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ABSTRACT 

Forecasting temperature extremes especially heat waves are extremely important for 
developing preparedness and planning mitigation measures, particularly in the context 
of climate change. The major objective of the present study was to assess the ongoing 
changes and possible future changes in heat waves and development of robust 
statistical model for forecasting heat wave which can adapt with changing climate. 
Pakistan, which is one of the most affected countries of the world to heat waves in 
recent years was considered as the study area. Novelties of the study are the methods 
proposed for defining heat waves, reliable projection of heat waves with associated 
uncertainties, and development of robust forecasting models which can adapt with 
climate change. Available in-situ temperature records, gauge-based gridded 
temperature data and temperature simulations of general circulation data (GCM) of 
Coupled Model Intercomparison Project Phase 5 (CMIP5) were used for defining heat 
waves and assessment of historical changes and future projections of temperature 
extremes and heat waves, while the reanalysis atmospheric data of National Centres 
for Environmental Prediction (NCEP) was used for the development of heat wave 
forecasting models. A threshold-based approach which able to demarcate the historical 
heat wave affected area is proposed for defining heat waves, GCMs were selected 
based on their capability to simulate different characteristics of heat waves and 
different state-of-the-art machine learning methods (ML) were used for the 
development of the seasonal and daily heat wave forecasting models. The study 
revealed that the daily maximum temperature more than 95-th percentile threshold for 
consecutive five days or more can well reconstruct the spatial pattern of heat wave in 
Pakistan. The assessment of trends in heat waves based on the derived definition 
revealed increase in heat wave duration and affected area in Pakistan at a rate of 0.71 
days/decade and 1.36% of the total area of Pakistan per decade respectively. Four 
GCMs namely, CCSM4, CESM1(BGC), CMCC-CM and NorESM1-M were found to 
have better ability for the projection of all the characteristics of heat waves. The 
projection of heat waves using the selected GCMs revealed a high increase in the heat 
wave indices particularly for representative concentration pathways (RCP) 8.5. Heat 
wave frequency was projected to increase up to 12 events per year in most parts of the 
country, while some areas would experience heat waves for more than 100 days in a 
year. The higher increase in heat waves indices was projected in highly populated 
eastern and southern coastal regions which are already prone to high occurrence of 
heat waves. Forecasting models were developed for the prediction of triggering date 
and seasonal number of heat waves days in order to aid in coping and mitigation 
capacity revealed that the Quantile Regression Forests (QRF) models were able to 
forecast the triggering and departure dates of heat waves with an accuracy of up to ±5 
days. On the other hand, the Support Vector (SVM) model was found to have the 
higher skills in forecasting number of heat wave days with a month time-lag (R2: 0.89-
0.9, NRMSE%: 32.6-31.8, rSD: 0.98-0.96, and md: 0.8). The analysis of synoptic 
patterns revealed that the wind vectors, relative humidity and geopotential height are 
the most potential indicators of heat waves in Pakistan. The forward-rolling based 
forecasting model proposed for the prediction of heat waves to accommodate the 
changing pattern of the atmospheric variables responsible for heat waves due to the 
changes in climate was found to forecast heat waves reliably.    
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ABSTRAK 

