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ABSTRACT 

This study deals on the utilization of metakaolin and spent garnet as part of 

cementitious  and fine aggregates replacement in high performance concrete  (HPC).  

HPC offers many benefits especially towards application of structures which sustain 

higher loads and exposed to harsh environment at the same time such as piers.  HPC 

usually been produced by applying supplementary cementitious material as an 

admixture to enhance the quality of HPC.  Metakaolin is known as one of the common 

material that has been proven to produce good qualities of HPC.  Spent garnet is one 

of the industrial waste materials which had been recognized as suitable fine aggregates 

substitution in concrete.  Apart from sand mining issue which had been highlighted, 

excessive amount of spent garnet in the landfill had also seems to jeopardize the 

environment.  Thus, the study on the utilization of spent garnet and metakaolin in 

producing HPC is performed.  Physical properties test of the materials had been 

conducted and trial mixes had been executed afterwards with replacement of spent 

garnet in percentage amount of 10%, 20%, 30%, 40%, 50% and 60% by weight.  The 

workability test results showed that at the replacement of 60%, the fresh concrete bled.  

Compressive strength, flexural strength, splitting tensile strength and modulus of 

elasticity tests were carried out to determine mechanical properties of the mix 

proportion.  The morphology of the HPC was identified by completing Scanning 

Electron Microscope (SEM) with Energy Dispersive X-Ray Analysis (EDX) and X-

Ray Diffraction Analysis Test (XRD).  The durability test was conducted to observe 

the resistance of HPCM and HPCMG50 towards chloride penetration and elevated 

temperature test.  HPC with 50% of spent garnet replacement (HPCMG50) indicated 

the highest value of compressive strength with 92.3 MPa as compared to 65.4 MPa for 

HPC without any spent garnet replacement (HPCM).  As conclusion, this study found 

that 50% utilization of spent garnet is effective in producing HPC with better 

mechanical properties and chloride resistance.  Hence utilization of 50% of spent 

garnet as fine aggregates replacement is a good approach in fighting the issue of sand 

deficit as well as betterment of landfill management.   
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ABSTRAK 

Kajian penggunaan metakaolin dan sisa garnet sebagai bahan gantian simen 

dan agregat halus dalam konkrit berprestasi tinggi (HPC) telah dijalankan.  HPC 

selalunya dihasilkan melalui penggunaan bahan simen tambahan sebagai bahan 

campuran untuk meningkatkan kualiti HPC.  Metakaolin dikenali dan telah dibuktikan 

sebagai salah satu bahan yang sering digunakan dalam menghasilkan HPC yang 

berkualiti.  Sisa garnet merupakan salah satu bahan buangan industri yang telah 

dikenalpasti sebagai bahan yang sesuai untuk digunakan sebagai bahan gantian agregat 

halus dalam konkrit.  Selain daripada isu perlombongan pasir, lambakan sisa garnet di 

tapak pelupusan juga dilihat sebagai perkara yang dapat menjejaskan alam sekitar.  

Oleh itu, kajian mengenai penggunaan sisa garnet dan metakaolin dalam menghasilkan 

HPC dijalankan.  Ujian sifat fizikal bahan-bahan ini dan seterusnya percubaan 

mendapatkan campuran konkrit dengan penggantian peratusan jumlah sisa garnet 

berdasarkan berat sebanyak 10%, 20%, 30%, 40%, 50% dan 60% telah dijalankan.  

Ujian kebolehkerjaan menunjukkan berlakunya penjujuhan pada penggantian sisa 

garnet sebanyak 60%.  Ujian kekuatan mampatan, kekuatan lenturan, kekuatan 

tegangan dan modulus keanjalan dijalankan bagi mendapatkan sifat mekanikal 

campuran konkrit terbabit.  Morfologi HPC dikenalpasti melalui ujian peingimbasan 

mikroskop electron (SEM) bersama ujian analisis penyebaran tenaga X-Ray (EDX) 

dan ujian analisis pembelauan X-Ray (XRD).  Ujian ketahanan telah dijalankan bagi 

mengenalpasti tahap rintangan HPC terhadap penembusan klorida dan suhu tinggi.  

HPC dengan penggantian 50% sisa garnet menunjukkan kekuatan mampatan tertinggi 

dengan nilai 92.3 MPa berbanding 65.4 MPa bagi HPC tanpa sebarang gantian sisa 

garnet Sebagai kesimpulan, kajian ini mendapati bahawa penggantian sisa garnet 

sebanyak 50% adalah efektif dalam menghasilkan konkrit berprestasi tinggi yang lebih 

berkualiti dari segi sifat mekanikal dan rintangan klorida.  Oleh itu, penggantian50% 

sisa garnet adalah merupakan salah satu pendekatan yang baik dalam menangani isu 

penguranagn pasir disamping penambahbaikan pengurusan tapak pelupusan.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

Rapid changes in the construction world have created an urge for exploration 

of various type of concrete to suit the need of the structures to be built.  Nowadays, the 

demand of concrete does not only concern on high strength but the needs of concrete 

that will provide a longer lifespan of the structure.  In order to achieve this, high- 

performance concrete which hold the ability to perform well compared to conventional 

concrete offers a better opportunity to fulfill the requirement.   

