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Abstract: Advancement and development in bone tissue engineering, particularly that of composite
scaffolds, are of great importance for bone tissue engineering. We have synthesized polymeric
matrix using biopolymer (β-glucan), acrylic acid, and nano-hydroxyapatite through free radical
polymerization method. Bioactive nanocomposite scaffolds (BNSs) were fabricated using the
freeze-drying method and Ag was coated by the dip-coating method. The scaffolds have been
characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM),
and X-ray diffraction analysis (XRD) to investigate their functional groups, surface morphology,
and phase analysis, respectively. The pore size and porosity of all BNS samples were found to
be dependent on silver concentration. Mechanical testing of all BNS samples have substantial
compressive strength in dry form that is closer to cancellous bone. The samples of BNS showed
substantial antibacterial effect against DH5 alpha E. coli. The biological studies conducted using the
MC3T3-E1 cell line via neutral red dye assay on the scaffolds have found to be biocompatible and
non-cytotoxic. These bioactive scaffolds can bring numerous applications for bone tissue repairs
and regenerations.

Keywords: Ag-coated scaffolds; bioactive nanocomposite; osteoblast; bone tissue engineering

1. Introduction

Bone tissue engineering is an advanced approach to treat bone defects caused by disease, aging,
and accident by using fabricated scaffolds. It has brought numerous new biomaterials and methods
developments for treating difficult segmental and contained skeletal defects. This concept has applied
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through the medicinal concept with principles, technologies, and methodologies of life sciences to
repair, improve, and maintain their function [1–4]. Porous scaffolds with appropriate mechanical
strength and biological properties, such as non-toxic, biocompatible, and biodegradable have played
vital roles in cell adherence, proliferation, and growth of cells or tissues in bone repair [5–7]. The
biodegraded scaffold should not elicit any toxic, harmful, damaging, or immunological response to the
living tissues or organs [8–10].

The bone composition is comprised of organic and inorganic phases and made up of proteoglycans,
glycosaminoglycans, glycoprotein collagen, and calcium phosphate [11–14]. Bone also contains
an extraordinary amount of hydroxyapatite (HAp), which has suitable bioactive, biocompatible,
and osteoconductive biological behavior. [15,16]. The brilliant biochemical affinity of HAp with
natural bone tissue makes it a potential candidate for bone tissue engineering. Although having an
excellent biological response, HAp is an inherently brittle material. The poor mechanical strength
can be overcome by the use of polymers, creating a composite scaffold of polymer–ceramic [17,18].
Furthermore, antimicrobial activity of the scaffolds can be enhanced using a silver dip-coating method.
Silver (Ag) is a suitable material for biological activities because of its anti-microbial and biocompatible
properties [19,20]. Numerous research studies have reported their antimicrobial activities for series of
various bacterium [21]. Therefore, silver has gained popularity as a popular antimicrobial material
in biomedical and clinical applications. Insofar, silver-based composite materials are being used in
the prevention of bacterial infection in orthopedics and dental implants [22]. Marsich et al. has
reported alginate/HAp nanocomposite for bone graft with anti-bacterial activities due to the presence of
Ag-nanoparticles and it was evident to be a suitable candidate for tissue engineering [23]. Jaiswal et al.
used Ag-nanoparticles over titanium implant surface using immobilized Ag-nanoparticles and carried
out osteoblast and anti-bacterial activities and found it to be antibacterial and osteogenic [24]. Das et
al. fabricated Ag-coated nanotubes composite materials to increase osteogenesis and antimicrobial
activities [25]. Tyllianakis et al. reported synthesized Ag-coated titanium-based nanocrystal to
enhance antimicrobial activities [26]. Lee et al. fabricated porous scaffolds from gelatin and (1→3),
(1→6)-β-glucan using the freeze-drying method. James et al. prepared carbon HAp/β-glucan composite
for bone tissue engineering with enhanced biocompatibility [27]. The biopolymeric scaffolds have
gained popularity over the decades. The scaffolds porosity and microstructure can be controlled using
the types and amount of biopolymers [28,29]. β-glucan (BG) is a polysaccharide similar to the backbone
of arabinoxylan or xyloglucan [30]. BG has promising biological properties like biocompatibility,
biodegradability, and water adsorbing properties. It has potential applications in pharmaceutical and as
well as other biomedical applications like drug carriers, wound healing, and tissue engineering [31,32].

