important to accurately assess 

the productivity of bio-based healing, prior to the real application of bacterial concrete. 

Such findings can promote the precipitation of CaCO3 as a promising sustainable 

strategy to prolong concrete life span. 

Therefore, a comprehensive investigation was developed to assess the 

precipitation of microbial calcium carbonate inside the concrete using native bacteria. 

In addition, a mathematical model was also developed to quickly predict the complete 

understanding of crack-healing behaviours without wasting cost and time. 
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1.3 Objectives of Research 

The aim of this research was to assess the evolution of microbial calcium 

carbonate precipitation in concrete cracks. Four objectives were taken into account to 

achieve the aim of this research, including: 

(a) To examine the growth, characteristics and ureolytic activity of the bacteria in 

a harsh condition, such as the concrete environment.  

(b) To investigate the influential factors on microbial calcium carbonate 

precipitation in a condition similar to that of concrete. 

(c) To assess the extent of the microbial calcium carbonate precipitation in 

concrete by evaluation of the concrete strength and the crack-self healing.  

(d) To predict the bio-based crack healing results and the related factor affecting 

the microbial calcium carbonate precipitation through a mathematical model. 

 

1.4 Scope of the Research 

The scope of this study involved several phases to evaluate the influential 

factors on the productivity of calcium carbonate inside the cementitious material by 

the native bacteria. These investigations were developed to further promote the 

incorporation of the bacteria in the concrete for the purpose of healing structural 

cracks, and thus, prolonging concrete life span.  

In the first phase of the present work, the aerobic bacteria, which was isolated 

from the soil, was examined through gram stain, endospore, urease enzyme and CaCO3 

productivity. LB broth, urea, as well as calcium nitrate were used for bacterial growth, 

ureolytic activity and calcium carbonate production. The bacteria that fulfilled the 

requirement was identified and further used in the patch experiment.  
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The second phase dealt with influential factors affecting the hydrolysis of urea 

and inducing the microbial calcium carbonate at different conditions. These included 

calcium concentration of 50 mM - 2 M, urea concentration of 50 mM - 2 M, bacterial 

cells concentration of 106 – 108 cells/mL and pH of 9 - 13. The effect of these values 

on the rate of urea hydrolysis and CaCO3 precipitation were evaluated in a condition 

similar to that of concrete matrix. The rate of ureolysis and calcium carbonate 

precipitation were also calculated based on a logistic equation. 

A concrete mixture was designed to achieve a compressive strength of 30 MPa 

at 28 d with a slump of 150 - 200 mm in the third phase of this work. The proportions 

of ordinary Portland cement (OPC), local natural sand, crushed granite type 10 mm 

aggregates and tap water were obtained according to DOE method. In addition, 

bacterial spore, bacterial vegetative cells and urea-vegetative cells solution were also 

incorporated separately during concrete mixing with different concentrations. The 

change in concrete strength using 100 × 100 × 100 mm cubes was evaluated after 7, 

14 and 28 d. Other mechanical concrete and durability characteristics were not 

considered in this study. This, of course, was not to neglect them, but rather, it was 

believed that the main goal of the microbes was to heal cracks only. Relatedly, a crack 

width of 0.4 mm was developed in the mortar specimen with the bacteria as well as 

other relevant chemical compounds. Water immersion curing condition was used when 

monitoring the crack healing process for three months. The resulting microbial product 

was identified and quantified through both XRD and SEM-EXD. 

In the last phase, microbial calcium carbonate evolution in concrete crack 

through the hydrolysis of urea was simulated by developing a system of equations. It 

involved two first order ordinary differential equations to represent the hydrolysis of 

urea and CaCO3 evolution in the crack. In addition, the reaction-diffusion equation 

(second order partial differential equation) was also utilised to simulate the diffusion 

of urea along the crack domain. The system of equation was numerically solved using 

one dimensional Galerkin finite element as well as finite difference method. Moreover, 

the numerical model was further developed to obtain the main influential factor on the 

hydrolysis of urea. The predicted result was compared against the experimental work 

for the purpose of validation. 
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1.5 Research Significance 

The research findings from this project could benefit the community in several 

ways, including: 

(a) The microbial calcium product could provide a sustainable solution to alleviate 

crack repairs, which would then save a considerable amount of money. 

(b) It would protect concrete structures for over 200 yr. 

(c) It is also environmentally friendly as it would reduce the carbon dioxide 

emission in the cement industry. 

(d) The proposed model would provide significant contribution to better 

understand the evolution of crack healing.  

(e) The developed model would also reduce the cost of experimental tests through 

the prediction of the healing process in the crack mouth, as compared to 

experimental efforts. 

(f) The model is capable to predict the relevant processes involved without being 

time consuming and it is not tedious to conduct. 

(g) The proposed model could reduce human errors associated with experimental 

test. 

 

1.6 Layout of Thesis 

This thesis has five chapters. Firstly, Chapter 1 describes the overall 

assessment and provides a concise explanation of the research background. The aim, 

objectives, scope, research hypothesis and research significance are also spelt out in 

this chapter. 
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Chapter 2 provides the latest known knowledge to justify the problem statement of this 

research in terms of evidence, lack or thereof as well as the theoretical and 

mathematical framework behind this study. This is then followed by highlighting the 

research gap of this research and also detailing what it could contribute to. 

Next, Chapter 3 discusses the research methodology, which was adopted to 

implement this work. It was divided into four basic tasks. The first task was to briefly 

highlight the isolation and identification of the bacteria. The second task was to explore 

the influential factors on the ureolysis and microbial calcium precipitation in a 

condition similar to that of concrete. In addition, the investigation pertaining the 

suitability of the bacteria to be used in concrete was taken into account in task 3, in 

terms of compressive strength and crack healing. Finally, the development of a 

mathematical model designed to predict crack healing was discussed in task 4, 

followed by a comparison between the actual crack healing results obtained from 

experiment and those obtained from the proposed numerical model. 

 Chapter 4 then discusses the results of the four tasks in detail and deals with 

the core of the thesis. Specifically, it clearly and cohesively highlights the research’s 

contribution to the existing knowledge through tables, figures and charts. 

 Finally, Chapter 5 draws conclusion from the entire findings of this study and 

discusses future works that are needed to continue the investigation before large scale 

application can be implemented. 
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