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Abstract—The cations are needed as stimulants for effective flocculation by 

the cation-dependent bioflocculants. Addition of metal ions (cations) can coun-

terbalance anionic functional groups of both bioflocculant and solid particles 

thereby increasing the bioflocculant adsorption to suspended particles. In the 

present study, addition of all dose of both Ca2+ and Mg2+ stimulated the effi-

ciency of the bioflocculant with optimum flocculation efficiency of 95% rec-

orded with 5 mL of 1% Ca2+
. While lower dose (1 – 2 mL) of Al3+ also stimu-

lated the bioflocculant to about 94%, Na+ and Fe3+ inhibited flocculation at all 

doses tested. K+ slightly enhanced the flocculation at 4 - 10mL of 1%. The pre-

sent cationic bioflocculant can be suggested as a substitute for chemical floccu-

lants. 
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1 Introduction 

Generally chemical flocculants are cost-effective and efficient in flocculation, they 

are however associated with generation of secondary pollutants since they are not 

completely degraded. To address this limitation, ongoing research efforts are focusing 

on extra cellular polymers (products of microbial fermentations called bioflocculant) 

that have flocculation ability. These microbial based polymers can aggregate solid 

particles and cells from solutions to facilitate their sedimentation and removal. They 

are easily degradable to non-toxic residues that are not pollutant in nature (Sun et al., 

2015). However, their application is hinder by high cost of production arising from 

cost of fermentation substrate and low efficiency (Mohammed and Dagang, 2019a).  

Compositional characterization of biopolymer flocculants revealed existence of an-

ionic functional moieties including uronic acids and proteins which contained mostly 

carboxylic functional groups and proteins whose amino acids mostly glutamic and 

aspartic acid. Both uronic acid and proteins contains carboxylic functional groups 
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(Seviour et al., 2010). Moreover, the polysaccharides components of bioflocculants 

are also deprotonated at some pH peculiar to most activated sludge systems. Majority 

of the solid particles found in the wastewater are also negatively charged. These limits 

the efficacy of the microbial based flocculants (Lin et al., 2013).  

Cations play a significant role in stimulation of cation dependent bioflocculant 

through neutralization and stabilization of the lingering negative charges mainly of 

the active moieties of the biopolymer flocculants and thus bridge between particles 

and the biopolymer. In this process, the cations lessen the distance between the parti-

cles and the biopolymer flocculants through increase in electrostatic attraction be-

tween the duo (Okaiyeto et al., 2016, Ndjiko and Dagang, 2019b). The added metal 

ions also increases the floc size thereby facilitating sedimentation of flocculated parti-

cles (Murugesan et al., 2017). The present study focuses on hybridization of biofloc-

culant produced with chicken viscera hydrolysate (a very low-cost fermentation sub-

strate) with cations to increase cost of production and concurrently increase the floc-

culation efficiency of the bioflocculant.  

2 Methodology/Materials 

2.1 Bioflocculant production  

The bioflocculant was produced by growing A. flavus in a liquid viscera hydroly-

sate made up of crude protein 5.40, sugar 3.20, carbon 5.86, nitrogen 1.27, sulphur 

0.83 and hydrogen 10 all in %w/w as the production medium. The culture conditions 

used included temperature 35°C, agitation 150 rpm, incubation time 72 h, inoculum 

4% and pH 7 as optimized in our previous studies. Subsequently, the 72h culture 

broth was dispensed in to 50mL centrifuge tubes and spined at 10,000 rpm with the 

aid of a centrifuge (KUBOTA 5922) to remove the biomass. The bioflocculant rich 

culture supernatant was collected into sterile glass beaker and used as the crude bio-

flocculant in subsequent experiment.  

2.2 Determination of flocculation efficiency and cationization 

The bioflocculant efficiency was estimated in accordance with the methods 

demonstrated by More et al. (2015), Czemierska et al. (2017) and Xia et al. (2018). 

