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ABSTRACT 

 Biogranulation technology is novel in the field of biological wastewater 

treatment with high removal potential as well as providing economical and technical 

advantages. This technology has been widely tested in the degradation of various 

types of wastewater owing to its unique sludge properties and high biodegradability 

potential. Despite its unique characteristics, the major drawback of biogranulation is 

the long start-up period. This study investigated the possibility of developing 

biogranules with magnetic powder activated carbon (MPAC) in treating synthetic 

textile wastewater. This study was aimed at enhancing biogranules development 

process with better characteristics and high removal performance. At early stage of 

this study, the effects of magnetic field and MPAC on the initial process 

development of biogranules were studied using one factor at a time (OFAT) and 

response surface methodology (RSM). The cultivation of biogranules was then 

investigated using two laboratory scale sequencing batch reactors (SBR) under 

intermittent anaerobic and aerobic conditions. Reactor R1 acted as a control system 

while reactor R2 was added with MPAC. The reactors were designed with 3 L of 

total working volume and operated at 50% volumetric exchange rate. These 

biogranules were cultivated with a mixture of textile mill and municipal wastewater 

sludge. The systems were fed with synthetic textile wastewater. Removal 

performances, structural aspects and formation of MPAC biogranules were examined 

based on physical, biological and chemical properties. Batch test results showed that 

static magnetic field induction and MPAC gave significant positive effect on 

improving the initial biogranulation process. After 60 days of development stage in 

the SBR system, the average size of the biogranules increased, reaching 2.0 mm ± 

0.5 with an average settling velocity of 44 m/h and sludge volume index (SVI) of 34 

mL/g. Total biomass concentration was 8.2 g/L, which was observed to be beneficial 

for the performance of the system. The extracellular polymeric substances (EPS) of 

newly developed biogranules were also measured in this study. The total EPS content 

for these biogranules was 0.083 g. SBR system containing MPAC biogranules 

showed the best removal performance when operated with 24 hours hydraulic 

retention time (HRT) with an intermittent of anaerobic (18 hours) and aerobic (6 

hours) reactions. The highest removal performance for color, ammonia, TOC and 

COD were 83%, 98%, 95% and 97%, respectively. The final stage of the study 

involved the development of an artificial neural network (ANN) for the prediction of 

the biogranules performance at different HRT and reaction phases. The ANN model 

has successfully predicted the color removal performance with regression (R
2
) of 

0.9923 and mean square errors (MSE) of 2.75e
-05

. This study demonstrated that the 

addition of MPAC in the development of biogranules has demonstrated significant 

improvement in the physical, biological and chemical characteristics of the newly 

developed biogranules. The addition of MPAC could shorten and improve the 

biogranulation development where MPAC acts as the support media for microbial 

attachment during the development of biogranules.  
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ABSTRAK 

 Teknologi biogranulasi adalah suatu yang baru dalam bidang rawatan air sisa 

biologi dengan potensi penyingkiran yang tinggi serta mempunyai kelebihan dari 

segi ekonomi dan teknikal. Teknologi ini telah diuji secara meluas dalam merawat 

pelbagai jenis air sisa oleh kerana sifat enapcemar yang unik dan potensi 

biodegradasi yang tinggi. Walaupun cirinya unik, kekurangan utama biogranulasi 

adalah tempoh pembentukannya mengambil masa yang panjang. Kajian ini 

menyiasat kemungkinan untuk menghasilkan biogranul dengan serbuk karbon aktif 

magneti (MPAC) dalam merawat air sisa tekstil sintetik. Kajian ini bertujuan untuk 

meningkatkan proses pembentukan biogranul dengan ciri yang lebih baik dan 

prestasi penyingkiran yang tinggi. Pada peringkat awal kajian ini, kesan medan 

magnet dan MPAC terhadap pembentukan awal biogranul dikaji menggunakan satu 

faktor pada satu masa (OFAT) dan kaedah gerak balas permukaan (RSM). 