However, the scaffold should be highly porous with interconnected pores to have enough
space for cell adhesion, growth, differentiation, and migration [33]. In some instances, scaffolds
contain bioactive substances with control release to affect incorporated cells. Different methods have
been established to fabricate porous, three dimensional, and biodegradable scaffolds for bone tissue
engineering like electrospinning, phase separation, gas-forming foam, thermal-induced separation,
and freeze-drying [28,34].

The current research has focused on fabricating the synthesis of bioactive nanocomposite
scaffolds (BNSs) for bone tissue engineering. Hence, β-Glucan, acrylic acid-based grafted and
HAp was synthesized through free-radical polymerization, and scaffolds were prepared using the
freeze-dried method. Then, the Ag dip-coating method was utilized to coat bioactive scaffolds with
various concentrations of Ag. According to the best of our knowledge, this approach of fabricating
Ag-coated bioactive scaffolds has not been reported thus far. Ag-coated bioactive nanocomposite
scaffolds have potential antimicrobial and biocompatible properties that support cell adhesion,
proliferation, and cell migration for osteogenesis. The structural, and morphological characteristics
of these BNSs were studied using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction
analysis (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM),
and Brunauer–Emmett–Teller (BET). The mechanical properties were tested using the universal
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testing machine (UTM). The mouse pre-osteoblast cell line (MC3T3-E1) was used to investigate the
biocompatibility of the scaffolds

2. Materials and Method

2.1. Materials

The®-Glucan (BG) was purchased from DSP Gokyo Food and Chemical Co. Ltd., Osaka Japan.
Acrylic acid (AAc) and N,N’-methylene-bis-acrylamide (N, N-MBA), n-HAp powder (<100 nm particle
size), and AgNO3 were purchased from Sigma-Aldrich, Selangor, Malaysia. The phosphate buffer
saline (PBS) solution was prepared using sodium hydrogen phosphate, potassium chloride, sodium
chloride, di-potassium hydrogen phosphate, and hydrochloric acid obtained from Merck, Darmstadt,
Germany and used without any purification.

2.2. Bioactive Nanocomposite Scaffold Fabrication

The biopolymeric nanocomposites were prepared by dissolving 2 g β-glucan (BG) in
deionized-water and transferred into round bottom two-neck flask heated at 65 ◦C with constant
stirring under an inert nitrogen atmosphere with addition of 0.05 g potassium persulfate as initiator.
After 30 min, 0.40 mL of AAc as monomer and N, N-MBA crosslinker (0.05 % of AAc) were added into
reaction media. After 45 min, (2.5 g) n-HAp powder was added gradually with continuous stirring
for 3 h. Hence, grafting of acrylic acid into BG was done using free-radical polymerization. HAp
nanoparticles have been trapped into the polymeric network of BG-graft-AAc on completion of the
reaction. N2 gas was removed from the reaction media, followed by cooling at ambient. The reaction
suspension was filtered under vacuum to remove unreacted reactants and washed with deionized
water later it dried at 55 ◦C overnight in the oven. The synthesis of bioactive nanocomposite powder
and their name identification are presented in Table 1. The bioactive nanocomposite powder (5 g) was
homogenized into deionized-water (10 mL) to form slurry. Then slurry was filled into cylindrical molds
(2 cm × 6 cm) and kept at −40 ◦C for 24 h. The porous bioactive nanocomposite scaffolds were obtained
by and freeze drying method. The porosity and pore size of the bioactive nanocomposite scaffolds
were analyzed using Brunauer–Emmett–Teller (Micromeritics Gemini II 2370) given in Table 1.

Table 1. Composition of the bioactive nanocomposite scaffolds, their respective porosity, and pore size.