Briefly, 4mL (optimum dose) crude bioflocculant was dispensed in to 100 mL sus-

pended Kaolin clay (4g/L, pH 7) in 500 mL glass beaker. Different doses (1 – 10mL) 

of 1% of the cation of interest were added as the bioflocculant aid. The cations con-

sidered include Na+, K+, Ca2+, Mg2+, Al3+ and Fe3+ and were all added as chloride 

salts. The suspension containing the bioflocculant and the cations were stirred in a 

flocculator tester (JLT6, VELP) at 200 rpm for 1 min, 80 rpm for 5 min, and then held 

motionless for 5 min to sediment. The optical density reading of clarified top solution 

at 550 nm estimated with T60 spectrophotometer was recorded. The efficiency was 

finally calculated using the following equation (Wang et al., 2015) 
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 Flocculation efficiency = [(𝐴 − 𝐵 𝐴⁄ ) × 100%] (1) 

Where 𝐴 represent the optical density of the control (in which sterilized viscera 

medium was used in place of the bioflocculant) and 𝐵, the optical density of the sam-

ple at 550 nm. The control experiment in which no cation was added was carried out 

and calculated following the same procedure above. 

2.3 Measurement of zeta potential 

The zeta potential studies were conducted with the aid of Zeta potential analyser, 

Zeecom (ZC-3000 series). Samples were prepared for zeta potential measurement by 

dissolving 5mg of the flocculated particles in10mL deionized water. The samples 

were loaded in to a clean measurement cell and mounted to Zeecom main unit. All 

measurements were conducted for at least 200 particles using automatic tracking 

measurement mode using scattered light source 

3 Results and Findings 

3.1 Effect of N+ on the bioflocculant efficiency 

The effect of Na+ on the bioflocculant is presented in Figure 1. The results indicat-

ed that all the doses tested inhibited flocculation of the Kaolin suspension. The maxi-

mum flocculation efficiencies recorded were 54 and 53.4% at the cation dose of 1 and 

2 mL 1% NaCl2 respectively as compared to the flocculation efficiency (60.3%) of the 

control in which no cation was added. Interestingly the inhibition of flocculation in-

creases as the cation dose increases to the lowest flocculation efficiency of 26.5% at 

the cation dose of 10mL 1% NaCl2. The zeta potential of the flocculated particles at 

pH 7 also increases to the maximum of -29.3mV as the cation dose increases thereby 

consolidating the flocculation efficiencies. The zeta potential value has a direct rela-

tionship with stability of suspended particles and is popularly used to predict floccula-

tion. Particles with ZP values of ±(0 –10mV) are extremely unstable, ± (10–20mV) is 

discreetly stable, ±(20–30mV) is moderately stable and more than 30mV is highly 

stable (Bhattacharjee, 2016; Freitas and Müller, 1998). Thus, the closer the zeta po-

tential of particles to zero, the higher their tendency to aggregate and vice versa. 

The binding ability of the cations to the biopolymers has direct relationship with 

the ionic strength, size and radius of the hydration shell of the cations. Increase in 

ionic size triggers decrease in the hydration shell radius. Therefore, cations that has 

high valency, size, and tinny hydration shell could move nearer to the negative charge 

spots of the biopolymers to form bonds with them (Kara et al., 2008). Though potas-

sium and sodium possess same charge, the hydration radius of potassium (0.53 nm) is 

smaller than that of sodium (0.79 nm) (Kiyohara and Minami, 2018). As such potassi-

um can easily loses its hydration shell when it is in proximity with the functional 

groups of the extracellular polymeric substances while the water molecules around the 

sodium prevents it approach to the surface (Goddard, 2017). Thus, sodium’s poor 
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stimulation of bioflocculants is linked to its monovalency, small size and higher hy-

dration radius. 

 

Fig. 1. Effect of Na+ on bioflocculation efficiency of A. flavus bioflocculant produced from 

chicken viscera hydrolysate 

3.2 Effect of K+ on the bioflocculant efficiency 

The effect of K+ is as display in Figure 2. It shows very little stimulation on the ef-

ficiency of the bioflocculant. The maximum flocculation of about 77.6 % was 

achieved at the cation dose of 4 mL. As the cation dose increases beyond 5 mL, the 

efficiency dropped to minimum of 69.2% at 10mL.  