 
Ramalan suhu ekstrem terutama gelombang haba amat penting bagi merancang 
langkah-langkah persediaan dan mitigasi terutamanya dalam konteks perubahan iklim. 
Objektif utama kajian ini adalah untuk menilai perubahan gelobang panas yang 
berlaku dan kemungkinan perubahan pada masa depan serta pembangunan model 
statistik yang mantap bagi ramalan gelombang haba yang boleh diadaptasikan dengan 
perubahan iklim. Pakistan, salah satu daripada negara-negara yang paling terjejas di 
dunia dalam pemanasan gelombang pada tahun-tahun kebelakangan ini dijadikan 
sebagai kawasan kajian. Kebaharuan kajian ini adalah pembangunan kaedah cadangan 
untuk menentukan gelombang haba, unjuran gelombang haba yang boleh dipercayai 
berserta dengan faktor ketidakpastian, dan pembangunan model ramalan yang mantap 
yang boleh diadaptasi dengan perubahan iklim. Rekod suhu ditapak, data suhu 
simulasi bergrid dan data suhu simulasi dari General Circulation Model (GCM) bagi 
Coupled Model Intercomparison Project Phase 5 (CMIP5) digunakan untuk 
menentukan gelombang haba dan penilaian perubahan sejarah dan unjuran masa depan 
suhu ekstrem dan gelombang haba, manakala data atmosfera yang dianalisis semula 
oleh National Centres for Environmental Prediction (NCEP) digunakan untuk 
pembangunan model ramalan gelombang haba. Pendekatan berasaskan keupayaan 
yang dapat menanda kawasan yang terjejas dimasa lampau dengan kesan gelombang 
haba dicadangkan untuk menentukan gelombang haba. GCM dipilih berdasarkan 
keupayaan mereka untuk mensimulasikan ciri-ciri gelombang haba yang berbeza dan 
kaedah machine learning (ML) digunakan untuk pembangunan model ramalan 
gelombang haba harian dan bermusim. Kajian itu mendedahkan bahawa suhu 
maksimum harian lebih daripada persentil lingkungan yang ke 95 peratus untuk lima 
hari berturut-turut atau lebih boleh membina semula corak ruang gelombang panas di 
Pakistan. Penilaian corak gelombang panas berdasarkan definisi yang diperolehi 
menunjukkan peningkatan tempoh gelombang haba dan kawasan yang terjejas di 
Pakistan masing-masing pada kadar 0.71 hari /dekad dan 1.36% daripada jumlah 
kawasan Pakistan setiap dekad. Empat GCM iaitu CCSM4, CESM1 (BGC), CMCC-
CM dan NorESM1-M didapati mempunyai keupayaan yang lebih baik untuk unjuran 
semua ciri-ciri gelombang haba. Unjuran gelombang panas menggunakan GCM 
terpilih menunjukkan peningkatan yang tinggi dalam indeks gelombang haba 
terutamanya untuk Representative Concentration Pathways (RCP 8.5). Kekerapan 
kejadian gelombang panas dijangka meningkat sehingga 12 kali setiap tahun di 
kebanyakan kawasan di Pakistan, manakala sesetengah kawasan akan mengalami 
gelombang panas dalam tempoh lebih daripada 100 hari dalam setahun. Peningkatan 
indeks gelombang haba dijangka lebih tinggi di rantau berpenghuni tinggi di pesisiran 
pantai timur dan selatan yang sudah terdedah kepada kejadian gelombang haba yang 
tinggi. Model ramalan telah dibangunkan bagi ramalan tarikh kejadian dan bilangan 
harian gelombang musim panas untuk membantu dalam mengatasi dan memitigasi 
kapasiti kejadian berkenaan. Model Quantile Regression Forests (QRF) yang 
dicadangkan dalam kajian ini mampu meramalkan tarikh pencetus dan keberangkatan 
gelombang haba dengan ketepatan sehingga ± 5 hari. Sebaliknya, model Support 
Vector Machine (SVM) didapati lebih berupaya dalam ramalan bilangan harian 
gelombang haba dengan masa lag bulanan (R2: 0.89-0.9, NRMSE%: 32.6-31.8, rSD: 
0.98- 0.96, dan md: 0.8). Analisis pola sinoptik menunjukkan bahawa vektor angin, 
kelembapan relatif dan ketinggian geopotential adalah petunjuk paling berpotensi bagi 
gelombang haba di Pakistan. Model ramalan gelombang haba yang dicadang 
berasaskan forward rolling yang mantap bagi menampung perubahan corak 
pembolehubah atmosfera yang bertanggungjawab keatas gelombang haba akibat 
perubahan iklim didapati mampu meramal gelombang haba dengan berkesan. 
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INTRODUCTION 

1.1 Background of the Study 

The anthropogenic activities have caused a rise in global temperature in an 

unprecedented amount and changed the global climate. It has been reported that the 

Earth temperature has increased by 0.74˚C in the last century (1906-2005). The rate 

has been found to be 0.15°C/decade after 1970 which is much higher than the first half 

of the century (IPCC, 2013). The global temperature rise is projected to continue which 

in turn would continue to affect the global atmospheric balance and make the climate 

more variable (Wang et al., 2016b). A minor change in the mean and variability can 

cause a large change in extremes (Shahid, 2011). Thus, the rises in temperature would 

certainly cause an increase in the frequency and severity of the temperature extremes. 

