PHOTOCATALYTIC WATER SPLITTING OVER TITANIUM ALIMINIUM CARBIDE ASSISTED RUTHENIUM WITH GARPHITIC CARBON NITRIDE FOR HYDROGEN PRODUCTION

FAISAL ABDULLAH AHMED BADAWOD

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering

School of Chemical and Energy Engineering Faculty of Engineering Universiti Teknologi Malaysia

5 August 2020

ABSTRACT

Photocatalytic water splitting for hydrogen production is considered to solve the issue of greenhouse gases and other environmental concerns as hydrogen is considered as an alternative source of energy that can replace fossil fuel. The objective of this study is to develop ternary photocatalyst functional under visible light for water splitting to generate hydrogen. Titanium aluminium carbide (Ti₃AlC₂) dispersed ruthenium (Ru) doped graphitic carbon nitride $(g-C_3N_4)$ composite $(Ti_3AlC_2/Ru/g C_3N_4$) was developed using hydrothermal assisted impregnation method followed by characterization including XRD, SEM, TEM, Raman, UV-visible and PL spectroscopy techniques. The function of g-C₃N₄ is to enhance visible light harvesting, while Ti₃AlC₂ developed Z-scheme hetero-junction for fast charges separation as a result more electrons were produced for H⁺ to H₂ reaction. The photocatalytic activity was tested using slurry photo-reactor systems for continuous H₂ production. Ti₃AlC₂/Ru/g- C_3N_4 composite was observed to produce 1665 µmolg⁻¹h⁻¹ of H₂ with each gave 1.3 and 1.93 times higher than produced from Ru/g-C₃N₄ and Ti₃AlC₂/g-C₃N₄ samples, respectively. This enhanced hydrogen production was obviously due to superior photogenerated charges separation with higher visible light absorption and developing Z-scheme heterojunction. The operating parameters such as varying catalyst loading, various sacrificial reagents and irradiation time were investigated. Besides, the stability of catalyst over 3 continuous cycles was also studied. The highest yield rate of hydrogen production was for 0.25 g catalyst loading. H₂ production by using different sacrificial reagents was in order: water < glycerol < ethanol < ethylene glycol < methanol. In conclusion, excellent performance of composite catalyst using a slurry reactor for H₂ production would offer a new opportunity of developing structured photocatalysts for renewable fuels production under visible light.

ABSTRAK

Pembelahan air fotopemangkinan untuk penghasilan hidrogen dianggap penyelesai masalah gas rumah hijau dan kebimbangan lain alam sekitar kerana hidrogen dianggap sebagai sumber alternatif tenaga yang dapat menggantikan bahan api fosil. Objektif kajian ini adalah untuk membangunkan fungsi fotopemangkin ternari di bawah cahaya nampak untuk pembelahan air bagi menjana hidrogen. Komposit (Ti₃AlC₂/Ru/g-C₃N₄) titanium aluminium karbida (Ti₃AlC₂) terserak rutenium (Ru) didopkan karbon grafit nitrida $(g-C_3N_4)$ dibina menggunakan kaedah pengisitepuan berbantu hidroterma diikuti dengan pencirian termasuk XRD, SEM, TEM, Raman, UV-nampak dan teknik spektroskopi PL. Fungsi g-C₃N₄ adalah untuk meningkatkan cahaya nampak manakala Ti₃AlC₂ membina hetero-simpang skema-Z untuk pemisahan caj dengan cepat dan menyebabkan lebih banyak elektron dihasilkan untuk tindak balas H⁺ ke H₂. Aktiviti fotopemangkinan diuji menggunakan sistem foto-reaktor untuk penghasilan H₂ berterusan. Komposit Ti₃AlC₂ / Ru / g-C₃N₄ didapati menghasilkan 1665 µmolg⁻¹h⁻¹ H₂ dengan masing-masing memberi 1.3 dan 1.93 kali lebih tinggi berbanding dengan yang dihasilkan oleh sampel Ru/g-C₃N₄ dan $Ti_3AlC_2/g-C_3N_4$. Penghasilan hidrogen tertingkat ini jelas disebabkan oleh pemisahan caj fotogenerasi yang unggul dengan penyerapan cahaya nampak yang lebih tinggi dan membangunkan hetero-simpang skema-Z. Parameter operasi seperti muatan pemangkin yang berbeza-beza, pelbagai reagen korban dan masa penyinaran dikaji. Selain itu, kestabilan pemangkin terhadap 3 kitaran berterusan juga dikaji. Kadar hasil tertinggi penghasilan hidrogen adalah bagi 0.25 g muatan pemangkin. Penghasilan H_2 dengan menggunakan reagen korban berbeza adalah dalam turutan: air <gliserol <etanol <etilena glikol <metanol. Kesimpulannya, prestasi cemerlang pemangkin komposit menggunakan reaktor buburan untuk penghasilan H₂ akan menawarkan peluang baharu membangunkan fotopemangkinan berstruktur untuk penghasilanan bahan api yang boleh diperbaharu di bawah cahaya nampak.

TABLE OF CONTENTS

TITLE

	DECLARATION			
	DEDICATION			
	ACKNOWLEDGEMENT			
	ABSTRACT			
	ABST	RAK	vii	
	TABLE OF CONTENTS			
	LIST (OF TABLES	xi	
	LIST OF FIGURES			
	LIST OF ABBREVIATIONS			
	LIST	OF SYMBOLS	XV	
CHAPTER	. 1	INTRODUCTION	1	
	1.1	Background	1	
	1.2	Problem Statement	3	
	1.3	Objectives of Study	4	
	1.4	Scope of Study	4	
	1.5	Significance of Study	5	
CHAPTER	2	LITERATURE REVIEW	7	
	2.1	Introduction	7	
	2.2	Principal of Photocatalyst	9	
	2.3	Mechanism of Photo-catalysis	10	
:	2.4	Recent Development in Photocatalysts for H_2 Production	11	
	2.5	Graphitic Carbon Nitride, Titanium Aluminium Carbide and Ruthenium as Photocatalyst	17	
	2.6	Summary of Chapter	19	
CHAPTER	3	RESEARCH METHODOLOGY	21	
:	3.1	Introduction	21	

	3.2	Materials of Research		
3.3		Catalyst Synthesis		22
		3.3.1	Preparation of g-C ₃ N ₄	23
		3.3.2	Preparation of Ti_3AlC_2/g -C ₃ N ₄ , Ru/g-C ₃ N ₄ and $Ti_3AlC_2/Ru/g$ -C ₃ N ₄	23
	3.4	Charao	cterization of Catalysts	24
		3.4.1	XRD Analysis	25
		3.4.2	Raman Analysis	25
		3.4.3	Transmission Electron Microscopy (TEM)	25
		3.4.4	EDX Mapping	26
		3.4.5	UV-Visible Spectrophotometer	26
		3.4.6	Photoluminescence Spectra	27
	3.5	Design	n of the Photoreactor	27
	3.6	Study	of Operating Parameters	28
	3.7	Calculation of Yield Rate of Hydrogen		
СНАРТЕН	R 4	RESU	LTS AND DISCUSSION	31
	4.1	Introd	uction	31
	4.2	Charac	cterization of Catalysts	31
	4.2	Charao 4.2.1	cterization of Catalysts Raman Spectra	31 31
	4.2	Charao 4.2.1 4.2.2	cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis	31 31 32
	4.2	Charao 4.2.1 4.2.2 4.2.3	cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM)	31313233
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4	cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping	31 31 32 33 34
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra	31 31 32 33 34 35
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6	cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra Photoluminescence Spectra	31 31 32 33 34 35 36
	4.2 4.3	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Photo-	cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra Photoluminescence Spectra catalyst Screenings Using Slurry Photo-reactor	31 31 32 33 34 35 36 37
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Photo- 4.3.1	 cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra Photoluminescence Spectra catalyst Screenings Using Slurry Photo-reactor Screening of Photo-catalysts for H₂ Production 	31 31 32 33 34 35 36 37 38
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Photo- 4.3.1 4.3.2	 cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra Photoluminescence Spectra catalyst Screenings Using Slurry Photo-reactor Screening of Photo-catalysts for H₂ Production Effect of Photo-catalyst loading 	31 31 32 33 34 35 36 37 38 40
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Photo- 4.3.1 4.3.2 4.3.3	 cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra Photoluminescence Spectra catalyst Screenings Using Slurry Photo-reactor Screening of Photo-catalysts for H₂ Production Effect of Photo-catalyst loading Effect of Sacrificial Reagent 	31 31 32 33 34 35 36 37 38 40 41
	4.2	Charao 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 Photo- 4.3.1 4.3.2 4.3.3 4.3.4	 cterization of Catalysts Raman Spectra X-ray diffractometer (XRD) Analysis Transmission Electron Microscopy (TEM) EDX Mapping UV–Vis Diffuse Reflectance Absorbance Spectra Photoluminescence Spectra catalyst Screenings Using Slurry Photo-reactor Screening of Photo-catalysts for H₂ Production Effect of Photo-catalyst loading Effect of Sacrificial Reagent Stability Analysis 	31 31 32 33 34 35 36 37 38 40 41 42