High performance concrete (HPC) has been defined by American Concrete 

Institute (ACI) as concrete meeting special combinations of performance and 

uniformity requirements that cannot always be achieved routinely using conventional 

constituents and normal mixing, placing and curing practice.  HPC does not only bear 

high stresses but also beneficial in high durability which is one of the important key 

elements in a safe structure.  Previously, the design of the concrete mixes used in 

concrete focus on the strength and workability while less attention was given to the 

durability.  This leads to deterioration, corrosion, bleeding, efflorescence or cracks that 

appear commonly within few years of construction (P.K Chang et al, 2001).  Due to 

this, various studies have been conducted all around the world aiming to achieve a 

better quality of concrete that not only focus on its strength but also its resistance 

toward the harsh environment. To achieve this, the design of the HPC mixes does not 

only rely on additions of appropriate amount of chemical admixture and pozzolanic 

materials but also the substitution of microaggregate that contributes to filling effect 

thus will improve compactness of the concrete and slows down the diffusion of ions  

(Y.N Chan et al, 2000).  Alongside this, silica fume has also been widely used in 

producing HPC (Rana et al.,2016).  However, in this study usage of silica fume is not 

significance as metakaolin as supplementary cementitious material.  Many researches 
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have stated that the usage of metakaolin as supplementary cementitious material have 

increases compressive strengths, resistance towards chemical attack and enhance 

workability (Antoni M. et al, 2012), (V. P.Dinkar et al, 2013) and (Sabale V.D et 

al,2014).  Hence, in this study, metakaolin as part of cementitious material while 

garnet as part substitution of fine aggregates were used in producing HPC.   

Other than supplementary cementitious material (SCM), replacement of fine 

aggregates is also an effective approach in producing HPC.  Garnet, a material that had 

been utilized in many industrial areas especially as abrasive blasting, abrasive 

powders, waterjet cutting and water filtration. Its angular fractures, relatively high 

hardness and specific gravity, chemical inertness and its ability to be recycled making 

it ideal for these industry applications (Olson, 2016).  Upon achieving the recycle 

period, garnets will be treated as waste material and to be treated in the landfill.  These 

garnets are now addressed as spent garnet.  As spent garnet is no longer beneficial, it 

will be dumped in the landfill and with time the waste will affect the environment.  

Spent garnet can threatened ground water quality when this material entered the 

waterways through surge runoffs (Aletba et.al, 2018).  Taking this as a factor has 

initiated the utilization of spent garnet as fine aggregates replacement materials in 

concrete Iqbal (2018) and (Muttashar et al., 2018).  Both studies have shown positive 

results with replacement of spent garnet as fine aggregates at 25% and 40%.  Hence 

the utilization of spent garnet as part of material replacement for fine aggregates in 

producing HPC is a good prospect to be explored. 

The development of HPC has opened an exploration path towards utilizing 

various materials to produce HPC.  This development has led to the extensive usage 

of materials to their full potential in order to produce new material that will sustain a 

longer life cycle making it more ecological (Aïtcin, 2003).  Despite many researches 

had been conducted in utilizing various materials in producing HPC, the utilization of 

garnet as fine aggregates in HPC and metakaolin as supplementary cementitious 

material has not been highlighted.  Thus, a study on this is reasonable in identifying 

the suitability of these materials to be utilized in HPC.  The study will focus on the 

properties of the materials used, mechanical and chemical properties, morphology and 

durability of the HPC.  
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1.2 Problem statement 

High performance concrete has been applied all over the world in many 

structures.  Due to its ability to resists high compression stresses along with its 

excellence in performance, high performance concrete seems to provide great solution 

towards construction in producing better quality of structure.  As most concrete 

structures are designed for 50 years of age traditionally, applying high performance 

concrete in some structures has expanded the life span of the structures in design and 

built a service life of 100 years (P. Kumar Mehta, 2004).  Consequently, many studies 

have been conducted implementing various materials to enhance the understanding of 

high-performance concrete behavior.  One of the well-known and common materials 

used is metakaolin that had been applied as supplementary cementitious material for 

high performance concrete and other different types of concrete.  Likewise, studies on 

utilizing garnet in producing geopolymer concrete and high strength concrete had been 

conducted and these studies had indicated the positive results.  However, the utilizing 

of both materials metakaolin and garnet had not yet been highlighted thus it is 

relevance to combine these materials in producing high performance concrete.   