Several studies have reported increase in various temperature extremes in recent years 

across the globe (Alexander, 2016; Brown et al., 2008; Frías et al., 2012; Grotjahn et 

al., 2016). It may be more severe and frequent in the near future with the continuous 

rise of temperature (Ahmed et al., 2016; Frías et al., 2012; Nissan et al., 2017; Pour et 

al., 2014; Rodrigo, 2002; Shahid et al., 2017). Among the temperature extremes, heat 

wave is considered as one of the most devastating outcomes of the global warming.  

The rising temperature due to global warming has caused a gradual increase in 

frequency, intensity, duration and areal extent of heat waves (Khan et al., 2019b; Wang 

et al., 2019). Severe implications of the rising intensity and frequency of heat waves 

in public health (Buscail et al., 2012; Kovats and Kristie, 2006), agricultural 

production (De Bono et al., 2004; Teixeira et al., 2013), ecological health (Hallegatte 

et al., 2007) and environmental condition (Stedman, 2004), and therefore the losses of 

lives, damages to economy and degradation of people’s livelihood (Kim et al., 2017; 

Masood et al., 2015; Rauf et al., 2017) have been evidenced in recent years. Tens of 
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thousands of death have been reported in the last few years due to climate change 

induced rises in heat waves (Russo et al., 2014).  

The knowledge on ongoing changes and possible future changes in climate are 

essential components of adaptive capacity and necessary in the development of 

effective climate change adaptation policies (Khan et al., 2019b). The rises in 

temperature and thus, the heat waves would not be same for all parts of the world. 

Assessment of the changes in heat waves at regional or local scales is therefore 

suggested for adaptation and mitigation planning (Abatan et al., 2016; Abaurrea et al., 

2018; Alghamdi and Harrington Jr, 2019; Brown et al., 2008; Gaitán et al., 2019; Gao 

et al., 2018; Grotjahn et al., 2016; Kang and Eltahir, 2018; Khan et al., 2018b; Khan 

et al., 2019b; Liu et al., 2018; Nissan et al., 2017; Rauf et al., 2017; Saeed et al., 2017; 

Salman et al., 2017a; Soltani et al., 2016). 

Besides the assessment of the ongoing changes, the early warning is considered 

as the most important measures for coping and mitigation of heat waves. The warning 

system should be developed in such a way that it would able to adapt with climate 

change to provide reliable forecasting. Such system can serve as the key element for 

the mitigation and adaptions to the heat wave and protection of life and environment 

to ensure sustainable development (Al-Mukhtar and Qasim, 2019; Gao et al., 2018; 

Khan et al., 2019b; Singh et al., 2018).  

1.2 Statement of Problem 

Heat wave is one of the most devastating temperature extremes. It is very 

important to understand the changes of heat waves due to climate change. However, 

the major challenge in the assessment of heat waves and their changes is to define the 

heat wave for a region. There is no universal definition of heat waves. It is mostly 

defined based on physical and socio-economic contexts of a region, which has made 

the heat wave related research an intrigue issue. Most of the heat wave definitions 

derived so far are based on human health outcomes where a temperature threshold in 

consecutive days is defined with reference to human impacts (Anderson and Bell, 
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2010; Cao et al., 2018; Cheng et al., 2018; Dong et al., 2016; Fischer and Schär, 2010; 

Meehl and Tebaldi, 2004; Patz et al., 2005; Robinson, 2001). The major limitation of 

heat wave definitions based on human impacts is that those are derived using a baseline 

climate which cannot be used to generate a complete time series of events for trend 

analysis (Nairn and Fawcett, 2015; Nairn and Fawcett, 2013). Furthermore, such 

definition cannot be used for the comparison of heat waves between two regions of a 

country.   