CHAPTER 5	CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	47
5.2	Recommendations	48
REFERENCES		49

LIST OF TABLES

TABLE N	IO. TITLE	PAGE	
Table 2.1	Various photocatalysts for H ₂ production	11	
Table 2.2	Summary of the catalysts properties that involve in the Composite	18	
Table 3.1	The materials type that will be used and its properties	22	
Table 3.2	The catalyst that synthesised with their ratios and composition	23	

LIST OF FIGURES

FIGURE NO.	TITLE		
Figure 2.1	Main sources of production	8	
Figure 2.2	Mechanism of photocatalyst	10	
Figure 3.1	The steps of the general research methodology	21	
Figure 3.2	Schematic of fabrication of Ti ₃ AlC ₂ /Ru/g-C ₃ N ₄ composite preparation with sol gel method	26	
Figure 3.3	Schematic of slurry photo-reactor for H ₂ production under visible light irradiation	28	
Figure 4.1	Raman spectra of g-C ₃ N ₄ , Ti ₃ AlC ₂ , Ti ₃ AlC ₂ /g-C ₃ N ₄ and Ti ₃ AlC ₂ /Ru/g-C ₃ N ₄		
Figure 4.2	The XRD pattern of g-C ₃ N ₄ , Ti ₃ AlC ₂ , Ti ₃ AlC ₂ /g-C ₃ N ₄ and Ti ₃ AlC ₂ /Ru/g-C ₃ N ₄		
Figure 4.3	TEM images of Ru-g-C ₃ N ₄ dispersed on Ti ₃ AlC ₂	٣٤	
Figure 4.4	EDX mapping image of the elements	٣٥	
Figure 4.5	UV-Vis absorption spectra of $g-C_3N_4$, Ti ₃ AlC ₂ , Ti ₃ AlC ₂ / $g-C_3N_4$ and Ti ₃ AlC ₂ /Ru/ $g-C_3N_4$ composite	٣٦	
Figure 4.6	The PL emission spectra of $g-C_3N_4$, Ti_3AlC_2 , $Ti_3AlC_2/g-C_3N_4$ and $Ti_3AlC_2/Ru/g-C_3N_4$ composite sample	٣٧	
Figure 4.7	H_2 production rate over different Ru loading g-C ₃ N ₄ in 5% methanol aqueous solution	٣٩	
Figure 4.8	The results of H_2 production of $g-C_3N_4$, Ti_3AlC_2 , $Ti_3AlC_2/g-C_3N_4$, $Ru/g-C_3N_4$ and $Ti_3AlC_2/Ru/g-C_3N_4$ composite from photocatalytic water splitting	٣٩	
Figure 4.9	The performance of H ₂ production of Ti ₃ AlC ₂ /Ru/g-C ₃ N ₄ photocatalyst in different amount of catalyst loading in 5% methanol-water mixture using slurry reactor under visible		
Figure 4.10	light The performance of H_2 production over $Ti_3AlC_2/Ru/g-C_3N_4$	٤٠	
Figure 4.11	composite photocatalyst in 5% of different sacrificial reagent using slurry reactor under visible light The stability of $Ti_3AlC_2/Ru/g-C_3N_4$ for H ₂ production in 4h for three cycle using slurry photo-reactor in 5% methanol-	٤١	

water mixture using slurry reactor under visible light \mathfrak{zr}

 $\begin{array}{lll} Figure \ 4.12 & Schematic \ illustration \ for \ the \ reaction \ mechanism \ of \\ photocatalytic \ H_2 \ production \ for \ Ti_3AlC_2/Ru/g-C_3N_4 \\ composite \ under \ visible \ light \end{array}$

LIST OF ABBREVIATIONS

ALD	-	Atomic Layer Deposition
CB	-	Conductance Band
FESEM	-	Field Emission Scanning Electron Microscopy
GHG	-	Greenhouse gas
PL	-	Photoluminescence
SEM	-	Scanning Electron Microscopy
TEM	-	Transmission Electron Microscopy
UV	-	Ultra-Violet
VB	-	Valance Band
XRD	-	X-ray Diffraction
g-C ₃ N ₄	-	Graphitic carbon nitride
Ti ₃ AlC ₂	-	Titanium aluminium carbide

LIST OF SYMBOLS

W	-	Watt
g	-	Gram
mol	-	Mole
λ	-	X-ray Wavelength
e	-	Electron
h^+	-	Hole
Eg	-	Energy band gap
Ec	-	CB Minimum Energy Level Position
Ev	-	VB Maximum Energy Level Position

CHAPTER 1

INTRODUCTION

1.1 Background

Recently, the world is facing challenges of excessive greenhouse gases (GHG) emission that increases the average temperature of the earth and is main cause of global warming. Also, fossil fuels are considered main cause of environmental issues because of their excessive use leading to emission of CO_2 [1]. Transportation is also a part of energy consumption that causes emissions of greenhouse gases in the atmosphere [2]. Currently, 65% of worldwide energy demand is fulfilled by utilization of fossil fuels due to their high energy content. However, over the time, fossil fuels will be depleting as they are considered as non-renewable source of energy [3]. Therefore, alternative renewable energy sources have been developed to replace fossil fuels. Hydrogen energy is considered as renewable energy and is expected to have potential for fulfilling energy demands in coming years.

There are various technologies to generate H_2 such as thermal, electrical, photonic and biochemical energy. These techniques have disparate properties, and some of them will be the best choice to generate H_2 . Thermal technique produces a huge amount of H_2 , but it is using non-renewable energy sources like fossil fuel. Although, electrical method uses a renewable source to generates H_2 , this process is expensive. Biochemical energy converts biomass support by microorganism into H_2 , which is called biological process [4]. The best method to generate H_2 is photonic as it is an abundant energy resource, which uses light irradiation that comes from the sun, so we can say that this the best technique.

Photocatalytic system depends on photonic energy that is released from light irradiation and converted into chemical energy. This process is better than other technologies because it is considered to be more economical than the others. Solar irradiation is abundant in nature and it is easy to get compared with heat energy. Water splitting occurs when photocatalysis process produces photonic energy and give catalyst high stability. Furthermore, this process is economic because it relies on solar energy and water that are abundant resources on our planet. Also, this energy is sustainable and environmentally safe [5].

Nowadays, photocatalysis involved in hydrogen production has attracted the attention of researchers. The components of photo-catalysis are reactant, photocatalyst, photo-reactor and light irradiation. Among the semiconductors, titanium dioxide has been widely used in photocatalytic water splitting due to high chemical and thermal stability. However, TiO₂ has limitations such as UV-active only and faster charges recombination, resulting in lower hydrogen production. Therefore, efficient and stable catalysts functional under solar energy are highly demanding to develop sustainable system for solar hydrogen production.

