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ABSTRACT 

Photocatalytic water splitting for hydrogen production is considered to solve 

the issue of greenhouse gases and other environmental concerns as hydrogen is 

considered as an alternative source of energy that can replace fossil fuel. The objective 

of this study is to develop ternary photocatalyst functional under visible light for water 

splitting to generate hydrogen. Titanium aluminium carbide (Ti3AlC2) dispersed 

ruthenium (Ru) doped graphitic carbon nitride (g-C3N4) composite (Ti3AlC2/Ru/g-

C3N4) was developed using hydrothermal assisted impregnation method followed by 

characterization including XRD, SEM, TEM, Raman, UV-visible and PL spectroscopy 

techniques. The function of g-C3N4 is to enhance visible light harvesting, while 

Ti3AlC2 developed Z-scheme hetero-junction for fast charges separation as a result 

more electrons were produced for H+ to H2 reaction. The photocatalytic activity was 

tested using slurry photo-reactor systems for continuous H2 production. Ti3AlC2/Ru/g-

C3N4 composite was observed to produce 1665 μmolg-1h-1 of H2 with each gave 1.3 

and 1.93 times higher than produced from Ru/g-C3N4 and Ti3AlC2/g-C3N4 samples, 

respectively. This enhanced hydrogen production was obviously due to superior 

photogenerated charges separation with higher visible light absorption and developing 

Z-scheme heterojunction. The operating parameters such as varying catalyst loading, 

various sacrificial reagents and irradiation time were investigated. Besides, the 

stability of catalyst over 3 continuous cycles was also studied. The highest yield rate 

of hydrogen production was for 0.25 g catalyst loading. H2 production by using 

different sacrificial reagents was in order: water < glycerol < ethanol < ethylene glycol 

< methanol.  In conclusion, excellent performance of composite catalyst using a slurry 

reactor for H2 production would offer a new opportunity of developing structured 

photocatalysts for renewable fuels production under visible light.   
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ABSTRAK 

Pembelahan air fotopemangkinan untuk penghasilan hidrogen dianggap 

penyelesai masalah gas rumah hijau dan kebimbangan lain alam sekitar kerana 

hidrogen dianggap sebagai sumber alternatif tenaga yang dapat menggantikan bahan 

api fosil. Objektif kajian ini adalah untuk membangunkan fungsi fotopemangkin 

ternari di bawah cahaya nampak untuk pembelahan air bagi menjana hidrogen. 

Komposit (Ti3AlC2/Ru/g-C3N4) titanium aluminium karbida (Ti3AlC2) terserak 

rutenium (Ru) didopkan karbon grafit nitrida (g-C3N4) dibina menggunakan kaedah 

pengisitepuan berbantu hidroterma diikuti dengan pencirian termasuk XRD, SEM, 

TEM, Raman, UV-nampak dan teknik spektroskopi PL. Fungsi g-C3N4 adalah untuk 

meningkatkan cahaya nampak manakala Ti3AlC2 membina hetero-simpang skema-Z 

untuk pemisahan caj dengan cepat dan menyebabkan lebih banyak elektron dihasilkan 

untuk tindak balas H+ ke H2. Aktiviti fotopemangkinan diuji menggunakan sistem 

foto-reaktor untuk penghasilan H2 berterusan. Komposit Ti3AlC2 / Ru / g-C3N4 

didapati menghasilkan 1665 μmolg-1h-1 H2 dengan masing-masing memberi 1.3 dan 

1.93 kali lebih tinggi berbanding dengan yang dihasilkan oleh sampel Ru/g-C3N4 dan 

Ti3AlC2/g-C3N4. Penghasilan hidrogen tertingkat ini jelas disebabkan oleh pemisahan 

caj fotogenerasi yang unggul dengan penyerapan cahaya nampak yang lebih tinggi dan 

membangunkan hetero-simpang skema-Z. Parameter operasi seperti muatan 

pemangkin yang berbeza-beza, pelbagai reagen korban dan masa penyinaran dikaji. 

