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ABSTRACT 

The performance of semiconductor devices depends strongly upon the 
microstructure of the materials. Therefore the microstructural control is intrinsically 
important for fabrication of high performance devices. In this research, the 
microstructures have been analysed in detail and the mechanisms of microstructural 
changes in aluminium nitride (AlN) epitaxial have been clarified for the 
establishment of the growth method. AlN heteroepitaxial layers were made by 
growing an AlN buffer layer on a (0001) sapphire substrate by the Metal Organic 
Vapor Phase Epitaxy (MOVPE) growth process. Annealing treatments were added 
before and after the deposition of an AlN buffer layer. The surface roughness of AlN 
was observed with an Atomic Force Microscope (AFM) and X-ray Rocking Curve 
(XRC). The cross section of AlN heteroepitaxial was observed by using 
Transmission Electron Microscope (TEM) at 200 Kv and High-Angle Annular Dark-
Field (HAADF) images were observed with a Scanning Transmission Electron 
Microscope (STEM) at 300 kV. Thin foil specimens or lamella for the TEM 
observation were made using a Focused Ion Beam (FIB) mill with accelerating 
voltage of 15 kV~3 kV for a smooth finishing of lamella. Prior to the deposition of a 
medium temperature MT-AlN layer, the sapphire substrate was cleaned or pre-
annealed at a high temperature, TAn under the atmosphere of H2. For annealing 
temperature, TAn less than 1250°C , the crystallinity improved but twisting domains 
appeared above the temperature. Threading dislocations (TDs) of type c and type- 
a+c with 108 cm-2 dislocation density was observed. However when the temperature 
was increased to 1350°C, threading dislocation were reduced. On the other hand, 
post deposition annealing at a high temperature between 1500ºC and 1700oC for 2 
hours under the atmosphere of N2+CO was carried out. Cross sectional TEM 
revealed that after annealing at 1500oC, cone-shaped domains and threading 
dislocations remained. The morphology of domains and the changes in TEM image 
contrast  strongly suggest that the domains are inversion domains. TDs of type-a and 
type- a+c were visible for g =01-10 under the two beam condition. However, after 
annealing at 1550oC, the cone shaped domains coalesced with each other to leave a 
single domain boundary running in a zigzag laterally at the center of AlN buffer 
layer that the upper layer has the Al- polarity while the lower layer has the N-polarity 
determined by the HAADF analysis. The inversion domain boundary become 
smooth and flatter with the rising annealing temperature. The surface of MT-AlN 
buffer was finely rugged before the annealing, but became coarser and smoother with 
annealing. The changes in the surface morphology indicates the occurrence of grain 
coalescence. The density of TDs was reduced to roughly 5×108 cm-2 after annealing 
at 1650oC. Conclusively, this research confirms that pre-deposition and post 
deposition annealing are an effective treatment to control the microstructure and to 
reduce the dislocation density for advancement of semiconductor devices.   
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ABSTRAK 

Prestasi peranti semikonduktor bergantung kuat kepada mikrostruktur bahan. 
Oleh itu kawalan mikrostruktur untuk mengurangkan ketumpatan kecacatan penting 
untuk fabrikasi peranti berprestasi tinggi. Dalam kajian ini, perubahan dan 
mekanisme mikrostruktur telah dianalisis secara terperinci. Lapisan nipis AlN telah 
di mendap atas substrat (0001) nilam dengan kaedah metal organic vapor phase 

epitaxy (MOVPE), di mana proses pertumbuhan dalam cara yang agak konvensional, 
tetapi rawatan penyepuhlindapan ditambah sebelum dan selepas pemendapan. 
Kekasaran permukaan lapisan AlN telah diperhatikan dengan atomic force 

microscope (AFM).Lapisan AlN diperhatikan dengan menggunakan mikroskop 
elektron penghantaran konvensional (CTEM) pada 200kV. Tinggi sudut anulus 
gelap-bidang (HAADF) imej imbasan-TEM juga diperhatikan dengan scanning 