Recently, MAX phase compounds are under exploration in various applications. The formula of this compound is $M_{n+1}AX_n$ with n=1 to 3, where X is either nitrogen or carbon, A is mostly groups 13, 14 element and M is an early transition metal. Ti₃AlC₂ has metallic-covalent-ionic bonds that have many features of both metal and ceramics. On the other side, polymeric graphitic nitride (g-C₃N₄) is considered as one of the most popular photocatalysts that has been investigated by researchers. g-C₃N₄ can respond perfectly to the visible light because it has band gap 2.7 eV. This photocatalyst is easy to synthesise because the materials used to prepare it, such as melamine and urea, are low cost. It has many properties such as high thermal/chemical stability but fast recombination rate of charges and low surface area [6, 7]. The bond between carbon and nitrogen in g-C₃N₄ is very strong, which cause excellent photo-corrosion resistance [8]. With a view to increase the efficiency of H₂ production, it can be coupled with other metals. Among all the metals, Ruthenium (Ru) is one of the noble metals and is considered as good metal dopants. Ru significantly promotes the separation of photogenerated electron-hole pairs and extends the photo

absorption toward the visible light regime arising from the formation of an intermediate energy level [9].

In this study, design and development of novel nanocomposite photocatalyst to investigate photocatalytic hydrogen production has been investigated. The composite $Ti_3AlC_2/Ru/g-C_3N_4$ was found very efficient to give high yield of hydrogen under visible due to faster separation and utilization of charge carrier under visible light irradiations.

1.2 Problem Statement

Hydrogen production by water splitting has become popular in recent years, but it presents some problems and troubles such as low yield of hydrogen production under visible light. Followings are the problems and research hypothesis of this work:

- (i) Polymetric graphitic nitride (g-C₃N₄) is considered as one of the most popular photocatalysts that have been investigated by many researchers. This catalyst can respond perfectly to the visible light because it has band gap 2.7 eV. It has many properties such as high thermal and chemical stability. However, it has limitations such as fast charges recombination rate and low surface area. The photoactivity of g-C₃N₄ can be improved by coupling with other materials. Among the 2D materials, titanium aluminium carbide (Ti₃AlC₂) is a layered material of MAX phase having energy applications with advantageous layered structure providing increased surface area and active sites for reduction reaction leading to increase H₂ production. Thus, coupling g-C₃N₄ with Ti₃AlC₂ would develop 2D/2D heterojunction of Z-scheme system to maximize hydrogen production.
- (ii) With a view to increase the efficiency of H_2 production, the composite of g-C₃N₄ can be coupled with other metals. Ruthenium is one of the noble metals and considered as good metal dopants. Ru significantly promotes the

separation of photogenerated electron-hole pairs and extends the photo absorption toward the visible light regime arising from the formation of an intermediate energy level. Ru also can improve the electron conductivity which would be beneficial for maximizing hydrogen production.

(iii) The fabrication of the novel ternary Ti₃AlC₂/Ru/g-C₃N₄ nanocomposite is expected to develop Z-scheme photocatalytic system which would increase the yield rate of hydrogen production. Optimizing the parameters such as loading of the catalyst, sacrificial reagent and reaction time would be helpful to enhance hydrogen production rate.

1.3 Objectives of Study

In this work catalysts synthesis and characterization for photocatalytic hydrogen production has been investigated. Thus, specific objectives for this study are:

- (i) To synthesis and characterize ternary $Ti_3AlC_2/Ru/g-C_3N_4$ nanocomposites functional under visible light,
- (ii) To investigate the performance of newly developed photocatalyst in photocatalytic water splitting and investigation of different parameters for the photoactivity of composite to maximize H₂ production,
- (iii) To suggest reaction mechanism of recently developed composite for photocatalytic water splitting under visible light.

1.4 Scope of Study

In this work, initially, catalysts were synthesized and then characterized. In the next stage, performance analysis was conducted under visible light irradiations. The parameters were conducted to maximize composite catalyst performance. Thus, scope is this work is as follows:

4

- (i) Photocatalyst g-C₃N₄ was prepared using hydrothermal and simple mixing methods. The composite Ti₃AlC₂/Ru/g-C₃N₄ synthesised by mixing the sample g-C₃N₄ with Ti₃AlC₂ then Ru. The samples were characterized using various techniques such as XRD, Raman, EDX, TEM, PL spectra and UV-Visible Spectrophotometer.
- (ii) The performance of Ti₃AlC₂, g-C₃N₄, Ru/g-C₃N₄, Ti₃AlC₂/g-C₃N₄ and Ti₃AlC₂/Ru/g-C₃N₄ composite were investigated for H₂ production under visible light irradiation. Operating different parameters were determined to find the best way to increase the yield such as catalyst weight, sacrificial reagent and time of the irradiation.
- (iii) After proper analysis and study of results obtained, reaction mechanism of the composite which electrons transfer between semiconductors from conduction band (CB) of higher negative to CB of lower negative while Z-scheme system transfer electron from CB of lower negative to valence band (VB) of lower positive semiconductor through solid mediator proposed.

1.5 Significance of Study

This study is important for many reasons. First, the research on $Ti_3AlC_2/Ru/g-C_3N_4$ assures that this catalyst can be used under low light and guidance on mechanism of the composite during water splitting. Various parameters on water splitting will be applied to represent the effect which will give much comprehension on this study. This research illuminates that photocatalyst have many features such stability, high charge separation and ecological.

REFERENCES

- M. Balat, and M. Balat, "Political, economic and environmental impacts of biomass-based hydrogen," *International Journal of Hydrogen Energy*, vol. 34, no. 9, pp. 3589-3603, 2009.
- M. Ball, and M. Wietschel, "The future of hydrogen–opportunities and challenges," *International Journal of Hhydrogen Energy*, vol. 34, no. 2, pp. 615-627, 2009.
- [3] T. N. Veziroğlu, and S. Şahi, "21st Century's energy: Hydrogen energy system," *Energy conversion and Management*, vol. 49, no. 7, pp. 1820-1831, 2008.
- S. Y. Tee, K. Y. Win, W. S. Teo, L. D. Koh, S. Liu, C. P. Teng, and M. Y.
 Han, "Recent Progress in Energy-Driven Water Splitting," *Advanced Science*, vol. 4, no. 5, pp. 1600337, 2017.
- [5] N. Fajrina, and M. Tahir, "A critical review in strategies to improve photocatalytic water splitting towards hydrogen production," *International Journal of Hydrogen Energy*, 2018.
- [6] S. Ye, R. Wang, M.-Z. Wu, and Y.-P. Yuan, "A review on g-C₃N₄ for photocatalytic water splitting and CO2 reduction," *Applied Surface Science*, vol. 358, pp. 15-27, 2015.
- H. Ahmad, S. Kamarudin, L. Minggu, and M. Kassim, "Hydrogen from photo-catalytic water splitting process: A review," *Renewable and Sustainable Energy Reviews*, vol. 43, pp. 599-610, 2015.
- [8] J. Liu, T. Zhang, Z. Wang, G. Dawson, and W. Chen, "Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity," *Journal of Materials Chemistry*, vol. 21, no. 38, pp. 14398-14401, 2011.
- [9] T.-D. Nguyen-Phan, S. Luo, D. Vovchok, J. Llorca, S. Sallis, S. Kattel, W. Xu, L. F. Piper, D. E. Polyansky, and S. D. Senanayake, "Three-dimensional ruthenium-doped TiO₂ sea urchins for enhanced visible-light-responsive H₂

production," *Physical Chemistry Chemical Physics*, vol. 18, no. 23, pp. 15972-15979, 2016.

