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Abstract 

Overall fire statistics and residential and industrial fires in which there have been large 

number of fatalities demonstrate that the cause of most deaths can be attributed to 

effects of toxic smoke produced in these fires. Despite this fact there are no national or 

international legal requirements to determine the toxic emissions from materials used in 

construction, electrical cabling or the wide range of polymer based products used in 

house construction and industry. Many polymers used commercially are fire retarded 

and the materials used for this can add to the toxicity. The only indirect control comes 

through some test requirements for product classification based on the volume of smoke 

production. However, this is not an adequate approach to the problem. Fire smoke 

contents can cause death directly or can impair escape so that people die indirectly from 

the effects of toxic gases, and in the first we need to identify and quantify these 

emissions for different materials and under different fire conditions.   Currently, as a 

consequence of this lack of legal requirements, there is a dearth of data on toxic 

emissions from real industrial products under fire conditions.  

This research was focused on toxic gas emissions under fire conditions from practical 

industrial polymeric materials: insulating foams, electrical cables, Polyethylene and 

Polystyrene goods together with some other polymeric materials: rubber, GRP, PVC 

pipes and clear Acrylic. All were either used by industry who gave samples for testing 

or were on sale in construction product retailers. Some of the goods were fire retarded 

and had HCl, HBr or HF in the product gases or had high ash content. These generally 

produced higher toxic emissions than non-fire retarded products. 

Most of the work was carried out using the Leeds University modified Cone Calorimeter 

with raw gas sampling from a chimney above the cone outlet. A heated sample line, 

heated filter and heated sample pump with heated FTIR was the method of analysis 

used. All products were found to have significant toxic gas emissions, but the most 

important toxic gas depended on the material tested and was rarely CO. A data set of 

toxic emissions and toxic  gas yields was produced which is greater than most data 

sources in the literature for synthetic polymer materials.  

Part of this work was the modification of  the Purser Furnace by adding raw hot gas 

sampling and eliminating the backflow of dilution air into the reaction tube. This took a 

long time to design and construct and was only available at the end of the research work 

where it was used with PE samples at lean and rich equivalence ratios. 

A significant part of the work was the first use of this equipment for particle size analysis 

using the DMS 500 instrument. Ultra fine particles (<50nm) were present in all the fires 

and were a significant health hazard.  
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Chapter 1 

Introduction 

Fire toxicity is one of the main causes of death and injury in fires in buildings. 

Statistics in the UK [1] show that toxic smoke inhalation accounts for about 60% 

of the total deaths in fires. However, currently there are no regulations that 

require the toxic emissions from the burning of building  to be determined and 

taken into account. This project tests the fire toxicity of various polymeric 

materials used in the construction and contents of buildings. Other than gas 

toxicity, small particle size also a significant fire hazard. This hazard had been 

studied and measured from a small range of size (5nm). 

 

1.1  Fire Statistics 

As reported by the recent World Fire Statistics 2018 [2] and reproduced in Table 

1.1, in consideration of 53 countries, India gave the highest number in fire deaths 

from year 2012 to 2016 with the fire death average number per year of 20,668. 

Russia gave the highest number of fire deaths for year 2016 which was about 50 

percent (8,749 deaths) of the total world fire deaths (17,310 deaths), followed by 

USA with 3,390 deaths and Ukraine with 1,872 deaths. Meanwhile the total fire 

deaths in Great Britain in 2016 was 367 deaths and in Malaysia was 142 deaths 

with average number per year 344 and 122 deaths. Figure 1.1 (a) shows the total 

number of world fires categorised by type of environment in which the fires took 

place – the biggest fraction, 35.5 percent involved structure fires, 22.1 percent 

involved grass and forest fires, 13.5 percent involved vehicle fires, highlighting 

the importance of structural fires. Structural fires are the most hazardous to 

human life as it is where the highest concentration of people.  

In the last few decades, the development in the fire safety research has led to 

the growth of fire toxicological studies. Before that, the well-known fire hazards 

were limited to thermal hazards only [3]. Fire statistics now show that the main 

cause of fire deaths is by smoke inhalation, not by heat burns.  

In Great Britain the cause of death in fires has been attributed mainly the effects 

of smoke typically 40% due to “smoke” and another 20% due to the combination 

of “smoke and heat” with only 20% attributed to “heat” alone (the balance being 

“unspecified” or “other”). The 2013/14 statistics [8] are typical of these with three 
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main categories being 41, 20 and 20 % respectively. The most recent (2018/19) 

breakdown [9], is shown in Fig. 1.1 (b). 

