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  ABSTRACT 

 
 
 

 

Aluminium oxide is a chemical compound, also known as alumina (Al2O3), is 

being widely used as a material in a cutting tool due to its superior mechanical 

properties. Nevertheless, alumina is not a straightforward solution for practical 

application due to its brittle nature. One of the solutions was to integrate other 

components into the base material of alumina. For an example, adding zirconia 

(ZrO2) in alumina (Al2O3) matrix produced a ceramic that improved the toughness of 

the material, though the toughness can be further improved. As a solution, the 

present work aims to enhance the ZTA ceramic composite’s fracture toughness by 

introducing a combination of microwave heat treatment and multi-phasic additives. 

Part 1 and Part 2 of this study utilised a conventional sintering process operating at a 

temperature of 1600°C for a total of 1 hour dwelling time. In the case of Part 3, 2.45 

GHz microwave is used for sintering process at a temperature range of 1200°C - 

1400°C in a 10-minutes dwelling time. The first phase of this work reported an 

enhanced ZTA properties with an addition of 3.0 wt.% TiO2. Moreover, the hardness 

is improved from 1516.13 HV/14.87 GPa (0 wt.% TiO2) to 1615.8 HV/15.85 GPa 

(3.0 wt.% TiO2), while the fracture toughness is improved from 5.93 MPa.m
1/2

 (0 

wt.% TiO2) to 6.56 MPa.m
1/2

 (3.0 wt.% TiO2). Additionally, the enhanced 

mechanical properties can also be attributed to the presence of TiO2 as a vital 

sintering aid, which impeded Al2O3 grain growth, and consequently led to the 

formation of a denser and finer microstructure. In the second part, Cr2O3 is 

introduced as a new additive material that can be used with ZTA-3.0 wt.% TiO2. The 

outcome revealed that the properties associated with ZTA–3.0 wt.% TiO2 ceramic 

composite improved after the addition of 0.6 wt.% Cr2O3. Subsequently, the fracture 

toughness (7.15 MPa.m
1/2

) improved due to the formation of an isovalent solid 

solution between Al2O3 and Cr2O3. On the other hand, the enhanced hardness (1681 

HV/16.5 GPa) is associated with the grain growth inhibition of Al2O3. Lastly, the 

microwave sintering process is used to produce ZTA-3.0 wt.% TiO2-0.6 wt.% Cr2O3 

to enhance the microstructure and its properties. The outcome of the process 

exhibited that increased hardness (1803.4 HV/17.7 GPa) and excellent fracture 

toughness (9.61 MPa.m
1/2

) are obtained when the sample was sintered at a 

temperature of 1350°C within a 10-minutes dwelling time. The finding can be 

attributed to the process of volumetric heating, which led to shorter sintering time 

and lower sintering temperature. Thus, it produced tool material that has better 

densification, finer grain size, and excellent mechanical properties. 
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ABSTRAK 

 

 

 

 

 Aluminium oksida adalah sebatian kimia, yang juga dikenali sebagai 

alumina (Al2O3), digunakan secara meluas sebagai bahan dalam alat memotong 

kerana keunggulan sifat mekanikalnya. Walaubagaimanapun, alumina tidak dapat 

digunakan secara terus untuk penggunaan praktikal kerana sifatnya yang rapuh. 