- [10] N. M. Gupta, "Factors affecting the efficiency of a water splitting photocatalyst: a perspective," *Renewable and Sustainable Energy Reviews*, vol. 71, pp. 585-601, 2017.
- [11] I. Chiu, S.-X. Lin, C.-T. Kao, and R.-J. Wu, "Promoting hydrogen production by loading PdO and Pt on N–TiO₂ under visible light," *International Journal* of Hydrogen Energy, vol. 39, no. 27, pp. 14574-14580, 2014.
- [12] N. Z. Muradov, and T. N. Veziroğlu, ""Green" path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies," *International journal of hydrogen energy*, vol. 33, no. 23, pp. 6804-6839, 2008.
- [13] P. K. Dubey, P. Tripathi, R. Tiwari, A. Sinha, and O. Srivastava, "Synthesis of reduced graphene oxide–TiO₂ nanoparticle composite systems and its application in hydrogen production," *international journal of hydrogen energy*, vol. 39, no. 29, pp. 16282-16292, 2014.
- [14] J. X. W. Hay, T. Y. Wu, J. C. Juan, and J. Md. Jahim, "Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage," *Biofuels, Bioproducts and Biorefining*, vol. 7, no. 3, pp. 334-352, 2013.
- [15] L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, and D. D. Dionysiou, "Copper modified-TiO₂ catalysts for hydrogen generation through photoreforming of organics. A short review," *international journal of hydrogen energy*, vol. 39, no. 30, pp. 16812-16831, 2014.
- [16] C. M. Kalamaras, and A. M. Efstathiou, "Hydrogen production technologies: current state and future developments."
- K. Maeda, "Photocatalytic water splitting using semiconductor particles: history and recent developments," *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, vol. 12, no. 4, pp. 237-268, 2011.
- [18] D. I. Kondarides, V. M. Daskalaki, A. Patsoura, and X. E. Verykios,
 "Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions," *Catalysis Letters*, vol. 122, no. 1-2, pp. 26-32, 2008.

- [19] R. Abe, "Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation," *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, vol. 11, no. 4, pp. 179-209, 2010.
- [20] C. Acar, I. Dincer, and C. Zamfirescu, "A review on selected heterogeneous photocatalysts for hydrogen production," *International Journal of Energy Research*, vol. 38, no. 15, pp. 1903-1920, 2014.
- [21] J. Wen, J. Xie, X. Chen, and X. Li, "A review on g-C₃N₄-based photocatalysts," *Applied Surface Science*, vol. 391, pp. 72-123, 2017.
- [22] G. L. Chiarello, M. H. Aguirre, and E. Selli, "Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO₂," *Journal of Catalysis*, vol. 273, no. 2, pp. 182-190, 2010.
- [23] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai,
 "Visible-light activation of TiO₂ photocatalysts: Advances in theory and experiments," *Journal of Photochemistry and Photobiology C: Photochemistry Reviews*, vol. 25, pp. 1-29, 2015.
- [24] Y. Xu, and R. Xu, "Nickel-based cocatalysts for photocatalytic hydrogen production," *Applied Surface Science*, vol. 351, pp. 779-793, 2015.
- [25] Z. H. Al-Azri, W.-T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, and G. I. Waterhouse, "The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO₂ photocatalysts (M= Pd, Pt, Au) in different alcohol–water mixtures," *Journal of catalysis*, vol. 329, pp. 355-367, 2015.
- [26] A. J. Bard, "Photoelectrochemistry and heterogeneous photocatalysis at semiconductors," *Journal of Photochemistry*, vol. 10, no. 1, pp. 59-75, 1979.
- [27] R. Zhu, F. Tian, R. Yang, J. He, J. Zhong, and B. Chen, "Z scheme system ZnIn₂S₄/RGO/BiVO₄ for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light," *Renewable Energy*, vol. 139, pp. 22-27, 2019.
- [28] W. Chang, W. Xue, E. Liu, J. Fan, and B. Zhao, "Highly efficient H₂ production over NiCo₂O₄ decorated g-C₃N₄ by photocatalytic water reduction," *Chemical Engineering Journal*, vol. 362, pp. 392-401, 2019.
- [29] R. Shen, W. Liu, D. Ren, J. Xie, and X. Li, "Co_{1.4}Ni_{0.6}P cocatalysts modified metallic carbon black/g-C₃N₄ nanosheet Schottky heterojunctions for active

and durable photocatalytic H₂ production," *Applied Surface Science*, vol. 466, pp. 393-400, 2019.

- [30] C. Du, Q. Zhang, Z. Lin, B. Yan, C. Xia, and G. Yang, "Half-unit-cell ZnIn₂S₄ monolayer with sulfur vacancies for photocatalytic hydrogen evolution," *Applied Catalysis B: Environmental*, vol. 248, pp. 193-201, 2019.
- [31] N. Li, H. Huang, R. Bibi, Q. Shen, R. Ngulube, J. Zhou, and M. Liu, "Noblemetal-free MOF derived hollow CdS/TiO₂ decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution," *Applied Surface Science*, vol. 476, pp. 378-386, 2019.
- [32] H. Yu, J. Xu, C. Yin, Z. Liu, and Y. Li, "Significant improvement of photocatalytic hydrogen evolution rate over g-C₃N₄ with loading CeO₂@ Ni₄S₃," *Journal of Solid State Chemistry*, vol. 272, pp. 102-112, 2019.
- Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, and H. Cui,
 "2D/2D/2D heterojunction of Ti₃C₂ MXene/MoS₂ nanosheets/TiO₂
 nanosheets with exposed (001) facets toward enhanced photocatalytic
 hydrogen production activity," *Applied Catalysis B: Environmental*, vol. 246,
 pp. 12-20, 2019.
- [34] G. K. Naik, S. M. Majhi, K.-U. Jeong, I.-H. Lee, and Y. T. Yu, "Nitrogen doping on the core-shell structured Au@ TiO₂ nanoparticles and its enhanced photocatalytic hydrogen evolution under visible light irradiation," *Journal of Alloys and Compounds*, vol. 771, pp. 505-512, 2019.
- [35] Y.-J. Yuan, Z. Shen, S. Wu, Y. Su, L. Pei, Z. Ji, M. Ding, W. Bai, Y. Chen, Z.-T. Yu, and Z. Zou, "Liquid exfoliation of g-C₃N₄ nanosheets to construct 2D-2D MoS₂/g-C₃N₄ photocatalyst for enhanced photocatalytic H₂ production activity," *Applied Catalysis B: Environmental*, vol. 246, pp. 120-128, 2019.
- [36] R. Rameshbabu, P. Ravi, and M. Sathish, "Cauliflower-like CuS/ZnS nanocomposites decorated g-C₃N₄ nanosheets as noble metal-free photocatalyst for superior photocatalytic water splitting," *Chemical Engineering Journal*, vol. 360, pp. 1277-1286, 2019.
- [37] X. Tao, L. Shao, R. Wang, H. Xiang, and B. Li, "Synthesis of BiVO₄ nanoflakes decorated with AuPd nanoparticles as selective oxidation photocatalysts," *Journal of colloid and interface science*, vol. 541, pp. 300-311, 2019.