 

Table 1.1  Trends in fire deaths in the countries of the World in 2012-2016 [2]. 
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(a) (b) 

Figure 1.1  Fire distribution by (a) types in worldwide (2016) [2] and (b) causes 
of fire deaths in Great Britain for 2018/19 [4]. 

 

The causes of fire-related deaths are fairly stable across recent years, except for 

2017/18 where the ‘other’ category was higher (27% compared with a usual 

range of between 10–20%) due to the Grenfell Tower fire - a large proportion of 

the fatalities are recorded as ‘unspecified’ while the public inquiry is still ongoing 

[9]. 

Smoke produced in fires normally contains toxic gases, vapour and various sizes 

of particulates. While the fire deaths are mainly attributed to the effects of smoke 

in terms of visibility and toxicity and most of previous fire toxicity studies are 

found to be focused more on the determination of toxic potency of fire effluents 

based on gas-phase products compared to particle-phase products. the effect of 

particulates has only recently started receiving attention. There are currently only 

a limited number of studies [5-7] which focus on the determination of particulate 

size from fires. As awareness on the health and environmental impact from 

particles generated in fires has increased, it is vital to conduct research in order 

to investigate the particulates emissions from the combustion of different 

materials and their effects on human health other than to be only focused on the 

toxic gases emission from the fire. This work will present data on both gaseous 

and particulate yields.  

The latest Fire Rescue and Incident Statistics in England for year ending 

September 2019 [1] as in Figure 1.2, it showed a decrease of 31 percent of fire 

deaths which gave 248 fire deaths compared with year 2017 which gave 362 fire 

deaths including 72 from the Grenfell Tower fire. From the data, most of fire 

deaths involve fires in dwellings and other buildings compared to other locations 

such as road vehicles and other outdoor. This statistic has raised a critical 

concern to researchers when knowing that between these fire locations, even 

number of fires occurred are much lower for building fires than for chimney, road 
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vehicle and other outdoor fires but it has contributed to a high number of the total 

fire deaths. This consideration has become one of the reasons why the present 

work focussing on investigating the toxic gases and particulate emissions from 

building material fires. Table 1.2 shows a statistic of fire incident number by type 

comparing the year ending September 2019 with the year ending September 

2018, five years previously in 2013/14 and ten years previously (where available) 

in 2008/09 in Great Britain. Fire related fatalities in dwellings had shown an 

increase of 9% in 2019 compared to 2018. 

 

 

Figure 1.2 Total fire-related fatalities, England; year ending September 2011 to 
year ending September 2019 [1] 
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Table 1.2  Fire incident types in Great Britain from 2008 to September 2019 [1]. 

 

 

1.2  Notable Relevant Fires 

Below is a brief summary of some well known fires in which the toxicity of the fire 

products was the main contributor to the mass fatalities of these fires. A list of 

other fires relevant to this project, involving cladding materials is also given in 

Table 1.3. 
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1.2.1  Grenfell Tower 

Grenfell Tower fire happened on June 14, 2017 and took away 72 lives including 

one victim who died in the hospital seven months after the incident and around 

70 injured [8]. As generally reported, the fire on this 24-storey residential tower 

block was started by a malfunctioning fridge-freezer on the fourth floor which 

then spread rapidly up the building's exterior, bringing fire and smoke to all the 

residential floors. This fire incident is one example of cladding materials based 

fire cases. Zinc cladding was initially considered as cladding materials for the 

building construction of the Grenfell Tower in 2015 but due to cost saving 

purpose, cladding materials like Reynobond PE and aluminium with plastic filling 

were finally used. There are many buildings constructed with using flammable 

cladding materials and many more will be in future if no further objection by rules 

as safety guidance. In Dubai UAE, more 70% skyscrapers were constructed with 

flammable cladding materials which was mainly PE. In example, Burj Kalifa Hotel 

fire started with an explosion and this building were constructed with 100% PE 

as panel cores of the cladding part. There were many fire cases around the world 

that involved cladding materials and some examples were listed in Table 1.3. 

Whilst currently the cause of death of the 72 people in the building is currently 

“unspecified” (as discussed above) one of the objectives of the Public Inquiry is 

the determination of the cause of death.  The phase 1 report from the fire 

Toxicology expert witness Prof. Purser [9] reported that blood toxicology from a 

limited number of victims (15) showed high concentrations of carboxyl 

haemoglobin consistent with CO poisoning. He also states that these 

measurements and and 999 call transcripts indicate that people who died in their 

flats were overcome by asphyxiant gases (CO and HCN) and died before their 

bodies were burned.  He also identified the building cladding, PVC windows and 

contents of the apartments as contributors to the fatal toxic emissions. 