transmission electron microscope (STEM) pada 300 kV. Penipisan spesimen untuk 
pemerhatian TEM telah dibuat menggunakan focus ion beam (FIB) dengan voltan 
dari 15kV ~ 3 kV. Sebelum pemendapan lapisan MT-AlN, substrat nilam itu disepuh 
lindap pada suhu yang tinggi dalam gas hydrogen, H2. Pada suhu penyepuhlindapan, 
Tan <1250° C, penghabluran bertambah baik tetapi domain berpusing 
muncul.Kecacatan bebenang jenis c, jenis (a + c) dan berpusing domain dengan 200-
500 nm diameter sepanjang [2-1-10], dengan kepadatan 108 cm-2 telah diperhatikan. 
Walau bagaimanapun apabila suhu telah meningkat kepada 1350°C kecacatan 
bebenang semakin berkurang justeru telah meningkatkan lekatan antara nilam dan 
AlN. Di samping itu, pemendapan penyepuhlindapan  telah di jalankan pada suhu 
yang tinggi antara 1500oC untuk 1700oC untuk 2 jam di bawah suasana N2 + CO. 
Keratan rentas TEM telah mendedahkan bahawa selepas penyepuhlindapan pada 
suhu 1500oC, domain berbentuk kon dan kecacatan bebenang kekal. Morfologi dan 
keadaan pembelauan untuk kontras imej sangat menyarankan bahawa domain adalah 
domain penyongsangan. Kecacatan bebenag jenis-a dan jenis-a + c dapat di lihat 
untuk g = 01-10 di bawah keadaan dua rasuk. Walau bagaimanapun, selepas 
penyepuhlindapan pada 1550oC, domain penyongsangan bersatu antara satu sama 
lain untuk meninggalkan sempadan domain berjalan secara zigzag di tengah-tengah 
lapisan AlN. Lapisan atas mempunyai kutub-Al dan lapisan yang lebih rendah 
mempunyai kutub-N. Sempadan domain penyongsangan menjadi semakin licin 
dengan suhu penyepuhlindapan yang semakin meningkat. Permukaan MT-AlN 
penampan telah halus lasak sebelum penyepuhlindapan, tetapi menjadi lebih licin 
dengan penyepuhlindapan. Perubahan dalam morfologi permukaan menunjukkan 
berlakunya geseran sempadan domain. Ketumpatan TDS telah dikurangkan kepada 
kira -kira 5 × 108 cm-2 selepas penyepuhlindapan pada suhu 1650oC. Kesimpulan 
daripada penyelidikan ini telah sahkan bahawa pra pemendapan dan selepas 
pemendapan penyepuhlindapan telah menjadi rawatan yang amat berkesan bagi 
mengawal struktur mikro dan mengurangkan ketumpatan kecacatan bebenang untuk 
kemajuan dalam fabrikasi peranti semikonduktor berkualiti tinggi  
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Nowadays, everyone is already familiar with semiconductors based bright 

blue, green and red light emitting diodes (LEDs) that light up our electronic 

appliances, decorate our streets and illuminate airport runways. LEDs are built 

mostly based on nitride semic006Fnductors such as aluminium nitride (AlN), gallium 

nitride (GaN), indium nitride (InN) and their alloying materials with wide 

wavelength ranging from the infrared to ultraviolet. In 1902, British scientist Henry 

J. Round discovered the physical effect of electroluminescence. Electroluminescence 

is an optical and electrical phenomenon whereby a material emits light in response to 

an electric current or an external electric field.  

In 1962, the first visible spectrum LED light was produced by Nick Holonyak 

Jr. and was red in colour (Mukai et al., 1998). As technology progressed in the 

1970's, LEDs were used in applications such as calculators, digital watches and test 

devices.  Since emitting blue  light  was a difficult task thus it took almost three 

decades to produce the first blue LED in 1971 using GaN by Jacques Pankove 

(Nakamura & Mukai, 1992).  This is because in order to produce blue LED, it 

required the development of techniques for the growth of high-quality crystals as 

well as the ability to control p-doping of semiconductors with high bandgap to 

produce heterojunctions, which was achieved with gallium-nitride (GaN) (Nakamura 

& Krames, 2013).   
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LEDs consist of several layers which are p-type layers, n-type layers and 

active region between them. P-type layer hasa large hole concentrations, where else 

N-type contains majority electron carriers. Between them is an active layer or also 

known as the p-n junction to which the negative electrons and positive holes are 

driven when electric voltage is applied to the semiconductor. When electrons and 

holes meet, they recombine and light is emitted. This phenomenon is known as 

electroluminescence as shown in Figure 1.1 (Raguse & Sites, 2015). 