- [38] J. Han, F. Dai, Y. Liu, R. Zhao, L. Wang, and S. Feng, "Synthesis of CdSe/SrTiO₃ nanocomposites with enhanced photocatalytic hydrogen production activity," *Applied Surface Science*, vol. 467, pp. 1033-1039, 2019.
- [39] Y. Yang, L. Kang, and H. Li, "Enhancement of photocatalytic hydrogen production of BiFeO₃ by Gd³⁺ doping," *Ceramics International*, vol. 45, no. 6, pp. 8017-8022, 2019.
- [40] Y. Wu, B. Dong, J. Zhang, H. Song, and C. Yan, "The synthesis of ZnO/SrTiO₃ composite for high-efficiency photocatalytic hydrogen and electricity conversion," *international journal of hydrogen energy*, vol. 43, no. 28, pp. 12627-12636, 2018.
- [41] M. E. Bretado, M. G. Lozano, V. C. Martínez, A. L. Ortiz, M. M. Zaragoza,
 R. Lara, and C. M. Medina, "Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K₂Ti₆O₁₃) fibers," *International Journal of Hydrogen Energy*, vol. 44, no. 24, pp. 12470-12476, 2019.
- [42] C. Gómez-Solís, J. Oliva, L. Diaz-Torres, J. Bernal-Alvarado, V. Reyes-Zamudio, A. Abidov, and L. M. Torres-Martinez, "Efficient photocatalytic activity of MSnO₃ (M: Ca, Ba, Sr) stannates for photoreduction of 4nitrophenol and hydrogen production under UV light irradiation," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 371, pp. 365-373, 2019.
- [43] L. Zhang, D. Jiang, R. M. Irfan, S. Tang, X. Chen, and P. Du, "Highly efficient and selective photocatalytic dehydrogenation of benzyl alcohol for simultaneous hydrogen and benzaldehyde production over Ni-decorated Zn₀. 5Cd₀. 5S solid solution," *Journal of energy chemistry*, vol. 30, pp. 71-77, 2019.
- [44] L. Ye, and Z. Wen, "ZnIn₂S₄ nanosheets decorating WO₃ nanorods core-shell hybrids for boosting visible-light photocatalysis hydrogen generation," *International Journal of Hydrogen Energy*, vol. 44, no. 7, pp. 3751-3759, 2019.
- [45] G.-y. Zhao, C.-y. Li, and Y. Xu, "PPECu/NiFe₂O₄ as an efficient visiblelight-driven difunctional photocatalyst for degradation of PPCPs and hydrogen production," *Journal of Alloys and Compounds*, vol. 780, pp. 534-539, 2019.
- [46] Z. Dong, J. Pan, B. Wang, Z. Jiang, C. Zhao, J. Wang, C. Song, Y. Zheng, C. Cui, and C. Li, "The pn-type Bi₅O₇I-modified porous C₃N₄ nano-

heterojunction for enhanced visible light photocatalysis," *Journal of Alloys* and Compounds, vol. 747, pp. 788-795, 2018.

- [47] Y. Yan, M. Yang, H. Shi, C. Wang, J. Fan, E. Liu, and X. Hu, "CuInS₂ sensitized TiO₂ for enhanced photodegradation and hydrogen production," *Ceramics International*, vol. 45, no. 5, pp. 6093-6101, 2019.
- [48] Y. Tang, X. Li, D. Zhang, X. Pu, B. Ge, and Y. Huang, "Noble metal-free ternary MoS₂/Zn_{0.5}Cd_{0.5}S/g-C₃N₄ heterojunction composite for highly efficient photocatalytic H2 production," *Materials Research Bulletin*, vol. 110, pp. 214-222, 2019.
- [49] O. A. Carrasco-Jaim, J. Mora-Hernandez, L. M. Torres-Martínez, and E. Moctezuma, "A comparative study on the photocatalytic hydrogen production of ATiO₃ (A= Zn, Cd and Pb) perovskites and their photoelectrochemical properties," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 371, pp. 98-108, 2019.
- [50] J. Xu, Y. Qi, W. Wang, and L. Wang, "Montmorillonite-hybridized g-C₃N₄ composite modified by NiCoP cocatalyst for efficient visible-light-driven photocatalytic hydrogen evolution by dye-sensitization," *International Journal of Hydrogen Energy*, vol. 44, no. 8, pp. 4114-4122, 2019.
- [51] J. Dong, Y. Shi, C. Huang, Q. Wu, T. Zeng, and W. Yao, "A New and stable Mo-Mo₂C modified g-C₃N₄ photocatalyst for efficient visible light photocatalytic H₂ production," *Applied Catalysis B: Environmental*, vol. 243, pp. 27-35, 2019.
- [52] M. Humayun, Q. Fu, Z. Zheng, H. Li, and W. Luo, "Improved visible-light catalytic activities of novel Au/P-doped g-C₃N₄ photocatalyst for solar fuel production and mechanism," *Applied Catalysis A: General*, vol. 568, pp. 139-147, 2018.
- [53] T. Yu, K. Sun, K. Wang, Z. Lv, X. Liu, G. Wang, and G. Xie, "Ni doped noble-metal-free CdZnNiS photocatalyst for high-efficient photocatalytic hydrogen evolution reduction by visible light driving," *Materials Letters*, vol. 239, pp. 159-162, 2019.
- [54] X. Ye, Y. Chen, Y. Wu, X. Zhang, X. Wang, and S. Chen, "Constructing a system for effective utilization of photogenerated electrons and holes: Photocatalytic selective transformation of aromatic alcohols to aromatic

aldehydes and hydrogen evolution over Zn₃In₂S₆ photocatalysts," *Applied Catalysis B: Environmental*, vol. 242, pp. 302-311, 2019.

- [55] T. Zhao, Z. Xing, Z. Xiu, Z. Li, S. Yang, Q. Zhu, and W. Zhou, "Surface defect and rational design of TiO_{2-x} nanobelts/g-C₃N₄ nanosheets/CdS quantum dots hierarchical structure for enhanced visible-light-driven photocatalysis," *International Journal of Hydrogen Energy*, vol. 44, no. 3, pp. 1586-1596, 2019.
- [56] G. Qin, X. Sun, Y. Xiao, and F. Liu, "Rational fabrication of plasmonic responsive N-Ag-TiO₂-ZnO nanocages for photocatalysis under visible light," *Journal of Alloys and Compounds*, vol. 772, pp. 885-899, 2019.
- [57] D. Zhong, W. Liu, P. Tan, A. Zhu, L. Qiao, Y. Bian, and J. Pan, "Efficient hydrogen generation of indium doped BaTiO₃ decorated with CdSe quantum dots: Novel understanding of the effect of doping strategy," *International Journal of Hydrogen Energy*, vol. 44, no. 3, pp. 1627-1639, 2019.
- [58] M. Arif, Z. Min, L. Yuting, H. Yin, and X. Liu, "A Bi₂WO₆-based hybrid heterostructures photocatalyst with enhanced photodecomposition and photocatalytic hydrogen evolution through Z-scheme process," *Journal of industrial and engineering chemistry*, vol. 69, pp. 345-357, 2019.
- [59] J. Xu, Y. Qi, C. Wang, and L. Wang, "NH₂-MIL-101 (Fe)/Ni (OH)₂ -derived C, N-codoped Fe₂P/Ni₂P cocatalyst modified g-C₃N₄ for enhanced photocatalytic hydrogen evolution from water splitting," *Applied Catalysis B: Environmental*, vol. 241, pp. 178-186, 2019.
- [60] S. Bera, S. Ghosh, S. Shyamal, C. Bhattacharya, and R. N. Basu,
 "Photocatalytic hydrogen generation using gold decorated BiFeO₃ heterostructures as an efficient catalyst under visible light irradiation," *Solar Energy Materials and Solar Cells* vol. 194, pp. 195-206, 2019.
- [61] S. Sharma, M. R. Pai, G. Kaur, V. R. Satsangi, S. Dass, and R. Shrivastav, "Efficient hydrogen generation on CuO core/AgTiO₂ shell nano-heterostructures by photocatalytic splitting of water," *Renewable Energy*, vol. 136, pp. 1202-1216, 2019.
- [62] M. Umer, M. Tahir, M. U. Azam, and M. M. Jaffar, "Metals free MWCNTs@ TiO₂@ MMT heterojunction composite with MMT as a mediator for fast charges separation towards visible light driven

photocatalytic hydrogen evolution," *Applied Surface Science*, vol. 463, pp. 747-757, 2019.