 

1.2.2  The Rose Park Nursing Home 

In 2004, a fire at a residential care home, the Rosepark Care Home, located in 

Lanarkshire, Scotland resulted in 14 deaths of elderly residents and another four 

residents injured [10, 11]. Fire safety procedures at this care home were found 

to be inadequate and deficient. As reported, the staff waited nine minutes before 

they contacted the fire service [11]. From the accident investigation and 

reconstruction tests with detailed toxic species concentration measurements [12] 

concluded that the elderly population of 18 residents were exposed to the same 
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mix of fire effluents but at different levels of severity depending upon their 

location. Ten persons in open rooms were exposed to high concentrations, 

resulting in death at the fire scene within ~8–9 min of the start of the fire. Persons 

in more protected locations were found alive after much longer exposure times 

although they some of these subsequently died due to their exposure. 

 

1.2.3  Piper Alpha 

A very high number of deaths (at least 165 died) caused by the Piper Alpha initial 

explosion and subsequent fires at North Sea oil platform, near Aberdeen in July 

1988 [13]. This incident involved pool and liquid and gas jet fires in multi-level 

buildings. The cause of the incident was a leak of condensate due to failures of 

the permit to work system which resulted in a small explosion and subsequent 

hydrocarbon fires which eventually destroyed the whole platform [14]. Of the 

diseased, a large number (109) died from smoke inhalation most of them while 

sheltering in the designated accommodation modules. 

 

1.2.4  Kings Cross Fire 1988 

31 died in this fire accident at the Kings Cross Railway Station which was started 

by smokers’ matches falling through the gap at the edge of the escalator [15]. 

The dirt and grease accumulated over months was the fuel ignited by the falling 

match below the escalator. A flashover through the ticket hall resulting from the 

pyrolysis of multilayers of paint is thought to have contributed to the dense toxic 

smoke that was associated with the fire the public inquiry that followed concluded 

that the toxic smoke contributed to the deaths and recommended the removal of 

materials known to produce toxic fumes. 
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Table 1.3  List of fire incidents involved cladding materials. 

No. Incident Location Date of Event 
Number of 

Deaths 
Number of 

Injuries 
Cause of Fires Information 

1 EPF Building 
Jalan Gasing, PJ, Selangor 
Malaysia, 6 storey building 

13.02.2018 
(14:15) 

- - 
On the 1st floor due to 
renovation works at the back of 
the building 

PE cladding 

2 Grenfell Tower 
North Kensington, London 
England, 24 storey flat 

14.06.2017 
(00:54) 

72 (2 died in 
the hospital) 

>70 
Fridge-freezer faulty on 4th 
floor 

Cladding materials used in the building 
were PE filler, PIR foam insulation, PU seal 
for joints and PVC windows 

3 The Marina Torch Tower 
Dubai UAE, 79 storey 
building 

04.08.2017 
(01:00) 

- - 

Not known (Suspected caused 
by a thrown cigarette butt and 
it landed on a plant at a 
balcony) 

During restorative works 

4 The Marina Torch Tower 
Dubai UAE, 79 storey 
building 

21.02.2015 
(02:00) 

- 
7 (due to 
smoke 
inhalation) 

Fire started on the 50th floor   

5 Burj Khalifa Hotel 
Dubai UAE, 63 storey 
building 

31.12.2015 
(New Year's 
Eve) 

    An explosion in the 39th floor 
Fire started with an explosion. Flammable 
cladding materials (100% PE as panel 
cores) 

6 Tamweel Residential Tower 
Jumeirah Dubai UAE, 34 
storey building 

18.11.2012 - - 
A cigarette butt thrown into a 
bin 

  

7 
Sharjah Residential Tower 
(Tiger 3 Building in Al 
Taawun) 

Sharjah Dubai UAE, 40 
storey building 

04.03.2018 
(07:03) 

- 7 
Flames allegedly started from 
a kitchen in an apartment on 
the 8th floor of the building. 

  

8 Al Buteenah Apartment 
Al Buteenah, Sharjah Dubai 
UAE 

12.02.2018 
(01:12) 

5 (due to 
suffocation) 

  

From investigation, fire might 
have started from the air-
conditioning unit on the 1st 
floor. 