Samples AgNO3 Concentration (M) Pore Size (µm) Porosity (%)

BNS1 0.15 175 ± 2 88.5 ± 2
BNS2 0.30 135 ± 1 81.5 ± 1
BNS3 0.45 115 ± 2 74.5 ± 2
BNS4 0.60 92 ± 2 69.5 ± 1

2.3. Deposition of Silver Particles on Bioactive Nanocomposite Scaffolds

The bioactive scaffolds were washed with deionized water after treating with 10 wt. % NaOHaq.
The solution was kept at ambient for 5 min. Initially, different concentrations of silver nitrate (AgNO3)
solution was prepared from 0.15 to 0.60 M. Dropwise aqua ammonia (25 wt. %) was added into AgNO3

solutions. It was stirred to obtain a clear [Ag(NH3)2]+ solution. Then, scaffolds were dipped into the
[Ag(NH3)2]+ solution for 20 s and oven-dried for 5 min at 100 ◦C. This process was repeated for 50
cycles to deposit Ag onto the scaffolds. Finally, Ag-coated bioactive nanocomposite scaffolds (BNS)
were washed and dried as shown in the Figure 1.
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Figure 1. Schematic diagram of the preparation and characterization of a bioactive nanocomposite
scaffold (BNS).

3. Characterizations

3.1. Fourier Transform Infrared Spectroscopy

Chemical composition of BNS was assessed using FTIR (Shimadzu FTIR-8100A, Tokyo, Japan) with
a resolution of 4 cm−1 and a frequency region from 400 to 4000 cm−1, and 16 scans were accumulated
per sample. The samples were reduced to powder and analyzed as potassium bromide (KBr) pellets.

3.2. X-ray Diffraction

Phase analysis of the BNS was studied using Advance X-ray diffractometer (Bruker AXS D8,
Kontich, Belgium) spectrometry. The XRD analysis was conducted through a diffractometer at a voltage
of 40 kV and a current of 40 mA with Cu Kα radiation (1.540 Å) at 2θ range of 10–80◦ to determine the
structure and peak data.

3.3. Scanning Electron Microscope/ Energy Dispersive Spectroscopy

Morphology of the BNS was observed by SEM (JEOL-JSM-6480, Peabody, Massachusetts, USA)
coupled with EDS for elemental quantitative analysis. The samples were gold-sputtered.

3.4. Mechanical Testing

Compression strength of the BNS was analyzed in a dry state by UTM (Testometrics, Rochdale,
UK) with a compression loading rate of 5 mm/min. All cylindrical BNS (4 mm height and 10 mm
diameter) were analyzed until failure. The elastic modulus was determined using the slope of the
stress-strain curve. Five replicates per sample were tested.
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3.5. Swelling Analysis

Scaffold swelling analysis was analyzed using water and phosphate buffer saline (PBS) solution
by maintaining 7.4 pH at a temperature of 37 ◦C. The well dried scaffolds were soaked in solutions
by keeping the conditions as mentioned above. The scaffolds were withdrawn from the solutions at
different time periods and additional solvent concentrations were eliminated to have exact weight.
The percentage of scaffold swelling has been estimated by Equation (1).

Swelling(%) =
WS −WD

WD
× 100 (1)

where, Ws = weight of swelling scaffolds and WD = weight of dried scaffolds at various time intervals.

3.6. In Vitro Studies

3.6.1. Anti-Microbial Activities

An in vitro antimicrobial activity assay was conducted by agar disc-diffusion assay using
gram-negative model bacterium Escherichia coli DH5 alpha. These bacterial strains were incubated at
37 ◦C to analyze antimicrobial activities of materials. Bacterial culture was spread uniformly using
sterile glass rod over solidified agar [35]. Then 90 mL of each scaffold extract was placed over the
bacterial Petri-plate. The Petri-plate was kept into an oven incubated for 24 h at 37 ◦C.

3.6.2. Sample Preparation for Cell Culture

BNS3 extract was selected for cell culture observation. The bottom of each well of 24-well plate
was finely coated with scaffold and UV-light sterilized for 1 h and used to study morphological changes
of the cells. Different concentrations of BNS3 extract from 0.125 to 2.00 mg/mL were prepared to
evaluate cell viability and uncoated wells were used as control.

