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ABSTRACT 

Heat exchangers are an important system used for heat transference. These 

systems are present in many devices and utilities. These devices can be big such as in 

oil refineries, or small, such as in fridges and air-conditioners. However, there are 

several types of heat exchangers, each with their own benefit and advantage. In this 

study, two types of passive heat transfer solutions are used to numerically investigate 

the relationship between nanofluid particle diameter and fluid volume fraction 

concentration. The first is a double pipe with an elliptical cross-section that has a 

counter-fluid flow mechanic. This is then combined with another passive technique, 

which is the use of nanoparticles in combination with water, which creates nanofluids. 

ANSYS was used as a tool to numerically simulate the various scenarios using 

different nanoparticles. The boundary conditions and geometry, as well as the 

governing equations and the mesh of the heat exchanger are numerically simulated. 

The experiment was conducted under a laminar flow regime in an elliptical tube double 

pipe heat exchanger. The results of the simulation indicated that nanofluids such as 

silicon oxide, enhance heat transfer when compared to water. However, for the 

nanofluid characteristics itself, it was observed that as the diameter decreased and the 

concentration increased, the heat transfer values also improved. The ideal values 

identified in this research indicated that at 7 % volume fraction, and 15 nm particle 

size the results are most optimal. There is also an indication that as the Reynolds 

Number increased, the heat transfer enhancement values such as Nusselt Number and 

heat transfer coefficient also improve.  
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ABSTRAK   

Penukar haba merupakan sistem penting yang digunakan untuk pemindahan 

haba. Sistem ini terlibat dalam banyak aplikasi dan utiliti. Sistem ini boleh terlibat 

aplikasi besar sperti kilang penapis minyak, atau aplikasi kecil seperti dalam peti sejuk 

dan penghawa dingin. Walau bagaimanapun, terdapat beberapa jenis penukar haba 

memberikan manfaat dan kelebihan mereka sendiri. Dalam kajian ini, dua jenis 

penyelesaian pemindahan haba pasif akan digunakan untuk menyiasat secara numerik 

hubungan antara diameter zarah nanofluid dan kepekatan pecahan isipadu cecair. 

Terutama ialah paip berganda dengan salib berbentuk eliptikal yang mempunyai 

mekanikal aliran kontra-bendalir. Kemudian digabungkan dengan teknik pasif yang 

lain, iaitu penggunaan nanopartikel dalam gabungan dengan air, yang menghasilkan 

nanofluid. ANSYS akan digunakan sebagai alat untuk menstimulasikan pelbagai 

senario yang menggunakan nanopartikel dengan berbeza. Kondisi dan geometri 

sempadan, serta persamaan pentadbiran dan jejaring penukar haba bersifat simulasi. 

Eksperimen ini dijalankan di bawah rejim aliran lamina di dalam tiub eliptikal tuib dua 

penukar haba. Kehasilan stimulasi yang menunjukkan bahawa nanofluid seperti 

silikon oksida akan meningkatkan pemindahan haba apabila dibandingkan dengan air. 

Walau bagaimanapun, bagi ciri-ciri nanofluid itu akan diperhatikan bahawa apabila 

diameter yang menurun dan penumpuan yang meningkat, nilai pemindahan haba juga 

akan bertambah. Nilai-nilai ideal yang dikenalpasti dalam kajian ini akan 

menunjukkan bahawa pada 7% pecahan yang jumlah, dan saiz zarah 15 nm hasilnya 

paling optimum. Terdapat juga petunjuk bahawa ketika Reynolds Numberyang yang 

meningkat, nilai peningkatan pemindahan haba seperti Nusselt Number dan pekali 

pemindahan haba juga bertambah baik. 
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INTRODUCTION 

1.1 Background of the Study 

Heat transfer has always been an important topic in many industries due to its 

energy-saving abilities. Heat exchangers are used as systems and devices to enhance 

heat transfer in a variety of applications (Sheikholeslami, Gorji-Bandpy and Ganji, 

2015). There are several methods in which heat transfer is enhanced, one such method 

is through the fluids used in the heat exchangers. One of the most widely used fluids 

for heat transfer is water, oil or ethylene glycol. These fluids are relatively easy to 

obtain and use, however they are not as effective as they need to be due to the fact that 

their thermal conductivity is considered to be low. Thus, in order to enhance the 

conductivity of the fluids, suspended particles were added to these base fluids that 

would enhance their conductivity by a great margin. These particles are mostly nano 

sized, and are often based on metal oxides, as the metal aspect of the formation would 

improve the thermal conduciveness of the fluid overall. 