  

9 Al Manama Supermarket Sharjah Dubai UAE 14.04.2017 
2 (died of 
suffocation) 

5     

10 Nasser Tower 
King Faisal Street, Sharjah 
Dubai UAE, 32 storey 
building 

01.10.2015 - -     

11 
Hafeet Tower 2 (10 
Apartments) 

Al Tawun, Sharjah Dubai 
UAE 

22.04.2013     
Fire broke out on the 20th 
floor. 

  

12 10 Apartments 
Al Qasimiya, Sharjah Dubai 
UAE, 10 storey building 

12.03.2013 - - 
A blaze gut 10 apartments on 
the 1st floor. 
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13 Al Tayer Tower 
Al Nahda Park, Sharjah 
Dubai UAE, 40 storey 
building 

28.04.2012         

14 Al Baker Tower 4 
Al Tawun Mall, Sharjah 
Dubai UAE 

25.01.2012     

The fire was caused by a lit 
cigarette that was thrown off 
the balcony from an upper floor 
and landed on the balcony on 
the 1st floor. 

  

15 
A High-rise Residential 
Tower 

Al Nahda, Sharjah Dubai 
UAE 

08.11.2011   6     

16 Al Wahda Street Apartment Sharjah Dubai UAE 08.03.2011     
Fire caused by an electric short 
circuit. 

  

17 Bu Tinah Fire 
Bu Tinah, Sharjah Dubai 
UAE, 14 storey building 

06.07.2010         

18 
Al Buhaira Corniche 
Apartment 

Sharjah Dubai UAE 04.01.2009 -   
Fire started from a kitchen and 
gutted the apartment on the 
13th floor. 

  

19 Abdullah Khouri Building 
Jamal Abdul Nasser Street, 
Sharjah Dubai UAE 

28.10.2008 2   Fire on the 4th floor.   

20 
Al Ta'awun Residential 
Building 

Sharjah Dubai UAE 26.05.2008 -   
The fire started on the 1st 
storey and extended to 
apartments up to the 7th floor. 

  

21 Al Tahira Tower 
Al Nahda, Sharjah Dubai 
UAE 

21.07.2007 1 3 
Fire breaks out in an apartment 
at the 8th floor. 

  

22 Majaz 2 Residential Tower Sharjah Dubai UAE 09.04.2007     Fire tore through four floors.   

23 Al Yasmeen Apartment Sharjah Dubai UAE 25.01.2007         

24 Dana Tower 
Buhairah Corniche, Sharjah 
Dubai UAE, 47 storey 
building 

09.01.2007         

25 Baku Residence Building 
Baku Azerbaijan, 16-level 
residence building  

19.05.2015 
15 (toxic smoke 
inhalation) 

63   

Flammable Styrofoam facing had been 
installed on exterior of buildings. 
Flammable materials used  in facade 
renovation. 

26 Sanghai Fire 
Shanghai China, 28 storey 
high-rise building 

15.11.2010 
(14:15) 

58 >70 
Fire started with construction 
materials and spread 
throughout the building. 

  

27 
The Beijing Television 
Cultural Center Fire 

Beijing China 
09.02.2009 
(20:27) 

1 (a fire-fighter) 7 

A nearby unauthorised 
fireworks (Chinese New Year 
Celebration) display caused 
the fire. 

The building was built far less steel than 
conventional skyscrapers. 



- 10 - 

 

 

1.3  Particulates 

Beyond the gaseous toxic emissions fires also emit large amounts of respirable 

particulates of various sizes which may harm the occupants and fire-fighters in 

different ways giving either a short term effect or a long term effect. Compared 

to ultra-fine particles, large particles usually will give a short term or immediate 

effect to the people who are exposed to them during the fire by causing irritancy 

to their eyes and skins which will reduce their capability to escape. As a long 

term effect, generation of nanoparticles (especially particle size below than 50 

nm) from the combustion process may cause cancer disease to the people who 

has exposed to them when being absorbed through the blood line [16, 17]. 

The main aspects of particle toxicity relate to where they deposit in the 

respiratory tract, which depends on particle size, and their toxicity, which 

depends partly on their chemical composition and partly on their physical 

characteristics. In general large inhalable particles ~100-15 microns diameter, 

deposit in the upper respiratory tract and airways, If the carry toxic chemicals 

they cause acute airway inflammation, or following long term exposure (eg 

smoke from air pollution or tobbaco) chronic obstructive lung disease and lung 

cancer. Smaller particles ~0.5-5 microns diameter penetrate into the alveolar 

region of the lung and can cause acute lung inflammation and oedema a few 

hours after exposure during a fire, which can be fatal. Ultrafine and nano-

particles may cause acute lung inflammation or emphysema but also cross into 

the blood stream where they can cause several effects depending on their 

chemistry and physical characteristics. These effects include polymer fume 

fever, cardiovascular disease (including heart attacks), and carcinogenicity. 