To understand the impacts of climate change on temperature extremes and heat 

waves, it is required to assess their changes. The non-parametric Mann-Kendall (MK) 

trend test (Kendall, 1948; Mann, 1945) is generally used to assess the significance of 

trends in climate, considering that natural variability alters the climate pattern in a time 

scale shorter than 30 years (WMO, 1996). However, recent findings have reported that 

the wet or dry periods can even exist for a period greater than 50 years (Lacombe et 

al., 2012; Salman et al., 2017a). Therefore, it has been reported that many of the trends 

obtained using MK test are due to the multidecadal variability in the time series 

(Ehsanzadeh and Adamowski, 2010; Fathian et al., 2015; Kumar et al., 2009; Lacombe 

et al., 2012; Salman et al., 2017a; Shahid et al., 2014). It is important to re-evaluate 

the trends considering the presence of long-term persistence (LTP) in time series in 

order to distinguish the multi-scale natural variability of climate from anthropogenic 

climate change.  

Knowledge of possible future changes in heat waves is required for building 

adaptive capacity to mitigate the effects of heat waves. The temperature simulations 

of general circulation models (GCMs) are usually used for this purpose. However, due 

to the uncertainty possessed by different GCMs, it is required to select the most skilled 

GCMs for the projection of heat waves (McSweeney et al., 2015). An ensemble of 

smaller number of GCMs are usually selected, excluding those are considered 

“unrealistic” for a region of interest in order to reduce the uncertainty associated with 

the GCMs (Lutz et al., 2016). While there are several methodologies proposed to 

assess the performance of GCMs, the uncertainty associated with the selection of 

GCMs is always very high (Khan et al., 2018a; Knutti et al., 2013; Lutz et al., 2016; 

Sharmila et al., 2015). It is required to select GCMs based on the climate variable and 
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phenomenon that would be evaluated using the GCMs (Lutz et al. (2016). Therefore, 

for the reliable projection of heat waves, it is required to select GCMs based on their 

ability to simulate the different properties of heat waves.  

The devastating effect of heat waves can be mitigated significantly by 

forecasting heat waves (Dodla et al., 2017; Stedman, 2004). The major challenges in 

heat waves forecasting are: (1) accurate forecasting of seasonal and daily heat wave; 

(2) forecasting with sufficient time-lag; and (3) incorporation of uncertainty in 

forecasting. A large number of studies have been conducted for the development of 

forecasting models, where selection of suitable predictors is given as the main 

emphasis. However, the performance of a forecasting model also depends on the 

method used for their development. Heat waves are highly influenced by one or several 

large-scale atmospheric variables. The influence of these factors on heat waves is 

highly non-linear. Advanced machine learning models can be used to simulate such 

highly non-linear systems. However, the use of those advanced technologies in 

development of heat wave forecasting models is still limited and non-deterministic.  

Highly skilled climate forecasting models have been found to show low skill 

in recent years due to the changes in their prediction capability with the changes in 

climate (Gao et al., 2018). Even some of the most skilled prediction models have been 

found to fail in the recent years to detect the forthcoming events (Rajeevan et al., 

2007b; Wang et al., 2015). Wang et al. (2015) reported that skills of some of the 

identified predictability sources decrease due the climate change. Thus, forecasting 

models should consider the climate change and incorporate the climate change impacts 

on prediction capability for reliable forecasting of heat waves in the context of climate 

change.  

1.3 Objectives of the Study 

The main objective of the study is to evaluate the changes in heat wave due to climate 

change and develop a robust heat wave forecasting model which can adapt with 

climate change. The specific objectives are: 
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i. To define the heat wave based on temperature load in order to facilitate the 

assessment of the spatial and temporal variability of heat waves. 

ii. To assess spatio-temporal changes in extreme temperature and heat wave using 

gauge-based gridded data. 

iii. To generate an ensemble of GCMs based on their ability to simulate historical 

heat waves in order to project the heat waves for different climate change 

scenarios. 

iv. To employ machine learning methods for the development of models for the 

forecasting of heat waves on daily and seasonal scales. 

v. To develop a climate change resilient robust heat wave forecasting model to 

aid adaptation to climate change impacts on heat waves. 