The minimum zeta potential recorded was -5.6mV at 4mL cation dose while the 

highest of 23.2 was recorded at 2 mL cation dose. K+, a monovalent cation has a lone 

valency on its exterior electron arrangement and thus can only form a single bond 

with the bioflocculant (Mohammed and Dagang, 2019b). This limits it capacity for 

further complex formation because it needs a higher ionization energy to do that 

(Ueyama et al., 2002)  

54 http://www.i-joe.org



Paper—Effect of Cation on Efficiency of Aspegillus Flavus Bioflocculant Produced from Chicken … 

 

Fig. 2. Effect of K+ on bioflocculation efficiency of A. flavus bioflocculant produced from 

chicken viscera hydrolysate 

3.3 Effect of Ca2+ and Mg2+ on the bioflocculant  

The stimulation activity of the Ca2+ on the bioflocculant is as shown on Figure 3. 

All the doses tested showed remarkable stimulation on the bioflocculant as compared 

to the control but peaked to about 95% at 5mL. Meanwhile, the efficiency dropped to 

minimum of 76.2% at 10mL cation dose. Lowest efficiency of 84.9% was also rec-

orded at the lowest dose of 1mL indicating the importance optimum cation dose in 

bioflocculant stimulation by the metal ions. Like the Ca2+, Mg2+ highly stimulated the 

bioflocculant at all doses tested (Figure 4) however maximum efficiency of about 91 

– 93% was recorded with 3 – 5 mL MgCl2. The lowest efficiency of 75.9% was rec-

orded at 10 mL of 1% MgCl2. In agreement with these findings, the efficiency of 

biopolymer scretted by a haloalkaliphilic Bacillus sp. was greatly stimulated by diva-

lent cations including Ca2+, Cu2+, Zn2+, Mn2+, Co2+ and Fe2+(Kumar et al., 2004). 

Many other studies (Abu-Elreesh et al., 2011;Cosa and Okoh, 2014; Makapela et al., 

2016; Wang et al., 2014) have demonstrated enhanced bioflocculation with divalent 

cations. 

The divalent cations have valency of 2+ on its exterior conformation and can form 

two bonds with the bioflocculant and suspended Kaolin particles. These bonds held 

the bioflocculant and the particles nearer and firmer together (Khiew et al., 2016). 

Though in the present study, Ca2+ only show a slight stimulation capacity (95%) over 

Mg2+ (93%), Ca2+ have been widely applied and reported to be most effective cation 

in terms of bioflocculant stimulation as compare to other divalent cations such as 

Mg2+ and Mn2+. This is for the reason that Ca2+ has less stability. Its electron confor-
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mation and atomic radius is 4s2 and 197 pm respectively in comparison with Mg2+ 

with only an electron conformation and radius of 3s2 and 160 pm. Thus binding be-

tween Ca2+ and the carboxylate group in the biopolymer is easier (Khiew et al., 2016). 

The lower zeta potentials recorded for both Ca2+ and Mg2+ collaborated their stimula-

tory effect. Increase in ionic strength leads to compression of the electric double layer 

(EDL) thereby lowering the zeta potential and vicky-verky (Bhattacharjee, 2016). 

Thus, the EDL of the bioflocculant stimulated with Ca2+ and Mg2+ become more 

compress as compared to those stimulated with monovalent cations thereby lowering 

the zeta potential.  

 

Fig. 3. Effect of Ca2+ on bioflocculation efficiency of A. flavus bioflocculant produced from 

chicken viscera hydrolysate 

 

Fig. 4. Effect of Mg2+c on bioflocculation efficiency of A. flavus bioflocculant produced from 

chicken viscera hydrolysate 
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3.4 Effect of Fe3+ on the bioflocculant  

The Fe3+ has high inhibition effect on the bioflocculant at all the doses (Figure 5). 

The highest efficiency recorded was 45.5% at 2 mL of 1% FeCl3. The inhibition of the 

bioflocculation became more pronounced as the cation dose increases with only about 

33% efficiency at 10 mL of 1% FeCl3. This inhibition is consolidated by the high zeta 

potential (-21 - -29.88 mV) recorded for all the cation doses. This results agrees with 

the work of Zheng et al. (2008) who demonstrated the inhibitory effect of Fe3+ on the 

ability of Bacillus sp. F19 bioflocculant to flocculate Kaolin, activated carbon and fly 

coal. Many other studies (Elkady et al., 2011; Gomaa, 2012; Liu et al., 2010; 

Makapela et al., 2016; Ugbenyen et al., 2014) reported inhibitory effect of Fe3+, Lu et 

al. (2005) and Liu et al. (2015) centrally reported its stimulatory effect. 