Smaller particles can penetrate into the blood system easier than larger particles. 

These nanoparticles may act as transporters of absorbed and adsorbed toxic 

compounds (VOC or aerosols) into the lungs the blood stream and vital organs.  

Polycyclic aromatic hydrocarbons (PAH) such as Benzene and Naphthalene are 

the example of toxic compounds that may cause the cancer decease to the 

humans when they breathe in these particles during the fire. In 2014, there was 

a fire death case which was due to cancer decease where three fire fighters died 

on the same day after 13 years giving service as responders in the fire incident 

of the World Trade Centre, USA because of their direct exposure to the toxic 

species and particulates [17]. It is very important to do further investigations on 

the particle size and particle distribution from fires in order to be able to control 
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and prevent this kind of hazard from harming the people who are directly 

exposed.  

Measurement of particulate yields and characterisation of particle size 

distribution is an important objective of this project. 

 

1.4  Legislation 

Most of fire deaths are generally involved in building fires. Building fire cases 

have involved various kinds of building structures such domestic or private home 

fires, high rise living accommodation fires, commercial and industrial building 

fires, public place building fires and also care centre fires. 

There are various types of combustible materials used in building construction. 

Wood is the most common building material which is widely used compared to 

other materials like polymers. Due to an increase in demand for synthetic 

materials, cost savings with an advanced industrial production process, these 

synthetic materials have become a favourable option by the contractors and the 

end users. Even furniture, tools and small appliances are widely made by the 

synthetic materials. 

Combustible building construction materials mostly used is wood, only 20 

percent usage involved other materials which are mainly polymers. Polymer fires 

may produce gases which are more toxic than the wood fires depending to the 

type of polymer burnt, in example Polyisocyanurate (PIR) based materials will 

produce Hydrogen cyanide (HCN) which is toxic even at low concentration level. 

PVC based materials will produce irritant gases that can cause irritancy effects 

when burned which may impair the people who exposed to it from escape during 

the fire event. As for today, there is no regulation yet found to stop of using PVC 

or other harmful polymers in buildings. 

The British standards for toxicity provide a guidance for the escape/safety of 

occupants where there is stated that there must be enough time to reach a place 

of safety without any harm [18-20]. From the existing standards, regarding the 

toxicity, only smoke obscuration is mentioned and the illustration of smoke 

alarms [18]. Smoke spread from the origin, hot gas layer and smoke optical 

density are the main parameters related to the application of fire safety 

engineering [19]. Although there are tenability limits defined in terms of exposure 

to toxic and irritants fire gases there is legal requirement to control the use of 

such materials based on their toxic yields in fire. The only control that may 
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translate to an indirect control of toxicity is the visibility requirement for safe 

escape and by controls of reaction-to-fire properties of products [20]. 

 

1.5  General Research Aims 

In overall, the present work mainly aims to highlight and investigate the toxicity 

dangers of various electrical cables and polymers sold commercially for buildings 

using two different test methods, an existing modified Cone Calorimeter and a 

new developed Purser Furnace System with attachment to several external 

analysers such as Fourier Transform Infrared Spectroscopy (FTIR), Oxygen 

Analyser, Particle Sizer (DMS500) and Smoke Meter. The FTIR and Oxygen 

analyser were used to measure the toxic gases. For measurement of the 

particulate sizes, a particle size equipment called the Cambustion DMS500 was 

used. Smoke meter was also used to measure soot mass collected on the placed 

filter papers. Series of fire tests were conducted under different realistic fire 

conditions from well to under-ventilated fires. More than 40 polymers were 

burned and tested including the electrical cables. General research objectives 

are as follow: 

a) Develop a methodology for the analysis of toxic gases and particulates in 

the Cone Calorimeter and the steady state tube furnace. 

b) Design, construct and commissioning the new developed Purser Furnace 

System. 

c) Provide data of combustion and fire toxicity properties such as heat 

release rate, equivalence ratio, mass loss rate, toxic gas concentration, 

total toxicity, major gas contribution, gas and particulate yields and 

particle size and number distributions from polymer fires. 

d) Compare the results from both Cone Calorimeter and Purser Furnace 

methods. 
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