Selain itu, kestabilan pemangkin terhadap 3 kitaran berterusan juga dikaji. Kadar hasil 

tertinggi penghasilan hidrogen adalah bagi 0.25 g muatan pemangkin. Penghasilan H2 

dengan menggunakan reagen korban berbeza adalah dalam turutan: air <gliserol 

<etanol <etilena glikol <metanol. Kesimpulannya, prestasi cemerlang pemangkin 

komposit menggunakan reaktor buburan untuk penghasilan H2 akan menawarkan 

peluang baharu membangunkan fotopemangkinan berstruktur untuk penghasilanan 

bahan api yang boleh diperbaharu di bawah cahaya nampak. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Recently, the world is facing challenges of excessive greenhouse gases (GHG) 

emission that increases the average temperature of the earth and is main cause of global 

warming. Also, fossil fuels are considered main cause of environmental issues because 

of their excessive use leading to emission of CO2 [1]. Transportation is also a part of 

energy consumption that causes emissions of greenhouse gases in the atmosphere [2]. 

Currently, 65% of worldwide energy demand is fulfilled by utilization of fossil fuels 

due to their high energy content. However, over the time, fossil fuels will be depleting 

as they are considered as non-renewable source of energy [3]. Therefore, alternative 

renewable energy sources have been developed to replace fossil fuels. Hydrogen 

energy is considered as renewable energy and is expected to have potential for 

fulfilling energy demands in coming years.  

There are various technologies to generate H2 such as thermal, electrical, 

photonic and biochemical energy. These techniques have disparate properties, and 

some of them will be the best choice to generate H2. Thermal technique produces a 

huge amount of H2, but it is using non-renewable energy sources like fossil fuel. 

Although, electrical method uses a renewable source to generates H2, this process is 

expensive. Biochemical energy converts biomass support by microorganism into H2, 

which is called biological process [4]. The best method to generate H2 is photonic as 

it is an abundant energy resource, which uses light irradiation that comes from the sun, 

so we can say that this the best technique. 

Photocatalytic system depends on photonic energy that is released from light 

irradiation and converted into chemical energy. This process is better than other 
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technologies because it is considered to be more economical than the others. Solar 

irradiation is abundant in nature and it is easy to get compared with heat energy. Water 

splitting occurs when photocatalysis process produces photonic energy and give 

catalyst high stability. Furthermore, this process is economic because it relies on solar 

energy and water that are abundant resources on our planet. Also, this energy is 

sustainable and environmentally safe [5]. 

Nowadays, photocatalysis involved in hydrogen production has attracted the 

attention of researchers. The components of photo-catalysis are reactant, 

photocatalyst, photo-reactor and light irradiation. Among the semiconductors, titanium 

dioxide has been widely used in photocatalytic water splitting due to high chemical 

and thermal stability. However, TiO2 has limitations such as UV-active only and faster 

charges recombination, resulting in lower hydrogen production. Therefore, efficient 

and stable catalysts functional under solar energy are highly demanding to develop 

sustainable system for solar hydrogen production.  

Recently, MAX phase compounds are under exploration in various 

applications. The formula of this compound is Mn+1AXn with n=1 to 3, where X is 

either nitrogen or carbon, A is mostly groups 13, 14 element and M is an early 

transition metal. Ti3AlC2 has metallic-covalent-ionic bonds that have many features of 

both metal and ceramics. On the other side, polymeric graphitic nitride (g-C3N4) is 

considered as one of the most popular photocatalysts that has been investigated by 

researchers. g-C3N4 can respond perfectly to the visible light because it has band gap 

2.7 eV. This photocatalyst is easy to synthesise because the materials used to prepare 

it, such as melamine and urea, are low cost. It has many properties such as high 

thermal/chemical stability but fast recombination rate of charges and low surface area 

[6, 7]. The bond between carbon and nitrogen in g-C3N4 is very strong, which cause 

excellent photo-corrosion resistance [8]. With a view to increase the efficiency of H2 

production, it can be coupled with other metals. Among all the metals, Ruthenium (Ru) 

is one of the noble metals and is considered as good metal dopants. Ru significantly 

promotes the separation of photogenerated electron-hole pairs and extends the photo 
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absorption toward the visible light regime arising from the formation of an 

intermediate energy level [9]. 

In this study, design and development of novel nanocomposite photocatalyst 

to investigate photocatalytic hydrogen production has been investigated. The 

composite Ti3AlC2/Ru/g-C3N4 was found very efficient to give high yield of hydrogen 

under visible due to faster separation and utilization of charge carrier under visible 

light irradiations.  