 

Figure 1.1 Phenomena of electroluminescence to emit light in LED (Raguse & 

Sites, 2015) 

In order to have a good emission, it is essential to choose a suitable nitride 

semiconductor material which will emit light when electric current passed through it. 

Group III-V nitride semiconductors have been known for having outstanding optical, 

electronic and thermal properties. These materials have wurtzite orzinc blende crystal 

structures. AlN, GaN and AlGaN have gained considerable attention as promising 

materials for optoelectronic devices in the blue and UV regions (Kuech, 2016; 

Manasreh, 2000). This is because these nitrides are semiconductor with wide band 

gap of direct transition for example, 3.4eV for GaN, 6eV for AlGaN and 6.2eV for 

AlNat room temperature (Cardona & Kremer, 2014; Tripathy & Pattanaik, 2016). 

Figure 1.2 shows the relationship between bandgap energy and wavelength of 

semiconductors. Light with wavelengths shorter than 400 nm is called ultraviolet 
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(UV) light. Since the emission wavelength is inversely proportional to the bandgap 

energy, a semiconductor with a wider bandgap emits light with a shorter wavelength. 

For instance, AlN has a wider direct- band gap energy of 6.3 eV and emits light with 

shorter wavelength, 210nm for deep ultraviolet UV LED.  

On the other hand, the emission wavelength of GaN is 365nm with 3.2eV 

band gap energy and is used for high brightness blue LEDs and violet LDs for blue-

ray equipment. Thus the wavelength of emitted light is determined by the bandgap 

energy of the semiconductor. Recently the winners of Noble prize physics, Akasaki‟s 

group of research invented the efficient blue LEDs using GaN, has led to white light 

sources for illumination. This light sources has long lifetime and requires ten times 

less energy than ordinary bulbs yet environmentally friendly (Akasaki &Amano, 

2014). 

 

Figure 1.2 Relationship of bandgap and wavelength (Taniyasu & Kasu, 2010) 

The definition of  band gap is the energy needed to promote an electron from 

the lower energy valence band into the higher energy conduction band (Edwards, 

2000). Hence, the wide band gap nitride semiconductor materials allows the devices 

to operate at much higher temperature, voltage and frequencies. The direct wide 

bandgap allows efficient absorption and emission of light. Due to this potential, 

semiconductor nitrides have been investigated to application for various 

optoelectronic devices, such as LED, Laser diodes (LD) and photo detectors for the 



4 
 

 

ultraviolet region. In complimentary with this, there is a significant relationship 

between the band gap energy and wavelength. In the process of recombination by 

emitting photons to produce light, the energy state of the electron hole- pair drops. 

However the emitted photon has a specific energy determined by the bandgap of the 

material making up the LED as shown in Figure 1.3 (Narendran et al., 2005).  

 

Figure 1.3 Influence of semiconductor bandgap energy with photon emission 

(Narendran et al., 2005) 

1.2 Motivation of Study 

In this research, AlN was used as it stands out with the widest direct band gap 

among the III-V nitrides and that makes it a key component of deep-ultraviolet light 

source and detection. Due to it‟s high acoustic velocity and strong piezoelectricity, 

AlN is also used in the application of surface acoustic wave devices (SAW). AlN is 

thermally stable at high temperature with high thermal conductivity as well as high 

dielectric strength which promotes it to be used in high power electronic devices. In 

conjunction with the characteristics of conducting electricity in extreme 
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environments, AlN demonstrates significantly higher performance while demanding 

less power. 