Salah satu penyelesaian adalah untuk mengintegrasikan komponen lain ke dalam 

bahan asas alumina. Sebagai contoh, menambah zirconia (ZrO2) ke dalam alumina 

(Al2O3) matriks akan menghasilkan seramik yang meningkatkan keliatan bahan dan 

keliatannya masih boleh dipertingkatkan lagi. Sebagai penyelesaian, kerja ini 

bertujuan untuk meningkatkan keliatan patah komposit seramik ZTA dengan 

penggunaan rawatan haba gelombang mikro dan pelbagai fasa tambahan. Bahagian 1 

dan bahagian 2 kajian ini menggunakan proses pensinteran konvensional yang 

beroperasi pada suhu 1600°C dalam masa 1 jam. Bahagian 3 pula menggunakan 2.45 

GHz gelombang mikro untuk proses pensinteran pada suhu antara 1200°C - 1400°C 

selama 10 minit. Bahagian pertama kajian ini menunjukkan peningkatan ciri-ciri 

ZTA dengan tambahan 3.0% TiO2. Malah, kekerasan bertambah baik daripada 

1516.13 HV/14.87 GPa (0% TiO2) kepada 1615.8 HV/15.85 GPa (3.0% TiO2), 

manakala keliatan patah meningkat daripada 5.93 MPa.m
1/2

 (0% TiO2) kepada 6.56 

MPa.m
1/2

 (3.0% TiO2). Selain itu, peningkatan sifat-sifat mekanikal boleh juga 

dikaitkan dengan kehadiran TiO2 yang membantu proses pensinteran dengan 

menghalang pembesaran struktur Al2O3, dan seterusnya membawa kepada 

pembentukan mikrostruktur yang lebih padat dan halus. Dalam bahagian kedua, 

Cr2O3 diperkenalkan sebagai bahan tambahan baru ke dalam ZTA-3.0% TiO2. 

Hasilnya menunjukkan bahawa sifat-sifat yang berkaitan dengan ZTA-3.0% TiO2 

bertambah baik selepas penambahan 0.6% Cr2O3. Keliatan patah (7.15 MPa.m
1/2

) 

bertambah baik disebabkan oleh pembentukan larutan pepejal isovalent di antara 

Al2O3 dan Cr2O3. Peningkatan kekerasan (1681 HV/16.5 GPa) pula dikaitkan dengan 

perencatan pertumbuhan struktur Al2O3. Akhir sekali, proses pensinteran gelombang 

mikro digunakan untuk menghasilkan ZTA-3.0% TiO2-0.6% Cr2O3 bagi 

meningkatkan mikrostruktur dan sifat-sifatnya. Proses ini menghasilkan peningkatan 

kekerasan (1803.4 HV/17.7 GPa) dan keliatan patah yang sangat baik (9.61 

MPa.m
1/2

) apabila sampel disinter pada suhu 1350°C dalam masa 10 minit. Dapatan 

kajian boleh dikaitkan dengan proses pemanasan isipadu, yang membawa kepada 

tempoh pensinteran yang lebih pendek dan suhu pembakaran yang lebih rendah. 

Oleh itu, ia menghasilkan bahan yang mempunyai pemadatan yang lebih baik, saiz 

butiran yang lebih halus, dan sifat-sifat mekanikal yang baik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Ceramic, with its outstanding mechanical properties, such as low density, 

strength, hardness and its inertness at high temperature, is widely known as a suitable 

candidate for structural materials with wide ranging applications (Ye et al., 2008). 

Regardless of their advantages, ceramic materials exhibit very low toughness which 

eventually limits their overall applications (Azhar et al., 2012; Azhar et al., 2009; 

Rejab et al., 2013; Sktani et al., 2014; Smuk et al., 2003). The challenge of 

increasing the toughness of ceramic based materials has been a key motivation in the 

field of ceramic research (Azhar et al., 2012; Basu et al., 2004; Magnani & Brillante, 

2005). In this pursuit of improving toughness, Al2O3 based materials are often used 

as the benchmark due to its abundance, relative cheapness and excellent mechanical 

properties (Rittidech et al., 2013; Wang et al., 2012; Zu et al., 2014). The 

introduction of the yttria stabilized zirconia (YSZ) toughening agent further 

increased the toughness of the zirconia toughened alumina (ZTA) ceramic composite 

(Ortmann et al., 2012).  

 

 



2 
 

As of now, much attention has been given to zirconia-toughened alumina 

(ZTA) and its possible structural applications for use as a cutting insert material. 

Single phase of alumina is hard enough to be utilised in cutting tool application. 

However, it has very low toughness and this can result into breakage and chipping 

during machining (Aslantas et al., 2012; Azhar et al., 2009; Zhao et al., 2010).  