- [63] L. Mao, X. Cai, S. Yang, K. Han, and J. Zhang, "Black phosphorus-CdS-La₂Ti₂O₇ ternary composite: Effective noble metal-free photocatalyst for full solar spectrum activated H2 production," *Applied Catalysis B: Environmental*, vol. 242, pp. 441-448, 2019.
- Y.-S. Lai, Y.-M. Dai, and J.-M. Jehng, "Photocatalytic activity of the (NH₄)
 2V₆O₁₆/g-C₃N₄ composite catalysts for water splitting applications," *Catalysis Today*, vol. 325, pp. 41-46, 2019.
- [65] N. Mao, and J.-X. Jiang, "MgO/g-C₃N₄ nanocomposites as efficient water splitting photocatalysts under visible light irradiation," *Applied Surface Science*, vol. 476, pp. 144-150, 2019.
- [66] T. Zhu, X. Ye, Q. Zhang, Z. Hui, X. Wang, and S. Chen, "Efficient utilization of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn₂S₄ hybrid," *Journal of hazardous materials*, vol. 367, pp. 277-285, 2019.
- [67] T. Zhao, Z. Xing, Z. Xiu, Z. Li, P. Chen, Q. Zhu, and W. Zhou, "Synergistic effect of surface plasmon resonance, Ti³⁺ and oxygen vacancy defects on Ag/MoS₂/TiO_{2-x} ternary heterojunctions with enhancing photothermal catalysis for low-temperature wastewater degradation," *Journal of hazardous materials*, vol. 364, pp. 117-124, 2019.
- [68] H. Li, M. Wang, Y. Wei, and F. Long, "Noble metal-free NiS₂ with rich active sites loaded g-C₃N₄ for highly efficient photocatalytic H₂ evolution under visible light irradiation," *Journal of colloid and interface science*, vol. 534, pp. 343-349, 2019.
- [69] J. Wang, J. Luo, D. Liu, S. Chen, and T. Peng, "One-pot solvothermal synthesis of MoS₂-modified Mn_{0. 2}Cd_{0. 8}S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H₂ production," *Applied Catalysis B: Environmental*, vol. 241, pp. 130-140, 2019.
- [70] Y. Zhang, Z. Jin, Y. Su, and G. Wang, "Charge separation and electron transfer routes modulated with Co-Mo-P over g-C₃N₄ photocatalyst," *Molecular Catalysis*, vol. 462, pp. 46-55, 2019.
- [71] H. Wang, Y. Sun, Y. Wu, W. Tu, S. Wu, X. Yuan, G. Zeng, Z. J. Xu, S. Li, and J. W. Chew, "Electrical promotion of spatially photoinduced charge

separation via interfacial-built-in quasi-alloying effect in hierarchical $Zn_2In_2S_5/Ti_3C_2$ (O, OH) x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation," *Applied Catalysis B: Environmental*, vol. 245, pp. 290-301, 2019.

- [72] C. Peng, P. Wei, X. Li, Y. Liu, Y. Cao, H. Wang, H. Yu, F. Peng, L. Zhang, and B. Zhang, "High efficiency photocatalytic hydrogen production over ternary Cu/TiO₂@ Ti₃C₂T_x enabled by low-work-function 2D titanium carbide," *Nano energy*, vol. 53, pp. 97-107, 2018.
- [73] J. Song, Y. Chen, D. Sun, and X. Li, "Perylenetetracarboxylic diimide modified Zn_{0. 7}Cd_{0. 3}S hybrid photocatalyst for efficient hydrogen production from water under visible light irradiation," *Inorganic Chemistry Communications*, vol. 92, pp. 27-34, 2018.
- [74] C.-J. Chang, and W.-C. Tsai, "CuSZnS decorated Fe₃O₄ nanoparticles as magnetically separable composite photocatalysts with excellent hydrogen production activity," *International Journal of Hydrogen Energy*, 2018.
- [75] J. Yu, Z. Chen, L. Zeng, Y. Ma, Z. Feng, Y. Wu, H. Lin, L. Zhao, and Y. He, "Synthesis of carbon-doped KNbO₃ photocatalyst with excellent performance for photocatalytic hydrogen production," *Solar Energy Materials and Solar Cells*, vol. 179, pp. 45-56, 2018.
- [76] C. Zhang, H. Liu, W. Wang, H. Qian, S. Cheng, Y. Wang, Z. Zha, Y. Zhong, and Y. Hu, "Scalable fabrication of Zn_xCd_{1-x}S double-shell hollow nanospheres for highly efficient hydrogen production," *Applied Catalysis B: Environmental*, vol. 239, pp. 309-316, 2018.
- [77] L. Qian, Y. Hou, Z. Yu, M. Li, F. Li, L. Sun, W. Luo, and G. Pan, "Metalinduced Z-scheme CdS/Ag/g-C₃N₄ photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag," *Molecular Catalysis*, vol. 458, pp. 43-51, 2018.
- [78] X. Wang, Z. Zhao, Z. Shu, Y. Chen, J. Zhou, T. Li, W. Wang, Y. Tan, and N. Sun, "One-pot synthesis of metakaolin/g-C₃N₄ composite for improved visible-light photocatalytic H₂ evolution," *Applied Clay Science*, vol. 166, pp. 80-87, 2018.
- [79] J. Shi, I. U. Islam, W. Chen, F. Wang, Z. Xu, S. Xu, Y. Li, and J. Lu, "Twodimensional ultrathin Zn_xCd_{1-x}S nanosheet with exposed polar facet by using layered double hydroxide template for photocatalytic hydrogen generation,"

International Journal of Hydrogen Energy, vol. 43, no. 42, pp. 19481-19491, 2018.

- [80] X.-l. Li, X.-j. Wang, J.-y. Zhu, Y.-p. Li, J. Zhao, and F.-t. Li, "Fabrication of two-dimensional Ni₂P/ZnIn₂S₄ heterostructures for enhanced photocatalytic hydrogen evolution," *Chemical Engineering Journal*, vol. 353, pp. 15-24, 2018.
- [81] Y. Wu, H. Wang, W. Tu, Y. Liu, S. Wu, Y. Z. Tan, and J. W. Chew, "Construction of hierarchical 2D-2D Zn₃In₂S₆/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance," *Applied Catalysis B: Environmental*, vol. 233, pp. 58-69, 2018.
- [82] D. Dai, L. Wang, N. Xiao, S. Li, H. Xu, S. Liu, B. Xu, D. Lv, Y. Gao, and W. Song, "In-situ synthesis of Ni₂P co-catalyst decorated Zn_{0.5}Cd_{0.5}S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation," *Applied Catalysis B: Environmental*, vol. 233, pp. 194-201, 2018.
- [83] T. Chen, J. Meng, S. Wu, J. Pei, Q. Lin, X. Wei, J. Li, and Z. Zhang, "Room temperature synthesized BaTiO₃ for photocatalytic hydrogen evolution," *Journal of Alloys and Compounds*, vol. 754, pp. 184-189, 2018.
- [84] B. Wang, F. Peng, S. Yang, Y. Cao, H. Wang, H. Yu, and S. Zhang,
 "Hydrogenated CdS nanorods arrays/FTO film: a highly stable photocatalyst for photocatalytic H₂ production," *International Journal of Hydrogen Energy*, vol. 43, no. 37, pp. 17696-17707, 2018.
- [85] R. Wang, J. Yan, M. Zu, S. Yang, X. Cai, Q. Gao, Y. Fang, S. Zhang, and S. Zhang, "Facile synthesis of interlocking g-C₃N₄/CdS photoanode for stable photoelectrochemical hydrogen production," *Electrochimica Acta*, vol. 279, pp. 74-83, 2018.
- [86] Y. Ding, Y. Gao, and Z. Li, "Carbon quantum dots (CQDs) and Co (dmgH)₂PyCl synergistically promote photocatalytic hydrogen evolution over hexagonal ZnIn₂S₄," *Applied Surface Science*, vol. 462, pp. 255-262, 2018.
- [87] Z. Wei, J. Liu, W. Fang, Z. Qin, Z. Jiang, and W. Shangguan, "Enhanced photocatalytic hydrogen evolution using a novel in situ heterojunction yttrium-doped Bi₄NbO₈Cl@ Nb₂O₅," *International Journal of Hydrogen Energy*, vol. 43, no. 31, pp. 14281-14292, 2018.