Pembentukkan biogranul kemudiannya dikaji menggunakan dua reaktor kumpulan 

sesekumpul (SBR) berskala makmal  dalam keadaan berselang seli bagi fasa 

anaerobik dan aerobik. Reaktor R1 bertindak sebagai sistem kawalan manakala 

Reaktor R2 ditambah dengan MPAC. Reaktor ini direka untuk beroperasi dengan 

jumlah isipadu 3 L dan dikendalikan dengan kadar sisa pertukaran isipadu (VER) 

50%. Biogranul ini dihasilkan dengan menggunakan  campuran enapcemar dari 

kilang tekstil dan sistem rawatan air sisa bandaran. Sistem ini dijalankan dengan air 

sisa tekstil sintetik. Prestasi penyingkiran, aspek struktur dan pembentukan biogranul 

MPAC telah dikaji berdasarkan sifat fizikal, biologi dan kimia. Keputusan kajian 

kelompok menunjukkan induksi medan magnet statik dan MPAC memberikan kesan 

positif yang signifikan untuk meningkatkan proses pembentukkan biogranulasi di 

peringkat awal. Selepas 60 hari pembentukkan, saiz purata biogranul meningkat dan 

mencapai 2.0 mm ± 0.5 dengan halaju enapan 44 m/j dengan indeks isipadu 

enapcemar (SVI) 34 mL/g. Jumlah kepekatan biomas adalah 8.2 g/L, yang mana 

diperhatikan memberi kelebihan kepada prestasi sistem. Analisis kadar pengambilan 

oksigen (OUR) menunjukkan kehadiran bakteria fakultatif, anaerobik dan aerobik di 

dalam biogranul yang dihasilkan. Bahan polimer ekstraselular (EPS) daripada 

biogranul baru yang dihasilkan juga diukur dalam kajian ini. Jumlah kandungan EPS 

untuk biogranul ini adalah 0.083 g. Sistem SBR yang mengandungi biogranul MPAC 

menunjukkan prestasi penyingkiran yang baik apabila dikendalikan dengan masa 

tahanan hidraul (HRT) 24 jam dengan reaksi anaerobik (18 jam) dan reaksi aerobik 

(6 jam). Prestasi penyingkiran tertinggi untuk warna, ammonia, TOC dan COD 

masing-masing adalah 83%, 98%, 95% dan 97%. Tahap akhir kajian ini melibatkan 

pembentukan model Artificial Neural Network (ANN) untuk meramalkan prestasi 

biogranul di HRT dan fasa tindak balas yang berbeza. Model ANN telah berjaya 

meramalkan prestasi penyingkiran warna dengan regresi (R
2
) 0.9923 dan ralat min 

kuasa dua (MSE) 2.75e
-05

. Kajian ini menunjukkan bahawa penambahan MPAC 

dalam pembentukkan biogranul menunjukkan penambahbaikan yang signifikan 

dalam ciri fizikal, biologi dan kimia bagi biogranul yang baru dihasilkan. 

Penambahan MPAC dapat memendekkan masa dan meningkatkan pembentukan 

biogranulasi di mana MPAC bertindak sebagai media sokongan untuk pembiakan 

mikrob semasa pembentukan biogranul. 
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INTRODUCTION 

1.1 Background of the Study 

The rapid population growth and industrialization has caused an increase on 

the volume of wastewater disposed into the environment. Industrialization in the 

textile industry is synonymous with the consumption of large volume of water which 

is subsequently disposed as wastewater containing high load pollutants. These 

pollutants can cause contamination to water body if there are not properly eliminated 

from wastewater.  

Several treatment technologies can be utilized for textile wastewater 

treatment. In Malaysia, most industrial effluents are treated with conventional 

wastewater treatment processes involving physical, chemical and biological 

techniques. Most treatment plants use single or combined biological treatment 

process comprising of aerobic, anoxic and anaerobic systems. Application of 

physical and chemical processes in these treatment plants are hindered by their 

associated capital and operational cost (Holkar et al, 2016). Furthermore, excessive 

application of chemical during treatment can cause secondary pollution.  Some of the 

treatment systems can potentially remove color from wastewater while most 

treatment processes transform contaminants into different forms. According to 

Integrated Pollution Control (IPC) regulation, decoloration systems that transfer 

pollutants between environments are prohibited (Willmott et al, 1998). 

Biogranulation technology is one of the great achievements in biological 

wastewater treatment of the twentieth century. It is a compact and dense microbial 

aggregate formed through self-microbial immobilization involving physical, 

chemical and biological processes (Liu and Tay, 2004). Biogranules are 
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differentiated from conventional activated sludge systems by their regular shape, 

dense nature, strong microbial structure and good settleability (Zheng et al, 2006). 

This biogranules consist millions of microorganism that clump together with 

anaerobic microorganism occupying the inner layer and aerobic microbe at the outer 

layer of the biogranules. The presence of both types of microorganisms in the 

granules makes biogranulation a suitable technology for the complete biodegradation 

of textile wastewater.  