Thus, with the advances in the field of nanotechnology, the use of nanoparticles 

have become a popular additive in chemical engineering that would aid in a variety of 

applications, such as improving thermal conductivity (Choi and Eastman,  1995). After 

the initial spread of nanoparticles, researchers used them in 1999 in order to improve 

thermal conduciveness, and the results indicated a 20 % increase in conductivity when 

combining the copper oxide (CuO) nanoparticles in tandem with ethylene glycol (Lee 

et al., 1999)  

 

There are several studies that focus on the thermal conduciveness of the 

nanofluids using different types of nanoparticles. Copper oxide (CuO) has shown to 

improve thermal conduciveness by 60 % in research performed by Sivakumar, 
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Alagumurthi and Senthilvelan (2014), in which the nanoparticle was mixed in with 

water in order to produce the copper oxide nanofluid.  

 

There are experimental researches that use different flow regimes 

(turbulent/laminar) to enhance the heat transfer of nanofluids (Karimzadehkhouei et 

al., 2019; Gheynani et al., 2019; Rasheed et al., 2018; Sajadifar et al., 2017). There 

seems to be a relationship between varieties of factors related to the enhancement 

performance of the nanofluids. Significant heat transfer performance was reported by 

Wen and Ding (2005), with the use of aluminium oxide as the nanofluid, used in a 

copper tube, under the laminar flow conditions.  

 

Research indicates that the change in nanofluids’ volume fraction, has a 

positive impact on heat transfer performance under constant temperature settings 

(Madhesh and Kalaiselvam, 2014). Another experiment which was conducted both 

numerically and practically used aluminium oxide in a spiral coil tube ((Doshmanziari 

et al., 2016. The results indicated that under a constant temperature the aluminium 

oxide would improve heat as the particle size is reduced and the volume fraction is 

increased. The use of a constant temperature in the experiment, allows for the removal 

of temperature as the main element of heat transfer, thus making the experiment itself 

relatively self-contained. Thus, other affecting elements such as the diameter of the 

particles as well as the volume fraction degree of effectiveness are more visible and 

measurable. Other than copper oxide and aluminium oxide, other nanoparticles are 

also used, such as zinc oxide, silicon oxide, and other types of metal oxide, each with 

varying degrees of effectiveness (Akbari et al., 2017; Karimzadehkhouei et al., 2017; 

S. Lee et al., 1999). 

Laminar flow has several key applications that make it just as important as 

turbulent. Some examples include air-fuel usage in planes, thermal-based mass flow 

controller, unidirectional flow in pharmaceutical industries, in oil refinery stations for 

separating the gas from oil and water, and the water pump engines. 
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1.2 Problem Statement 

Although there are several studies that use nanofluids to improve heat transfer, 

there is certainly a lack of deep numerical studies on the effects of silicon oxide and 

zinc oxide as nanoparticles with various diameters. The novelty of this study is 

suggesting an analytical method to study the heat transfer enhancement in a double 

pipe heat exchanger with an inner tube that has an elliptical cross-section. The various 

characteristics under test that relate both to the new geometry of the tube, as well as 

the related factors affecting the heat transfer via the nanofluid lead to an understanding 

of obtaining an optimal value using some of the underutilized nanoparticles as a form 

of enhancing the heat transfer rate. Although the main shape is a double pipe heat 

exchanger, the inside pipe geometry poses a different kind of problem which can be 

seen in Figure 1.1. Here, the exact solution of the Nusselt Number in terms of aspect 

ratio is presented. 