- [88] M. Joaquín-Morales, A. Fuentes, S. Montemayor, M. Meléndez-Zaragoza, J. S. Gutiérrez, A. L. Ortiz, and V. Collins-Martínez, "Synthesis conditions effect on the of photocatalytic properties of MnWO₄ for hydrogen production by water splitting," *International Journal of Hydrogen Energy*, vol. 44, no. 24, pp. 12390-12398, 2019.
- [89] D. V. Markovskaya, E. A. Kozlova, E. Y. Gerasimov, A. V. Bukhtiyarov, and D. V. Kozlov, "New photocatalysts based on Cd_{0.3}Zn_{0.7}S and Ni (OH)₂ for hydrogen production from ethanol aqueous solutions under visible light," *Applied Catalysis A: General*, vol. 563, pp. 170-176, 2018.
- [90] Y.-S. Lai, C.-H. Yang, and J.-M. Jehng, "The formation of (NH₄)₂V₆O₁₆ phase in the synthesized InVO₄ for the hydrogen evolving applications," *Catalysis Communications*, vol. 103, pp. 19-23, 2018.
- [91] Z. Xin, L. Li, W. Zhang, T. Sui, Y. Li, and X. Zhang, "Synthesis of ZnS@ CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method," *Molecular Catalysis*, vol. 447, pp. 1-12, 2018.
- [92] O. A. Carrasco-Jaim, L. M. Torres-Martínez, and E. Moctezuma, "Enhanced photocatalytic hydrogen production of AgMO₃ (M= Ta, Nb, V) perovskite materials using CdS and NiO as co-catalysts," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 358, pp. 167-176, 2018.
- [93] M. Imran, A. B. Yousaf, M. Farooq, and P. Kasak, "Enhanced Z-scheme visible light photocatalytic hydrogen production over α-Bi₂O₃/CZS heterostructure," *International Journal of Hydrogen Energy*, vol. 43, no. 9, pp. 4256-4264, 2018.
- [94] N. R. Reddy, M. M. Kumari, K. Cheralathan, and M. Shankar, "Enhanced photocatalytic hydrogen production activity of noble metal free MWCNT-TiO₂ nanocomposites," *international journal of hydrogen energy*, vol. 43, no. 8, pp. 4036-4043, 2018.
- [95] G.-J. Lee, Y.-C. Zheng, and J. J. Wu, "Fabrication of hierarchical bismuth oxyhalides (BiOX, X= Cl, Br, I) materials and application of photocatalytic hydrogen production from water splitting," *Catalysis Today*, vol. 307, pp. 197-204, 2018.
- [96] H. Enzweiler, P. H. Yassue-Cordeiro, M. Schwaab, E. Barbosa-Coutinho, M.
 H. N. O. Scaliante, and N. R. C. Fernandes, "Evaluation of Pd-TiO₂/ZSM-5

catalysts composition effects on hydrogen production by photocatalytic water splitting," *International Journal of Hydrogen Energy*, vol. 43, no. 13, pp. 6515-6525, 2018.

- [97] J. Ding, X. Li, L. Chen, X. Zhang, and X. Tian, "Photocatalytic hydrogen production over plasmonic AuCu/CaIn₂S₄ composites with different AuCu atomic arrangements," *Applied Catalysis B: Environmental*, vol. 224, pp. 322-329, 2018.
- [98] X. Hao, J. Zhou, Z. Cui, Y. Wang, Y. Wang, and Z. Zou, "Zn-vacancy mediated electron-hole separation in ZnS/g-C₃N₄ heterojunction for efficient visible-light photocatalytic hydrogen production," *Applied Catalysis B: Environmental*, vol. 229, pp. 41-51, 2018.
- [99] Y.-H. Liang, M.-W. Liao, M. Mishra, and T.-P. Perng, "Fabrication of Ta₃N₅ZnO direct Z-scheme photocatalyst for hydrogen generation," *International Journal of Hydrogen Energy*, 2018.
- [100] D. Saadetnejad, and R. Yıldırım, "Photocatalytic hydrogen production by water splitting over Au/Al-SrTiO₃," *International Journal of Hydrogen Energy*, vol. 43, no. 2, pp. 1116-1122, 2018.
- [101] P. Wang, S. Zhan, H. Wang, Y. Xia, Q. Hou, Q. Zhou, Y. Li, and R. R. Kumar, "Cobalt phosphide nanowires as efficient co-catalyst for photocatalytic hydrogen evolution over Zn_{0.5}Cd_{0.5}S," *Applied Catalysis B: Environmental*, vol. 230, pp. 210-219, 2018.
- [102] X. Han, D. Xu, L. An, C. Hou, Y. Li, Q. Zhang, and H. Wang, "WO₃/g-C₃N₄ two-dimensional composites for visible-light driven photocatalytic hydrogen production," *International Journal of Hydrogen Energy*, vol. 43, no. 10, pp. 4845-4855, 2018.
- [103] D. Xu, L. Li, R. He, L. Qi, L. Zhang, and B. Cheng, "Noble metal-free RGO/TiO₂ composite nanofiber with enhanced photocatalytic H₂-production performance," *Applied Surface Science*, vol. 434, pp. 620-625, 2018.
- [104] H. Liu, J. Zhang, and D. Ao, "Construction of heterostructured ZnIn₂S₄@
 NH2-MIL-125 (Ti) nanocomposites for visible-light-driven H₂ production,"
 Applied Catalysis B: Environmental, vol. 221, pp. 433-442, 2018.
- [105] R. Wang, S. Ni, G. Liu, and X. Xu, "Hollow CaTiO₃ cubes modified by La/Cr co-doping for efficient photocatalytic hydrogen production," *Applied Catalysis B: Environmental*, vol. 225, pp. 139-147, 2018.

- [106] Z. Jiang, J. Pan, B. Wang, and C. Li, "Two dimensional Z-scheme AgCl/Ag/CaTiO₃ nano-heterojunctions for photocatalytic hydrogen production enhancement," *Applied Surface Science*, vol. 436, pp. 519-526, 2018.
- [107] Y. Yang, M. Liu, Q. Wei, J. Li, and L. Zhao, "Toward the enhancement of activity and stability of Cd_xZn_{1-x}S photocatalyst for solar hydrogen production," *International Journal of Hydrogen Energy*, vol. 42, no. 43, pp. 26597-26604, 2017.
- [108] H. Zhao, Y. He, M. Liu, R. Wang, Y. Li, and W. You, "Biomolecule-assisted, cost-effective synthesis of a Zn_{0.9}Cd_{0.1}S solid solution for efficient photocatalytic hydrogen production under visible light," *Chinese Journal of Catalysis*, vol. 39, no. 3, pp. 495-501, 2018.
- [109] L. Song, and S. Zhang, "A novel cocatalyst of NiCoP significantly enhances visible-light photocatalytic hydrogen evolution over cadmium sulfide," *Journal of industrial and engineering chemistry*, vol. 61, pp. 197-205, 2018.
- [110] K. K. Mandari, A. K. R. Police, J. Y. Do, M. Kang, and C. Byon, "Rare earth metal Gd influenced defect sites in N doped TiO₂: Defect mediated improved charge transfer for enhanced photocatalytic hydrogen production," *International Journal of Hydrogen Energy*, vol. 43, no. 4, pp. 2073-2082, 2018.
- [111] M. Li, Z. Xing, J. Jiang, Z. Li, J. Yin, J. Kuang, S. Tan, Q. Zhu, and W. Zhou, "Surface plasmon resonance-enhanced visible-light-driven photocatalysis by Ag nanoparticles decorated S-TiO_{2-x} nanorods," *Journal of the Taiwan Institute of Chemical Engineers*, vol. 82, pp. 198-204, 2018.
- [112] X. Yu, X. Fan, L. An, G. Liu, Z. Li, J. Liu, and P. Hu, "Mesocrystalline Ti³⁺ TiO₂ hybridized g-C₃N₄ for efficient visible-light photocatalysis," *Carbon*, vol. 128, pp. 21-30, 2018.
- [113] A. Speltini, A. Scalabrini, F. Maraschi, M. Sturini, A. Pisanu, L. Malavasi, and A. Profumo, "Improved photocatalytic H₂ production assisted by aqueous glucose biomass by oxidized g-C₃N₄," *International Journal of Hydrogen Energy*, vol. 43, no. 32, pp. 14925-14933, 2018.
- [114] M. R. Gholipour, C. C. Nguyen, F. Béland, and T.-O. Do, "Hollow microspheres consisting of uniform Zn_xCd_{1-x}S nanoparticles with noblemetal-free co-catalysts for hydrogen evolution with high quantum efficiency