3.6.3. Cell Morphological Analysis

The MC3T3-E1 mouse pre-osteoblast cell line was purchased from American Type Culture
Collection (ATCC, Manassas, VA, USA). Cells were cultured on coated wells of 24 well plates at the
density of approximately 5000 cells per cm2 inα-MEM supplemented with 10% FBS (Fetal Bovine Serum
Gibco™ 12662011, Gibco laboratories, Gaithersburg, MD, USA, 100 U/mL Penicillin and 0.1 mg/mL
Streptomycin solution (Gibco™ 15140122, ATCC, Manassas, VA, USA). The cells were incubated for
72 h in 5% CO2 with 90% humidity at 37 ◦C. The cell morphology was analyzed using a Nikon ECLIPSE

TS100 (ATCC, Manassas) inverted fluorescence microscope with live cells stained using 10 µg/mL
of Fluorescein diacetate solution in complete growth medium to minimize the background scaffold
coating and highlight only living viable cells under 488 nm excitation wavelength.

3.6.4. Cytotoxicity Using the Neutral Red Assay

The pre-osteoblast cell viability assay was performed by seeding cells in a 12-well plate with
approximately 5,000 cells per cm2 for 24h. Different concentrations of BNS3 extract (from 0.125
to 2.00 mg mL−1), dimethyl sulfoxide (DMSO) (1%) and non-treated cells were taken as negative
and positive control, respectively. The neutral red assay of cells was performed after 24, 48, and
72 h, reported by Repetto [36]. The treated and control cells were incubated in 40 µg/mL neutral
red in complete growth medium for 2 h and washed with phosphate buffer saline (BS). Picked up
dye was released in a de-staining solution consisting of 1% glacial acetic acid, 49% distilled water,
and 50% ethanol for 5 min at room temperature. The optical density was measured at 540 nm using a
spectrophotometer and cell viability (%) by Equation (2).

Cell viability (%) =
ODS

ODC
× 100 (2)



Materials 2020, 13, 971 6 of 18

whereas ODS represents Optical Density in treated samples, and ODC designates Optical Density in
positive control.

3.6.5. SEM Sample Preparation

The images of the cultured cell on BNS3 were taken using SEM (JSM 6940A, Jeol, Tokyo, Japan)
with a different period; 24 h, 48 h, 72 h, and 7 days. The cultured cells were washed with PBS and
fixed by absolute ethanol for 7 min and kept at 4 ◦C. Before SEM analysis, the well dried samples were
gold-sputtered and analyzed with 1 kV voltage, 7 × 10−2 bar pressure and 20 mA deposition current
for 2.0 min.

3.6.6. Statistical Analysis

The quantitative data were obtained in triplicate form and expressed as the mean ± standard
deviation (SD). The statistical analysis conducted using statistical analysis system software (IBM
SPSS Statistics 21, SPSS Inc., New York, NY, USA) and value of p < 0.05 and n = 3 taken as
statistically significant.

4. Results and Discussion

The freeze-dried porous BNS samples have been prepared using n-HAp in the grafted natural
polymer. The acrylic acid was grafted into β-glucan through the free-radical polymerization process
and, n-HAp has been trapped into the polymeric matrix of grafted BG during the reaction.

4.1. FTIR

Figure 2 shows the spectral peaks at 1093 cm−1 are described triply degenerated P-O stretching [37].
Whereas, peaks at 603 and 569 cm−1 describes the bending mode of O-P-O. The absorption band in
the region from 560 to 600 and from 1000 to 1100, cm−1 were attributed to the presence of calcium
phosphate moiety of HAp [37,38]. Hence, presence of n-HAp has been confirmed by PO4