AlN crystallizes in the wurtzite structure with lattice constants of a=3.111 Å 

and c=4.978 Å under the space group P63mc hexagonal as shown in Figure 1.4. AlN 

is stable at high temperature in inert atmosphere and it melts at 2800°C. It starts to 

decompose at 1400°C under the ambient atmosphere which makes it suitable for the 

usage at high temperature for heat treatment or annealing (Berger, 1997). However, 

the ultimate performance of AlN is limited by lattice defects that reduceit‟s 

efficiency. In addition, it is very difficult to grow high quality epitaxial layer of AlN, 

and several issues such as a high defect density and piezoelectricity still remain to be 

resolved in thin-film growth process. Globally, researchers have made a number of 

attempts in growing crystals including single crystals of high quality on substrates 

such as silicon carbide (SiC) and sapphire (Al2O3). 

 

Figure 1.4 Crystal structure and lattice constant of aluminium nitride (Berger, 1997) 

Various methods have been reported recently on the growth of  nitride 

semiconductor thin films including hydride vapor phase epitaxy (HVPE), molecular 

beam epitaxy (MBE) and metal organic vapor phase epitaxy (MOVPE) using 

sapphire  as a substrate (Ishida et al., 2000; S. Wang et al., 2015; W. Wang et al., 
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2016; Yang et al., 2015).  However it has been difficult to grow high quality 

heteroepitaxial layer especially with a smooth top surface without cracks and other 

defects. This is because of the large lattice mismatch and large difference in thermal 

expansion coefficient between the nitride films and sapphire substrate. Table 1.1 

shows the lattice constants and thermal expansion coefficient differences of AlN and 

GaN with sapphire substrate. 

Table 1.1 : Lattice and thermal mismatches between nitride and sapphire 

Elements Lattice constant (A)      Thermal expansion    

      coefficient x 10
-6

(K
-1

) 

GaN            a = 3.189 5.59 

            c = 5.182 7.75 

AlN            a = 3.111 5.3 

            c = 4.980 4.2 

Sapphire            a = 4.758 7.5 

            c = 12.991 8.5 

 

The large lattice mismatch between AlN and sapphire resulted to 13% leads 

to dislocation defects in the AlN epitaxial. (Dovidenko et al., 1996). A certain lattice 

mismatch is currently unavoidable but a reduction of threading dislocation (TDs) is 

required. Thus in order to reduce TDs, initially the growth parameters and steps 

should be modified. Complimentary to this, thin buffer layers also results in 

reduction of these defects. Recent development has succeeded in improving 

remarkably the surface morphology as well as the electrical and optical properties of 

AlN, GaN and AlGaN alloy films by preceding deposition of a thin AlN layer as a 

buffer layer (Ito et al., 1999; Xiong et al., 2013). Mainly AlN is used as a buffer 

layer because Al is hard and it bends the dislocation to prevent it to reach the surface 

of the nitride semiconductor therefore reduces the density of dislocation (Kuwano et 

al., 2010). This phenomena will be further explained in the next chapter. As for 

AlGaN/GaN systems, GaN layer thickness is increased to reduce the dislocation 

density (Akasaki et al., 1989).  
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In conjunction with this, a model for the growth process of high quality 

crystals whereby the crystallographic quality is examined using scanning electron 

microscope (SEM), reflection high energy electron diffraction (RHEED) and X-ray 

Diffraction (XRD). However usage of Transmission Electron Microscope (TEM) to 

clarify the microstructure inside the nitride semiconductors epitaxial films are not 

many. Nevertheless, cross sectional TEM observation of AlN grown on sapphire 

substrate is essential to provide detailed information. This is to control the 

microstructure and growth process of thin films including formation and annihilation 

process of defects for further analysis and characterization of nitride semiconductors. 

There are many other methods to reduce dislocations such as deposition of buffer 

layers, doping and epitaxial lateral overgrowth which will all be described in the next 

chapter. Annealing at high temperature is the method chosen by author and shall be 

discussed in detail. Annealing is a heat treatment process on the material which alters 

the materials microstructure by causing changes in physical, electrochemical and 

piezoelectric properties. 