 

 

To overcome this drawback, one of the proposed approaches is to reinforce 

the base material with other components. Incorporating these additives led to better 

tailored microstructure, a decrease in the sintering temperature, and enhanced 

product properties. For instance, adding zirconia (ZrO2) in the alumina (Al2O3) 

matrix helped obtain an advanced ceramic that had better toughness (Ortmann et al., 

2012). This is because the zirconia dispersed in the alumina matrix increased the 

material’s toughness because of stress induced transformation toughening. 

 

 

It was revealed that adding titania (TiO2) allowed it to act as sintering aid 

(Taruta et al., 1997) and helped improve the fracture toughness via secondary phase 

dispersion (Lee et al., 2003). It was also revealed that TiO2 promotes the grain 

growth and sintering of Al2O3 (Bagley et al., 1970; Maitra et al., 2007; Wang and 

Huang, 2008).  This can be attributed to the enhanced diffusivity’s effect, where Ti
4+

 

substituting for Al
3+

 produced the growing concentration of the Al
3+

 vacancies. As 

the additive quantity approaches the solubility limit, i.e. 0.15–0.35 mol%, a further 

increase in the grain growth and densification rate was observed. However, beyond 

its solubility limit, the contrasting trend of lower grain growth and densification can 

be obtained. This effect is a consequence of the pinning effect observed at the second 

phase’s grain boundaries, Al2TiO5 (Wang and Huang, 2008). TiO2 encourages the 

grain growth of ZTA and Al2O3. Sufficient grain growth is important to remove 

residual pores in the material and leads to a dense structure. Thus, TiO2 is a vital 

sintering additive that produces a completely homogeneous and dense structure. 

 

 

Moreover, a lot of attention is being given to chromium dioxide or chromia 

(Cr2O3) in the α-Cr2O3 form  (Lin et al., 2012; Zargar et al., 2012).  Cr2O3 has a 
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density of 5.2 g/cm
3
 and a melting point of 2270°. It is also highly resistant to wear 

and chemicals. However, one primary disadvantage for chromium(Cr) is that it can 

be very volatile under high temperatures (Sammelselg et al., 2010). Arahori and 

Whitney (1988) reported on the valuable effect of Cr2O3 additive. They discovered 

that the hardness of Al2O3 can be enhanced via the isovalent solid solution formation 

and grain growth inhibition (Azhar et al., 2012).  Fujita et al. (2007) stated that 

Al2O3-Cr2O3 ceramic, which is considered a solid composite of Cr2O3 and Al2O3, 

remains chemically stable even when it is under high temperatures.  Both Al2O3 and 

Cr2O3 naturally occur as corundum, their crystalline form.  Azhar et al. (2012) stated 

that after the addition of Cr2O3 to Al2O3, an isovalent solid solution is created.  

Arahori and Whitney (1988) stated that Cr2O3 is integrated to Al2O3 ceramics so that 

the growth of grains can be inhibited and a solid composite solution that has better 

mechanical properties can be produced. These mechanical properties include 

increased hardness and better resistance to thermal shock (Azhar et al., 2012; Seo et 

al., 2006). 

 

 

Consequently, the ZTA’s mechanical properties depend critically on their 

microstructures. These mechanical properties can be controlled via densification 

processes and powder preparation (Wang and Stevens, 1989).  On top of developing 

cost effective processing techniques, material processing improvements are 

extremely important in manufacturing a better product. The industry’s objectives 

have always been the development of new technologies that can address the growing 

demands of faster, better, and cheaper products. One of the most vital processes of 

ceramics is the green compact sintering into final products.  Among all the different 

sintering methods, microwave sintering technology is the one that has attracted the 

most attention in terms of materials processing, especially for those of oxide 

ceramics. This is due to the fact that this technology has significant advantages over 

traditional heating methods.  Rapid heating can be accomplished via the microwave 

sintering technique, since it heats the material by energy conversion instead of 

energy transfer (Agrawal, 1998).  This has significant contributions to volumetric 

heating (Birnboim and Gershon, 1998), which in turn decreases the densification 

temperature and shortens the processing time. It also hastens the densification 

process and produces a material product that has a finer and a more uniform 
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microstructure (Brosnan et al., 2003; Menezes and Kiminami, 2008). Hence, the 

mechanical properties are enhanced and the performance of the processed materials 

is significantly improved (Benavente et al., 2014).  Moreover, from an economic 

standpoint, microwave sintering method reduces the production cost since it 

decreased the sintering time, and thus saves large amounts of energy (Oghbaei and 