 

Figure 1.1 Shape of the inner tube 

In this research, the laminar water based metal oxide nanofluid flow inside a 

double pipe elliptical tube is simulated using a finite volume method. Turbulent flows 

often have a higher rate of heat transfer as compared to laminar flow, which is why 

they require further assistance when it comes to heat transfer enhancement. Laminar 

flow is also not used as often as the Turbulent flow, and it has a lower research rate. 

This is mainly due to the fact that the turbulent flow regime is much more commonly 

used among heat exchangers, and the laminar fluid flow is only used in very certain 

industries. However, this does not make it any less critical. Thus, the heat transfer 

properties of nanofluids in laminar flow regime needs to be researched further, in order 

to gain a better understanding of its improvement mechanics. Laminar flow has a lower 

heat transfer rate than turbulent flow, hence why in this research, the aim is to identify 
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the optimum setup that can enhance heat transfer under laminar flow conditions using 

nanofluids. 

1.3 Research Objectives 

This research has the following objectives: 

i. to numerically determine the heat transfer coefficient of zinc oxide and 

silicon oxide nanofluids when compared to water. 

ii. to analyze the effect of nanofluid particle diameter, and volume 

fraction on heat transfer effectiveness. 

iii. to examine the effects of Reynolds Number in an elliptical tube double 

pipe heat exchanger. 

1.4 Scope of the Research 

The scope of this research is limited to two nanofluids: Zinc Oxide (ZnO) and 

Silicon Oxide (SiO2). These nanofluids will be tested with different diameters (15 nm, 

35 nm and 55 nm) and different concentration in terms of volume fraction (4 %, 5 %, 

6 % and 7 %). The simulation is conducted in an elliptical tube heat exchanger, with 

the fluid flowing in counter type, meaning the inner tube flow direction is the opposite 

of the outer tube. The flow regime in which the experiment is conducted is Laminar 

flow, with Reynolds Numbers from 1000 to 2500. 
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1.5 Significance of the Study 

This study will conduct a deep numerical experiment on the various aspects of 

heat transfer in a double pipe elliptical inner tube. By performing this simulated 

experiment, a deeper understanding of the benefits of nanofluid are examined, and 

ultimately the optimal values needed to make sure the heat exchanger performs at its 

best. Values such as the type of nanofluid, as well as the specific diameter, and 

Reynolds Number with the degree of nanoparticle concentration. 

1.6 Research Outline 

This research is structured into the different chapter, each cover an important 

module of the study. 

Chapter 1 focuses on providing a general overview of the research, by first 

providing an explanation for the background of the problem, which identifies the gaps 

in the research. This is followed by the problem statement, which highlights the main 

gaps that this dissertation will focus on. The research objectives are defined based on 

the elaborated and identified problem statement, and the scope of research, as well as 

the significance of the study, are there to reinforce the boundaries of the research as 

well as highlighting the main contributions that are provided by the study. 

Chapter 2 focuses on reviewing the related literature that pertains to the study. 

There are several concepts that need to be covered before they are elaborated further. 

First and the foremost concept is the nanofluid and its effect on various heat transfer 

attributes. Then, there needs to be a deeper understanding of the transfer convection 

types in order to better differentiate laminar and turbulent flow regimes. Then, the 

shape of the tube and its effect on heat transfer is studies, which is then followed up 

by a review on the elliptical tube heat exchangers and how they affected heat transfer 

using the shape of the tube. Finally, the effect of specific nanofluids is studied and 

reviewed with those that use predominantly the nanofluids used in the review. 
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Chapter 3 focuses on the research methodology, which highlights the important 

components used for performing the numerical simulation (such as the tools and 

related formulation and equations that allow for the simulation to proceed). 

Chapter 4 focuses on the results obtained by performing the simulation process 

presented in Chapter 3. The results are presented and analyzed on each level and 

compared with one another, as well as existing researches that share a similar aspect 

to the proposed heat transfer enhancement process. 

Finally, Chapter 5 concludes the research by elaborating on the objectives of 

the research and how each was achieved. Also, several avenues as to how the study 

can be further enhanced or pushed forward are mentioned in this chapter. 
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