1.2 Problem Statement 

Hydrogen production by water splitting has become popular in recent years, 

but it presents some problems and troubles such as low yield of hydrogen production 

under visible light. Followings are the problems and research hypothesis of this work: 

(i) Polymetric graphitic nitride (g-C3N4) is considered as one of the most popular 

photocatalysts that have been investigated by many researchers. This catalyst 

can respond perfectly to the visible light because it has band gap 2.7 eV. It has 

many properties such as high thermal and chemical stability. However, it has 

limitations such as fast charges recombination rate and low surface area. The 

photoactivity of g-C3N4 can be improved by coupling with other materials. 

Among the 2D materials, titanium aluminium carbide (Ti3AlC2) is a layered 

material of MAX phase having energy applications with advantageous layered 

structure providing increased surface area and active sites for reduction 

reaction leading to increase H2 production. Thus, coupling g-C3N4 with 

Ti3AlC2 would develop 2D/2D heterojunction of Z-scheme system to 

maximize hydrogen production.  

(ii) With a view to increase the efficiency of H2 production, the composite of g-

C3N4 can be coupled with other metals. Ruthenium is one of the noble metals 

and considered as good metal dopants. Ru significantly promotes the 
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separation of photogenerated electron-hole pairs and extends the photo 

absorption toward the visible light regime arising from the formation of an 

intermediate energy level. Ru also can improve the electron conductivity which 

would be beneficial for maximizing hydrogen production.   

(iii) The fabrication of the novel ternary Ti3AlC2/Ru/g-C3N4 nanocomposite is 

expected to develop Z-scheme photocatalytic system which would increase the 

yield rate of hydrogen production. Optimizing the parameters such as loading 

of the catalyst, sacrificial reagent and reaction time would be helpful to 

enhance hydrogen production rate. 

 

1.3 Objectives of Study 

In this work catalysts synthesis and characterization for photocatalytic 

hydrogen production has been investigated. Thus, specific objectives for this study are: 

(i) To synthesis and characterize ternary Ti3AlC2/Ru/g-C3N4 nanocomposites 

functional under visible light, 

(ii) To investigate the performance of newly developed photocatalyst in 

photocatalytic water splitting and investigation of different parameters for the 

photoactivity of composite to maximize H2 production, 

(iii) To suggest reaction mechanism of recently developed composite for 

photocatalytic water splitting under visible light. 

1.4 Scope of Study 

In this work, initially, catalysts were synthesized and then characterized. In the 

next stage, performance analysis was conducted under visible light irradiations. The 

parameters were conducted to maximize composite catalyst performance. Thus, scope 

is this work is as follows: 
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(i) Photocatalyst g-C3N4 was prepared using hydrothermal and simple mixing 

methods. The composite Ti3AlC2/Ru/g-C3N4 synthesised by mixing the sample 

g-C3N4 with Ti3AlC2 then Ru.  The samples were characterized using various 

techniques such as XRD, Raman, EDX, TEM, PL spectra and UV-Visible 

Spectrophotometer.  

(ii) The performance of Ti3AlC2, g-C3N4, Ru/g-C3N4, Ti3AlC2/g-C3N4 and 

Ti3AlC2/Ru/g-C3N4 composite were investigated for H2 production under 

visible light irradiation. Operating different parameters were determined to 

find the best way to increase the yield such as catalyst weight, sacrificial 

reagent and time of the irradiation. 

(iii) After proper analysis and study of results obtained, reaction mechanism of the 

composite which electrons transfer between semiconductors from conduction 

band (CB) of higher negative to CB of lower negative while Z-scheme system 

transfer electron from CB of lower negative to valence band (VB) of lower 

positive semiconductor through solid mediator proposed. 

 

1.5 Significance of Study 

This study is important for many reasons. First, the research on Ti3AlC2/Ru/g-

C3N4 assures that this catalyst can be used under low light and guidance on mechanism 

of the composite during water splitting. Various parameters on water splitting will be 

applied to represent the effect which will give much comprehension on this study. This 

research illuminates that photocatalyst have many features such stability, high charge 

separation and ecological. 
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