Mirzaee, 2010). Thus, it is expected for microwave heating process to be a promising 

alternative for conventional heating methods. It has the potential to produce end 

products that have distinguishable microstructural features and improved mechanical 

properties. 

 

 

 

 

1.2 Problem Statement 

 

 

ZTA is considered as one of the most popular ceramic composites that are 

used for cutting tools. This can be attributed to their excellent mechanical properties 

like hardness, high wear resistance, corrosion resistance, and high temperature 

stability.  According to Varma et al. (2016), ZTA with 1585 HV/15.54 GPa 

(hardness) and 5.8 MPa.m
1/2

 (fracture toughness) had shorter lifetime when it was 

subjected to high cutting speed while cutting carbon steel. Thus, consistent efforts 

should be expanded to achieve improvements in toughness and strength, which then 

lead to better tool life. The ceramic composites’ mechanical properties can be 

improved via detailed microstructural design. The microstructure of materials can be 

customized by modifying the proportion, composition, and processing parameters. 

 

 

In particular, based on the previous works, three gaps have been identified. 

For example, Bian et al. (2012) came up with an Al2O3-TiO2 system that did not 

require the addition of ZrO2 powder. However, the composite material produced still 

had poor toughness because the ZrO2 element was not present. This ZrO2 element, 

via its transformation toughening mechanism, is supposed to lead to higher 

toughness. Moreover, previous research has discovered that fracture toughness can 
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be enhanced by the creation of elongated grains like tialite (Al2TiO5). However, 

increasing the amount of the elongated grains affected Al2O3 densification adversely 

(Sathiyakumar and Gnanam, 2002), which in turn affected the hardness value of the 

material.  This is due to the fact that the arrangement of the elongated grains 

hampered the microstructure joining, resulting in reduced material hardness and low 

density. 

 

 

Additionally, the work done by Azhar et al. (2012) proposed ZTA-Cr2O3 

ceramic composite. Compared to the ZTA ceramic composite, the fracture toughness 

and hardness properties were improved. This can be attributed to the production of 

an isovalent solid solution after Cr2O3 was added to Al2O3.  Arahori and Whitney 

(1988) stated that the purpose of adding Cr2O3 to Al2O3 ceramics is for inhibiting 

grain growth and producing a solid composite solution that possess better mechanical 

properties, including better resistance to thermal shock and increased hardness 

(Azhar et al., 2012; Seo et al., 2006).  Moreover, adding Cr2O3 led to the production 

of plate-like grains in the microstructure, which improved the structure’s fracture 

toughness (Riu et al., 2000). This phenomenon also leads to a crooked crack path, yet 

the fracture toughness value obtained by Azhar et al. (2012) still needs to be 

improved to beat the performance of commercial cutting tool. Thus, combining the 

unique properties of TiO2, ZTA, and Cr2O3 can help develop a single composite that 

has better properties than ZTA commercial cutting tool. 

 

 

Finally, the utilisation of the conventional sintering method involved the 

application of high temperature under a long sintering time. In ceramics, both 

sintering time and temperature have a direct relationship to grain growth. Thus, 

conventional sintering may lead to abnormal grain growth and in turn cause 

degradation in the mechanical properties (Breval et al., 2005). It has been suggested 

that microwave heating can be an alternative and enhanced sintering process because 

it involve a shorter sintering cycle (Oghbaei and Mirzaee, 2010). However, different 

materials require different sintering temperature and dwell time to achieve sufficient 

grain growth and densification. As of now, no study has been done comparing the 
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use of conventional and microwave sintering on this particular ceramic composite 

used in this work. 