River and mining sand have been known as one of the main materials in 

producing concrete worldwide.  Its properties provide a suitable condition to be 

utilized as fine aggregates in the concrete.  As construction field grow rapidly, the 

demand of natural minerals including sand have increase intensely.  In order to produce 

more sand to meet the demand of the industry, the process of sand mining from the 

water bodies had been conducted excessively.  The phenomenon does not only harm 

the stabilization of the riverbank, but the ecology system and environment were also 

impacted.  As one of the rapid developing country, Malaysia too has been impacted 

with sand mining issue (Appendix A).  In 2010, 1.17 billion metric tons of sand and 

gravel out of 2.76 billion metrics of natural mineral in total has been used in Malaysia 

(Umara et al., 2016)    

As the sand mining issue had been a continuous concern with time, many 

studies had been conducted all over the world focusing on producing a better quality 

of concrete while minimizing the usage of this natural resource by replacing it with 
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other materials.  These materials included waste product from industrial and 

construction.  Among these waste materials is spent garnet that is used for 

sandblasting, water jet cutting and water filtration granules.  In 2013, assessment on 

Malaysia shipyard industry disclose that 2000 million tons of garnet had been imported 

to the country and massive amount of the quantity was dumped as waste (Muttashar et 

al., 2018).  These spent garnets will end up in landfill and needed to be managed 

properly to ensure the safety of environment.  Therefore, the utilization of spent garnet 

as fine aggregates had been identified as a positive contribution to decrease amount of 

spent garnet in landfill and producing better quality of concrete at the same time. 

1.3 Aims and Objectives 

This study aims for developing high performance concrete utilizing metakaolin 

as supplementary cementitious material and garnet as partial replacement of fine 

aggregates and to identify its performance. Three objectives had been outlined to 

accomplish the aim as listed:  

1. To design on optimum concrete mix of HPC utilizing metakaolin and spent garnet.  

2. To investigate physical, mechanical and morphology properties of HPC utilizing 

metakaolin and spent garnet.  

3. To study the durability on chloride penetration and elevated temperature exposure 

of HPC utilizing metakaolin and spent garnet  

 

1.4 Significance of Study  

Evolution of construction field has necessitated production of better type of 

concrete that can resist harsh environment thus sustain structure’s long-life span.  The 

utilization of garnet as fine aggregates in the study will reduce a great amount of sand 
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required in the concrete mix.  This will be a positive contribution in fighting the 

struggling issue faced from sand mining operations that jeopardize the environment.  

The high bearable of compression stresses and more durable of the high-performance 

concrete utilizing garnet and metakaolin will benefits in applying the concrete to 

produce a better structure that will sustain high compression stresses while resisting 

harsh environment that can prolong the structure’s life span.  The morphology study 

of the concrete will produce better understanding of high-performance concrete 

utilizing garnet and metakaolin.  In this study, the high-performance concrete produced 

was also tested for chloride penetration and its changes when exposed to elevated 

temperature up to 800°C.  This will be beneficial in providing data to understand its 

performance thus provide a reference in design works.  

1.5 Scope of Study  

Scope of study for the research consists of producing high performance 

concrete utilizing metakaolin and spent garnet as supplementary cementitious material 

and fine aggregates replacement.  All testing procedures were conducted in accordance 

of several guidelines which are Malaysian Standard (MS), British Standard (BS), 

American Society for Testing and Materials (ASTM) and suggested practices by 

previous studies.  Sand, spent garnet and metakaolin used in the studies were tested 

for their physical properties including specific gravity, density, water absorption and 

sieve analysis.  The investigation on metakaolin and spent garnet were then proceeded 

with SEM testing in order to understand the shape of their particles. Study on 

mechanical properties testing of compressive strength test was conducted for 3 cube 

samples each of HPC with metakaolin (HPCM) and HPC with metakaolin and spent 

garnet replacement by percentage (HPCMG).  Flexural strength test with 3 prism 

specimens for each type, splitting tensile strength and modulus of elasticity test with 3 

cylindrical specimens were conducted for selected optimum mix HPC with metakaolin 

and HPC with metakaolin and spent garnet replacement were then conducted.  

Scanning Electron Microscopic (SEM), X-ray Diffraction (X-RD) and X-ray 

Spectroscopy (EDX) were also conducted to understand the morphology of these 

samples. Study on durability for elevated temperature test limited till 800°C were 



6 

executed for total of 24 cubic specimens for both HPCM and HPCMG.  Changes on 

physical, colour, appearance of cracks and spalling were observed and recorded.  

Residual compressive strength and mass loss of specimens after exposed to elevated 

temperature were also conducted.    Colorimetric test was then executed in order to 

understand chloride penetration towards HPCM and HPCMG.  Total of 12 cubic 

specimens were used to observe the penetration before the specimens were then tested 

for reduction of compressive strengths after exposure of chloride.  Durability towards 

chloride resistance in this study was limited to 120 days of chloride exposure.  
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