The inhibitory effect of Fe3+ is because addition of trivalent ion does not only add 

to the cationic concentration of the bioflocculant, but likewise increase the cationic 

thickness over the surface of the particles with its extra electron. This alters the stabi-

lization of the system and prevents flocs formation between hybridized bioflocculant 

and the particles. The remaining ion in the system may also replace the H+ in Kaolin 

suspension.  

 

Fig. 5. Effect of Fe3+ on bioflocculation efficiency of A. flavus bioflocculant produced from 

chicken viscera hydrolysate 

3.5 Effect of Al3+ on the bioflocculant 

The stimulatory effect of Al3+ on the bioflocculant is shown in Figure 6. Interest-

ingly, significant stimulatory effect was recorded at lower doses of 1 – 3mL with 

highest efficiency of 94.6% at 1mL. No significant effect was observed as the cation 

dose increases to 4 – 10mL. This result indicated that the wide reported inhibition by 
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the Al3+ is due to use of higher dose. This findings agree with Salehizadeh et al. 

(2000) who reported highest flocculation activity for bioflocculant As-101 stimulated 

with a 0.2 mM concentration of Al3+.  

They also demonstrated a rapid dropped in flocculation activity as the concentra-

tion increased to 0.8Mm. Further, Al3+ stimulated the flocculation activity of pH and 

cation dependent bioflocculant produced by a Consortium of Halomonas sp. Okoh 

and Micrococcus sp. Leo (Okaiyeto et al., 2013) 

Generally, addition of cations augment flocculation by neutralizing and stabilizing 

the lingering negative ions of uronic acid and pyruvic acid found in the bioflocculants 

through bridge formation thereby binding the Kaolin particles together (Wong et al., 

2012).  

Thus, the presence of the cations more than the residual negative groups of the bio-

flocculants will add to the residual metal ions within the system. These diffused resid-

ual ions could compete with the cation hybridized bioflocculant by creating a bridge 

amid the metal ion and the suspended particles. These phenomenon inhibit floc for-

mation between the cationized bioflocculant and the particles (Khiew et al., 2016) The 

important of using the appropriate cation dose for bioflocculant stimulation is demon-

strated in Figure 7  

 

Fig. 6. Effect of Al3+ on bioflocculation efficiency of A. flavus bioflocculant produced from 

chicken viscera hydrolysate 
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Fig. 7. Schematic effect of cation dosage on bioflocculant stimulation  

3.6 Mechanism of bioflocculant stimulation by the metal ions 

Cation stimulated bioflocculation occurs through neutralization and stabilization of 

lingering negative charges found on the active sites of the bioflocculants thereby 

bridging between the particles and the bioflocculant. this subsequently improves the 

flocculation capacity of the bioflocculant (Tang et al., 2014). In the present study, the 

zeta potentials were generally low at higher flocculation efficiencies recorded with 

multivalent cations such as Ca2+, Mg2+ and Al3+ while higher zeta potential values 

were recorded at low flocculation efficiencies with cations such as Na+, Fe3+ and 

higher doses of Al3+. For example, when flocculation efficiency of 95% was achieved 

with 5mL 1% CaCl2, the zeta potential of only -4.5mV was recorded. When the floc-

culation efficiency (32.1%) was inhibited at 8mL 1% FeCl3, the zeta potential rises to 

-29.88mV. The lower zeta potentials recorded were due to the ability of the cations to 

neutralize and bridge between the bioflocculants and the particles while lack of neu-

tralization and bridging resulted in low flocculation efficiencies and higher zeta po-

tential values.  

4 Conclusion 

The present study achieved a bioflocculant production from a bioflocculant pro-

ducing fungus; A. flavus using hydrolysed chicken viscera as medium. The flocculant 

secreted has good flocculating efficiency promoted by hybridization with divalent 

cations (Ca2+, Mg2+) and a trivalent cation Al3+ in Kaolin suspension. While K+ only 

slightly promoted the flocculation efficiency flocculation was inhibited by Na+ and 

Fe3+. The stimulatory effects of Ca2+, Mg2+ were visible at 1 – 10mL of 1% of both 

cations while Al3+ was at 1- 3mL of 1%. The zeta potentials of the flocculated parti-

cles were in most cases correspondent to the flocculation efficiencies. Overall, bridg-
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ing mediated by the cations is suggested as the mechanism of bioflocculation for the 

present bioflocculant. 
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