 

 

 

 

1.3 Research Objectives 

 

 

It has been established that the ceramic composites’ properties depend on the 

materials’ proportion, combination, and processing parameters. Thus, one should 

practice thorough selection of the materials to be added and the sintering parameters 

to be observed.  Consequently, this study’s specific objectives are as follows: 

 

 

(i) To study the effects of TiO2 content on the microstructural, physical, 

and mechanical properties of ZTA 

(ii) To evaluate the influence of Cr2O3 content on the microstructure, as 

well as the mechanical and physical properties of ZTA - TiO2 

(iii) To evaluate the effect of microwave heat treatments, with varying 

sintering times and temperatures, on the final characteristics and 

microstructure of ZTA – TiO2 – Cr2O3 ceramic composite 

 

 

 

 

1.4 Scope of The Study 

 

 

The aim of this study is to synthesise new and tougher ceramic composites by 

incorporating appropriate second phases in alumina (Al2O3), the primary ceramic 

matrix material. It was observed that adding zirconia (ZrO2) to the alumina matrix 

produced an advanced ceramic that had better toughness. This can be attributed to 

the fact that the dispersion of zirconia in the alumina matrix improves its toughness 
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via stress induced transformation toughening (Hossen et al., 2014). Moreover, 

zirconia-toughened alumina (ZTA) system was selected as the base material for this 

current study. 

 

 

The ceramic powders that were utilised as ZTA’s dispersed second phases are 

titania (TiO2) and chromia (Cr2O3). To study the effects of TiO2 content in ZTA, part 

1 of this work was limited to the addition of 0 wt.% to 10 wt.% TiO2. This limitation 

is in accordance to the addition of 0 wt.%-8 wt.% TiO2 in Al2O3-ZrO2 composite by 

Zu et al. (2014). Part 2 of this work was subjected to the addition of 0 wt.% to 1 

wt.% Cr2O3 in the best composition of ZTA-TiO2 composite obtained in part 1. 

Finally in part 3, the proportions and combinations of ceramic powders that 

possessed the optimum mechanical properties in part 2 were made to go through 

microwave hybrid sintering under varying temperature (1200°C-1400°C) and time 

(5-20 minutes).  

 

 

 

 

1.5 Significance of Knowledge/Contribution 

 

 

Despite their poor toughness, ceramics cutting tool are gaining more uses in 

the metal cutting industry because of their superior hardness. Thus, many studies 

have been conducted with the aim of improving the ceramic material’s fracture 

toughness since it is a main concern in the structural field. Because of this, the field 

of ceramic research has shifted to the development and usage of multiphase 

composite ceramics instead of just utilising a single phase material like Al2O3. As 

such, extensive research has been conducted to identify the optimum materials 

proportion and combination that could satisfy the desirable requirements: i.e. high 

toughness, high temperature resistance, high hardness, and inertness towards 

machining parts. 
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This current research made use of the combination of grain growth inhibition 

by TiO2, crack deflection by Cr2O3, transformation toughening by YSZ, into the 

alumina-based composite. It is one of the methods that can be used to overcome the 

brittle ceramics’ lack of toughness. This approach involves the particular selection of 

the proportion of the materials and the sintering parameters in order to produce 

ceramic-matrix composites using a classical powder metallurgy technique. The 

composite is then physically and mechanically characterised. The result obtained will 

then provide data for the fabricated composites. These data can then be compared to 

the already known properties of current and existing alumina-based ceramic 

composites. 

 

 

It is expected for this study to produce an improved cutting insert material 

that can be characterised by excellent fracture toughness and hardness. 

Consequently, these properties can also result in the manufacture of cutting inserts 

that have improved wear resistance (Azhar et al., 2012). Overall, the final product’s 

impact will be lower production costs for the metal cutting industry because the 

cutting insert will have excellent wear resistance and longer lifetime. 
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