under visible light," *Journal of Photochemistry and Photobiology A: Chemistry*, vol. 358, pp. 1-9, 2018.

- [115] W.-K. Jo, and H.-J. Yoo, "Combination of ultrasound-treated 2D g-C₃N₄ with Ag/black TiO₂ nanostructure for improved photocatalysis," *Ultrasonics sonochemistry*, vol. 42, pp. 517-525, 2018.
- [116] Z. Wang, X. Peng, S. Tian, and Z. Wang, "Enhanced hydrogen production from water on Pt/g-C₃N₄ by room temperature electron reduction," *Materials Research Bulletin*, vol. 104, pp. 1-5, 2018.
- [117] K. Srikanth, H. Kushwaha, and R. Vaish, "Microstructural and photocatalytic performance of BaCexTi_{1-x}O₃ ceramics," *Materials Science in Semiconductor Processing*, vol. 73, pp. 51-57, 2018.
- [118] W. Wang, Z. Shu, J. Zhou, T. Li, P. Duan, Z. Zhao, Y. Tan, C. Xie, and S. Cui, "Halloysite-derived mesoporous g-C₃N₄ nanotubes for improved visible-light photocatalytic hydrogen evolution," *Applied Clay Science*, vol. 158, pp. 143-149, 2018.
- [119] S. Luo, T.-D. Nguyen-Phan, D. Vovchok, I. Waluyo, R. M. Palomino, A. D. Gamalski, L. Barrio, W. Xu, D. E. Polyansky, and J. A. Rodriguez, "Enhanced, robust light-driven H₂ generation by gallium-doped titania nanoparticles," *Physical Chemistry Chemical Physics*, vol. 20, no. 3, pp. 2104-2112, 2018.
- [120] G. Iervolino, V. Vaiano, D. Sannino, L. Rizzo, A. Galluzzi, M. Polichetti, G. Pepe, and P. Campiglia, "Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO₃/Fe₂O₃ magnetic particles photocatalysis and heterogeneous photo-Fenton," *International Journal of Hydrogen Energy*, vol. 43, no. 4, pp. 2184-2196, 2018.
- [121] Y. Zhao, H. Fan, K. Fu, L. Ma, M. Li, and J. Fang, "Intrinsic electric field assisted polymeric graphitic carbon nitride coupled with Bi₄Ti₃O₁₂/Bi₂Ti₂O₇ heterostructure nanofibers toward enhanced photocatalytic hydrogen evolution," *International Journal of Hydrogen Energy*, vol. 41, no. 38, pp. 16913-16926, 2016.
- [122] Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, D.-Q. Chen, B. Hu, Y.-W. Huang, T.-T. Chen, D.-P. Cao, Z.-T. Yu, and Z.-G. Zou, "MoS₂-graphene/ZnIn₂S₄ hierarchical microarchitectures with an electron transport bridge between light-harvesting semiconductor and cocatalyst: A highly efficient photocatalyst for solar

hydrogen generation," *Applied Catalysis B: Environmental*, vol. 188, pp. 13-22, 2016.

- [123] C. Gómez-Solís, S. L. Peralta-Arriaga, L. M. Torres-Martínez, I. Juárez-Ramírez, and L. A. Díaz-Torres, "Photocatalytic activity of MAl₂O₄ (M= Mg, Sr and Ba) for hydrogen production," *Fuel*, vol. 188, pp. 197-204, 2017.
- [124] L. M. Torres-Martínez, M. Ruíz-Gómez, and E. Moctezuma, "Features of crystalline and electronic structures of Sm₂MTaO₇ (M= Y, In, Fe) and their hydrogen production via photocatalysis," *Ceramics International*, vol. 43, no. 5, pp. 3981-3992, 2017.
- [125] J. Yan, X. Li, S. Yang, X. Wang, W. Zhou, Y. Fang, S. Zhang, F. Peng, and S. Zhang, "Design and preparation of CdS/H-3D-TiO₂/Pt-wire photocatalysis system with enhanced visible-light driven H₂ evolution," *International Journal of Hydrogen Energy*, vol. 42, no. 2, pp. 928-937, 2017.
- [126] H. Liu, Z. Xu, Z. Zhang, and D. Ao, "Novel visible-light driven Mn_{0.8}Cd_{0.}
 2S/g-C₃N₄ composites: preparation and efficient photocatalytic hydrogen production from water without noble metals," *Applied Catalysis A: General*, vol. 518, pp. 150-157, 2016.
- [127] S. Cao, J. Low, J. Yu, and M. Jaroniec, "Polymeric photocatalysts based on graphitic carbon nitride," *Advanced Materials*, vol. 27, no. 13, pp. 2150-2176, 2015.
- [128] J. Dharma, A. Pisal, and C. Shelton, "Simple method of measuring the band gap energy value of TiO2 in the powder form using a UV/Vis/NIR spectrometer," *Application Note Shelton, CT: PerkinElmer*, 2009.
- [129] J. Wade, "An investigation of TiO2-ZnFe2O4 nanocomposites for visible light photocatalysis," 2005.
- [130] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, "Two-dimensional nanocrystals produced by exfoliation of Ti₃AlC₂," *Advanced materials*, vol. 23, no. 37, pp. 4248-4253, 2011.
- [131] Q. Tay, P. Kanhere, C. F. Ng, S. Chen, S. Chakraborty, A. C. H. Huan, T. C. Sum, R. Ahuja, and Z. Chen, "Defect engineered g-C₃N₄ for efficient visible light photocatalytic hydrogen production," *Chemistry of Materials*, vol. 27, no. 14, pp. 4930-4933, 2015.

- [132] N. Fajrina, and M. Tahir, "2D-montmorillonite-dispersed g-C₃N₄/TiO₂
 2D/0Dnanocomposite for enhanced photo-induced H₂ evolution from glycerol-water mixture," *Applied Surface Science*, vol. 471, pp. 1053-1064, 2019.
- [133] M. Tahir, "Ni/MMT-promoted TiO₂ nanocatalyst for dynamic photocatalytic H₂ and hydrocarbons production from ethanol-water mixture under UV-light," *International Journal of Hydrogen Energy*, vol. 42, no. 47, pp. 28309-28326, 2017.
- [134] Y. Li, B. Wang, S. Liu, X. Duan, and Z. Hu, "Synthesis and characterization of Cu₂O/TiO₂ photocatalysts for H₂ evolution from aqueous solution with different scavengers," *Applied Surface Science*, vol. 324, pp. 736-744, 2015.