1.3 Problem Statement 

When a thin film of AlN is grown or deposited on a sapphire substrate which 

has a large lattice mismatch and the large difference in the thermal expansion, it 

usually contains many structural defects. The density of dislocation is high normally 

in the range of 1010cm-2. Besides threading dislocations, there are many other kinds 

of structural defects, such as inversion domain, stacking mismatch boundaries, voids, 

and stacking faults. These defects disrupts the periodicity of the crystal over the 

length of several atomic diameters thus degrades the optoelectronic properties. For 

instance, a threading dislocation acts as a nonradiative and scattering center in 

electron transport which effects the performance of LEDs and field effect transistor. 

In addition, the inefficiency of optoelectronic devices are also caused by 

dislocations defects as rapid nonradiative recombination of holes without conversion 

of  their available energy into photon causes heating up of the crystal.  This leads to 

the deterioration of emission efficiency. Other than that optoelectronic devices have 
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a shorter lifetime compared to devices with fewer defects. Thus the core problem is 

the inefficiency of devices due to defects in the material.  

To my best knowledge, there is a lack of research conducted to characterize 

and analyze the lattice defects in details by transmission electron microscopy (TEM) 

although information obtained would be very useful in improving existing devices. 

This may be because very high skills and diffraction knowledge is required for one to 

characterize using TEM. The specimen preparation method is also very crucial and 

tedious. Moving on from here onwards, it is important to identify the right 

parameters which can assist to reduce lattice defects so that a high quality epitaxial 

film can be obtained. Many researchers have reported various ways to reduce the 

lattice defects, however a realistic condition in growing thin films without any 

defects have not be established yet. Annealing is one of the method which can reduce 

lattice defects in the epitaxial layer and has been employed by author before and after 

deposition of epitaxial layer. 

Author studied the changes in microstructure due to high temperature 

annealing of AlN epitaxial on sapphire substrate. The core problem need to be 

identified at an early stage of the growth process to reduce or avoid defects in the 

crystal. Hence, this research aims to identify, analyse and characterize the defects in 

order to reduce the dislocation thus producing high quality thin films. The growth 

process of thin films with different parameters and conditions is also discussed in 

detail. 

1.4 Research Objectives 

The objective of this research is to determine the annealing effects in AlN 

epitaxial layer by: 

i. Characterizing and analysing the defects in AlN thin film grown on sapphire 

substrate using TEM 



9 
 

 

ii. Identifying the changes of microstructure in AlN thin film after pre and post 

annealing treatment 

iii. Determining the polarity of AlN thin film to categorize the defect type 

iv. Establishing the growth parameters for higher quality AlN thin film. 

1.5 Research Scope 

This research was conducted in collaboration with the research groups of Mie 

University, Japan whereby the growth of AlN epitaxial on sapphire substrate using 

metalorganic vapour phase epitaxy (MOVPE) was carried out there. Annealing 

treatment was induced before and after the deposition of AlN buffer layer. The 

specimen provided by collaborators were further examined by author using electron 

microscopy technique at the facility of Kyushu University, Japan. After the 

formation process of lattice defects in the epitaxial were clarified, remedies for the 

condition to grow high quality thin films were proposed for establishment of the 

crystal growth. Especially the effects of heat treatments or annealing on the 

microstructure were investigated in details by using sophisticated TEM techniques.   

The results of the research are important as to establish and improvise the 

parameters in growth conditions. In short, this research focuses on how does high 

temperature annealing can reduce the lattice defects in aluminium nitride thin films, 

thus is used for fabrication of high quality semiconductor devices.  

1.6 Significance to Knowledge 

The contribution of this study is to provide information to fellow researchers 

on the effects of annealing treatment in order to reduce the dislocation density in the 

AlN epitaxial layer by advanced TEM techniques. The crystallographic polarity 

determination also contributes to the identification of inversion domains in 

optoelectronic applications. Not only that, the annihilation mechanism of aluminium 

nitride heteroepitaxial layers lattice defects are also very useful. Furthermore, the 
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growth conditions plays an important role thus the establishment is crucial too. This 

research also focuses on the development of high quality nitride semiconductor 

epitaxial using combinations of alloys and AlN buffer layers. By reducing the defects 

in the AlN epitaxial, the semiconductor based devices performance can be improved, 

which leads to saving cost and reduce energy consumption. In addition the reduction 

of defects also improves the optical, chemical and piezoelectric properties of the 

optoelectronic devices. 
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