1.4 Scope of The Study 

The study mainly focuses in the development of a framework for the 

assessment of heat waves and the development of the robust statistical models for the 

forecasting of heat waves. The methodological framework developed in the present 

study was implemented in Pakistan. 

Among the different extreme temperature phenomena, the present study 

focuses on heat waves. The changes in heat waves were assessed using trend analysis. 

Only non-parametric trend analysis techniques were used in the study.  

Considering the unavailability of long-term daily observed data of temperature 

for the study area, gauge-based gridded data were used for the assessment of the 

historical changes in heat waves. The gridded data were also used as the base for the 

selection of GCMs and the projection of future changes in heat waves. 

Thirty-one GCMs of Coupled Model Intercomparison Project Phase 5 

(CMIP5) which have projections for two Representative Concentration Pathway 

(RCP) scenarios namely 4.5 and 8.5 were used for the selection of GCMs for the 

preparation of ensemble.  
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Heat wave forecasting models were developed using coarse resolution 

atmospheric variables. The reanalyses data of National Centres for Environmental 

Predictions (NCEP) was used for this purpose.   

1.5 Significance of The Study 

The maps developed in this study that show the spatial pattern in the trends of 

extreme temperatures and heat waves can help policy makers to understand the 

vulnerable zones. Those can also be used by different organizations including disaster 

management for operational planning of disaster risk reduction. 

The methodology proposed in the study for the selection of GCMs in a robust 

manner can help in reduction of uncertainty in the projection of climate change. The 

GCMs selected in the present study can be used for the assessment of climate change 

impacts in different sectors in the study area 

Due to climate change, failure in different forecasting models has been reported 

in the recent years. The methodological framework developed in the present study can 

be used for reliable forecasting of heat waves in the context of climate change. 

Therefore, the models can be used for the adaptation to climate change.    

Pakistan, a developing country is ranked as one of the most vulnerable 

countries in the world to climate change. It is also ranked as the 10th most affected 

country by extreme weather events (Kreft et al., 2013). Hundreds to thousands of 

people die in each year due to the extreme temperature events most notably the heat 

waves. In recent years, Pakistan observed some of the devastating heat waves 

including the heat waves of 2015 and 2017. Besides the human health impact and 

casualty, the agricultural, ecology, environment, stress on the electric and other service 

sectors are some of the few examples of the affected sectors (Abaurrea et al., 2018). 

The knowledge generated in this study would be beneficial to a number of stakeholders 

including the development/planning authorities to improve their understanding of heat 

waves and their future impact in taking policy oriented decisions. 
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1.6 Thesis Outline 

This thesis is divided into five chapters. Descriptions of the chapters are given 

below in brief. 

Chapter 1 gives a general introduction comprising of the background of the 

study, problem statement, objectives of the study, scope of the work, and significance 

of the study.  

Chapter 2 provides a general review of relevant literature includes the 

assessment of extreme temperature, definition used for heat waves, evolution of GCMs 

and development of forecasting models.  

Chapter 3 presents the methods used in the study to achieve the objectives. The 

chapter describes the study area and data, methods used for the assessment of gridded 

temperature data, defining heat wave, selection of general circulation models, 

development of statistical models for forecasting heat waves, and the development of 

robust statistical heat wave prediction model immune to climate change.  

Chapter 4 presents the results obtained in the study. It includes the results of 

data quality assessment, spatial and temporal changes in different temperature extreme 

and heat waves, selection of the GCMs based on different characteristics of heat wave, 

and validation of heat wave forecasting models.  

Finally, the conclusions made from the study are presented in Chapter 5. Future 

research envisaged from the study is also given in the end of this chapter. 
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