−3 at 630 cm−1

into BNS [39–41]. The peak at 1220 cm−1, 906 cm−1, and 1033 cm−1 attributed to C–O cyclic, pyranose,
and functional group of acrylic. These vibrations might due to the formation of covalent bond between
BG and AAc [42]. The band at 1740 cm−1 corresponds to the stretching vibration of AAc carbonyl
group. The peaks/bands between 1430 and 1450 cm−1 are the result of C–O stretching and C–O–H
bending vibrations. Consequently, the presence of all these peaks/bands and the demise of BG’s
O–H bending vibration is confirmation that AAc grafted the BG polysaccharide on the O–H site.
These peaks/bands confirm the grafting of AAc on the backbone of the polysaccharide [43]. The
adsorption peak at 947 cm−1 is due to C–O stretching [44]. Stretching vibration at 412 cm−1 is the
characteristic of silver and hydroxyl (OH−) has a steric effect on coordination between oxygen (O) and
Ag-particles, the electronegativity of oxygen is higher due to its donating ability [45]. The absorption
bands from 3600 to 3100 cm−1 (Figure 2) attribute to the hydroxyl stretching vibrations. The absorption
at 2950–2850 cm−1 expresses the aliphatic C-H stretching vibration.
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AAc) has exhibited at a characteristic peak near 2θ of 26° 

of 2ѳ of 25.3

Figure 2. Fourier transform infrared spectroscopy (FTIR) spectral profiles show various functional
groups along with their different modes of vibrations available in the BNS.

4.2. XRD

The XRD pattern is shown in Figure 3 for organic and inorganic phase analysis of the BNS. The
low intensity of organic substances (BG and AAc) has exhibited at a characteristic peak near 2θ of
26◦ with reduced crystallinity [46]. This reduced crystallinity is due to the H-bond formation and
chemical reaction of BG and AAc that results in reduced crystallinity of BG in BNS (observed in
FTIR Spectra). The presence of the n-HAp into the polymeric matrix of grafted BG leads towards
non-crystalline behavior of the polymeric region [47,48]. The observed sharp peaks of HAp are at
an angle of 2

 

θ

of 2ѳ of 25of 25.3◦, 31.4◦, 46.6◦, 49.6◦, 51.3◦, and 61.3◦ (ICPDS-04-0783) with their corresponding
diffraction planes of (213), (112), (222), (213), (140), and (304) as shown in Figure 3. The peak at 39.69◦

indicates the existence of Ag-coated with corresponding (102) diffraction plane which matched with
standard card (ICPDS-04-932). Furthermore, the calculated cell parameters BNS are (a = b = 9.4000)
and (c = 6.9300), which is perfectly match with standard data (PDF-4-932). The detailed calculated
parameters of prepared samples shown in the Table 2 below.
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Figure 3. X-ray diffraction (XRD) spectra of BNS samples.

Table 2. Calculated parameters of prepared BNS samples.

Sample Angle (2

 

θ

of 2ѳ of 25) FWMH Lattice Strain (%) d (Å) D (nm)

BNS1
31.1◦ 39.69◦ 0.70317 0.94232 0.0218 0.0115 3.620 2.45 12.25 9.36

HAp Ag

BNS2
31.1◦ 39.69◦ 0.80141 0.96215 0.0208 0.0232 3.45 2.41 12.39 9.74

HAp Ag

BNS3
31.1◦ 39.69◦ 0.8316 0.97137 0.0148 0.0212 3.36 2.32 12.95 9.82

HAp Ag

BNS4
31.1◦ 39.69◦ 0.90317 0.99182 0.0217 0.0315 3.14 2.25 13.35 9.96

HAp Ag

The average crystallite size of 49.9 nm.

4.3. SEM–EDX

The SEM analysis has been performed to investigate the pore size and surface morphology of
BNS, as depicted in Figure 4. All of the BNS samples show porous and rough surface morphology.
The irregular, non-smooth, and rough surface morphology help cell adhesion, while the porosity with
appropriate pore size encourages cell proliferation and adhesion [49,50]. Additionally, the SEM profile
has presented a different pore size to promote cell adhesion, proliferation, diffraction, and extracellular
matrix secretion. The BNS almost have an almost uniform pore size from 83 ± 2 µm to 175 ± 2 µm,
whereas, BNS3 had 108 ± 1 µm with an average pore size suitable for osteointegration. However,
50–200 m is an appropriate pore size for osteoblast cell attachment, proliferation [51,52]. Hence, BNS2
with proper pore size has encouraged cell proliferation and cell culture (evident from Figure 9). The
conducted elemental analysis of the bioactive scaffold confirmed the presence of HAp by available
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carbon (31.26%), oxygen (24.56%), calcium (14.18%), phosphorus (12.64%), and silver (8.99%) into
BNS3 as shown Figure 4 The overall SEM–EDX results like: morphology, pore size, porosity, and
available elements show that these scaffolds are helpful to regenerate and have vital role for bone
tissue engineering [16].

 
Figure 4. Scanning electron microscopy (SEM) images of BNS samples and elemental analysis of BNS3.

4.4. Mechanical Testing

Mechanical strength of all BNS samples have been studied in dry and wet form as shown in
Figure 5. Deionized water (H2O) was used as media used for wet analysis. The coating concentrations
of AgNO3 have changed the mechanical feature of the BNS. It was found that increasing concentrations
leads to enhance compressive strength. It was also found that mechanical strength of these scaffold
samples and exhibited lower mechanical strength in wet environment due to release of Ag-particle
into aqueous media [53,54]. Ag-coating has a vital role in improving the mechanical strength of
BNS samples with suitable porosity for tissue engineering [55]. The polymeric matrix has a different
chemical structure and impact over the grain boundary. Hence, Ag-coating has the capability of
inducing functional properties like porosity, pore size, grain boundary, which also affects the mechanical
strength [56].
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Figure 5. Mechanical behavior of all scaffold samples in dry form A and wet form B at room temperature:
(A,B) (i) percentage of strain (strain %) of all BNS samples. (A,B) (ii) unconfined compression strength
testing (UTS) of all BNS samples.

4.5. Swelling Analysis

The swelling behavior of scaffold has a vital role in biological activities like in vitro studies. The
body fluid contains cell nutrients and metabolites that absorbs during swelling of scaffold. More is
the swelling and more transfer of body fluids. The porosity, pore size, and surface area of scaffolds
increases due to swelling that helps cell migration, adhesion, and proliferation [57,58]. Moreover,
controlled swelling of scaffolds under physiological conditions strengthen the scaffolds structure with
controlled degradation that plays a key role for bone regeneration [59].

The swelling effects of scaffolds were analyzed under various physiological conditions, such as
temperatures, pH levels, and time intervals. Figure 6A,B shows that these scaffolds exhibited different
rate of swelling in aqueous media and PBS solution at a temperature of 37 ◦C and pH of 7.4 and
continued to swell until equilibrium. At these conditions, all scaffolds were showing different increasing
rate of swelling. The highest and lowest swelling rate were observed for PNS1 and PNS4, respectively.
The different swelling behavior of these scaffolds was due to coating of various silver concentrations
that cause increase or decrease in ionic swelling pressure in both media [60]. Swelling rate of any
material mainly depends upon the osmotic pressure. The increasing concentration of silver solution
also responsible in decreasing rate of swelling [61]. The swelling of these scaffolds are different in
aqueous media and PBS solution due to different hydrogen bonding, hydrophilic and hydrophobic
interactions, and other forces of attraction that cause different osmotic pressure [62]. So, there is an
inverse relation between silver concentration and rate of swelling.
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Ag endorsed their changes into the bacteria membrane, hindering the microbe’s activity. The 

Figure 6. Swelling behavior of scaffolds in phosphate buffer saline (PBS) (A) and water (B) keeping
temperature at 37 ◦C and 7.4 pH.

4.6. In-Vitro Study

4.6.1. Anti-Microbial Activity

Antimicrobial activities of BNS samples (A) and individual materials (B) were studied using
agar well-diffusion assay against E. coli DH5 alpha. It was found that silver has an important role in
antimicrobial activities as shown in Figure 7A,B [63]. The anti-microbial activity of silver nanoparticles
attributes was due to adsorption into the cell wall and interaction with cellular protein. Denaturation
of proteins was a result of sliver-nanoparticle permeability and accretion of an external fluid, owing to
better antimicrobial activities of Ag-coated scaffolds [64]. The charged component of the bacterial
surface membrane, i.e., phospholipids and lipopolysaccharides interacted with several available
functional groups of BNS silver nanoparticles [65,66]. The active sites of hydrogels and nano-Ag
endorsed their changes into the bacteria membrane, hindering the microbe’s activity. The bacterial
growth was also delayed due to the bonding between BG and bacterial DNA, thus leading to inhibition
of bacterial transcription and translation. The molecular alteration in DNA due to Ag-coated bioactive
scaffolds resulted in little or no growth of bacteria. Hence, the sample BNS4 showed maximum
antimicrobial activity that is due to higher concentration of Ag-coating over the scaffold.

Ag endorsed their changes into the bacteria membrane, hindering the microbe’s activity. The 

Figure 7. Anti-microbial activities of all scaffold samples (A) and individual materials (B) against E. coli.
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4.6.2. Cytotoxicity

BNS3 has been selected due to its adequate porosity and compressive strength for biological
activities. Figure 8 shows the cytotoxicity response of the bioactive nanocomposite scaffold against
different concentrations (from 0.125 to 2.00 mg mL−1) of BNS3 extract against MC3T3-E1 cell line.
Considering the control cell viability as 100% the cell viability of bioactive scaffolds was relatively
calculated. The BNS3 has shown excellent cell viability with only 6–15% cell loss in the process.

−

–

Figure 8. Different concentrations of extract were used to estimate percentage cell viability on mouse
preosteoblast cell line MC3T3-E1 for 24, 48, and 72 h of time points. (A) shows the optical density of
absorbed neutral red dye at 540 nm while (B) represents the relative percentage of cells compared
to control.

4.6.3. Morphological Changes and Cell Attachment

Figure 9 shows the cell morphology and adhesion against BNS3 observed under the fluorescent
microscope. The cell attachment pattern in BSN3 coated wells, and positive control wells were alike,
and the proliferation rate with each successive day also appeared similar. Moreover, cell morphology
in coated wells appeared as cylindrical as in positive control wells. After 72 h, cells started gaining
standard fibroblast-like morphology with extended cell bodies showing sufficient cell attachment over
the coated surface. It was observed that cells attached have the same morphology as for all time points,
while DMSO treated wells do not have any cells attached.
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Figure 9. Morphological changes in cells observed through attached cells on the coated surface.
Untreated but tissue culture treated wells without any additional coating material used as positive
control wells. 1% DMSO as a negative control. (A) Sample BNS 3; (B) positive control; (C) negative
control at 24, 48 and 72h.

4.6.4. SEM Analysis of Cell Growth

Figure 10 presents SEM analysis of cell culture over the BNS at 200 µm magnification and blue
circles indicate the cell culture area. The MC3T3-E1 cell-line used for cell growth analysis over BNS3
along with and taking Themanox TM substrate as a positive control. Subsequently, the specific
incubation time (48 h, 72 h, and 7 days), the pre-osteoblast cells adhered and proliferated over BNS3 by
showing bioactive behavior, which spread all into and over the porous surface of BNS3. The SEM has
been used to analyze the attachment and cell culture of the MC3T3-E1 cell line and expressed through
images: (a) after 24 h, (b) after 24 h (c) after 72 h, and (d) after 7 days of cell culture, respectively.
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Figure 10. SEM images of pre-osteoblast over BNS3 after: (a) 24 h, (b) 48 h, (c) 72 h, and (d) 7 days of
cell growth.

5. Conclusions

We have fabricated Ag-coated BG/n-Hap bioactive nanocomposite scaffold via the freeze-dried
method to mimic the functionalization of the extracellular matrix for bone tissue engineering. Ag-coated
scaffolds are mechanically robust and have sufficient compression strength near to the cancellous
bone. Higher concentration of Ag will decrease the pore size but elevate the mechanical strength and
anti-microbial activities of BNS samples. The biological studies have confirmed that BNS3 has potential
for growth of the MC3T3-E1 cell line by maintaining their cell density without compromising the cell
viability. Hence, the presented BNS samples have potential applications for bone tissue engineering.
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