Biogranules are usually developed using sequencing batch reactors (SBR) 

with cycle configuration strictly regulated for rapid settling and frequent repetition of 

feast and famine condition. This configuration supports the growth of dense and 

stable biogranules. However, studies have shown that properties of biogranules 

developed in SBR are affected to several factors including organic loading rate, 

substrate composition, feast-famine regime, hydrodynamic shear force, feeding 

strategy, reactor configuration, dissolved oxygen (DO), cycle time, volume exchange 

ratio, solids retention time and settling time.  

1.2  Problem Statement 

Biogranules application in wastewater treatment is considered as promising 

alternative in biotechnology. Biogranulation is associated with several advantages 

such as high settling velocity and strong microbial structure which causes high 

sludge retention and tolerate higher loading rates from high strength wastewater. The 

characteristic of biogranules that have various types of microorganisms would able to 

perform both aerobic and anaerobic degradation process in a single reactor column 

makes biogranulation technology suitable for degradation of textile wastewater. 

Textile wastewater is known as a complex chemical structure and studies have 

shown that complete mineralization of dye compound in textile wastewater required 

both anaerobic and aerobic biological approaches (Melgoza et al, 2004). Hence, 

biogranulation systems seem to be a suitable biological treatment approach that may 

be able to perform a complete and effective degradation process for textile 

wastewater. 
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 However, the long start-up period and instability of the reactor system under 

long SBR operation has been the major drawback of granulation technology. In order 

to enhance fast biogranulation process and as well as to enhance the stability of 

biogranules, many attempts have been conducted by adding various types of 

substances during development of biogranules such as granular activated carbon (Li 

et al, 2012; Zhou et al, 2015; Tao et al, 2017), zeolite (Wei et al, 2012), dry sewage 

sludge micropowder (Li et al, 2015), yellow earth (He et al, 2016) and   magnetic 

nanoparticles (Liang et al, 2017). The use of these materials increases the 

aggregation percentage of microorganisms by acting as nuclei during biogranules 

development (Li et al, 2015). Previous research reported that static magnetic field 

able to enhance biogranulation development (Wang et al, 2012; Liu et al, 2016). 

Then several attempts have been made to enhance growth of microbes using 

magnetic field induction (Nakamura et al, 1997; Motta et al, 2001; Muniz et al, 2007; 

Novak et al, 2007, Tu et al, 2015) and increase EPS production (Wang et al, 2012).  

However, the effect of SMF on the start-up period of the bioreactor, 

aggregation, hydrophobicity, settleability and flocculation ability of microbial 

granules was not much reported. The application of specific carriers acted together 

with magnetized sludge on the biogranules development process is very much 

lacking. In particularly, there is lack of information relating to the effect of SMF and 

specific carriers on EPS production and biogranules development. Thus, a 

comprehensive study on the application of specific carriers and SMF in the 

development of biogranules is needed. 

This study proposed a different approach to accelerating the biogranulation 

process. The magnetic powder activated carbon (MPAC) was evaluated as a potential 

enhancer of biogranulation development process. The system utilized the concept of 

sequential anaerobic and aerobic biological reactions for complete degradation of 

textile wastewater. Furthermore, magnetic field concept was used to initiate and 

enhance the initial granulation stage. The newly formed biogranules were 

characterized and their performance evaluated for its performance in order to observe 

the impact of the addition of magnetic powder activated carbon onto biogranules. 
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1.3 Objectives of the Study 

 The objective of this study are: 

i. To investigate the effect of static magnetic field and magnetic powder 

activated carbon at the initial stage of biogranulation development through 

batch study. 

ii. To develop biogranules with the addition of magnetic powder activated 

carbon and characterizes the newly developed biogranules for its physical, 

chemical and biological properties. 

 

iii. To investigate the removal performance of the enhanced biogranulation 

system during the development and post-development stage. 

iv. To develop an artificial neural network (ANN) model for prediction of color 

removal performance of MPAC biogranules. 

1.4 Scope of the Study 

This study covers the design and application of batch test experiment and a 

laboratory-scale reactor system that are based on the sequential batch reactor system. 

All of the experiments were conducted in Environmental Laboratory, School of Civil 

Engineering, Universiti Teknologi Malaysia (UTM).  

Initially batch experiments were carried out to investigate the effect of 

magnetic field intensity and MPAC concentration on the aggregation and surface 

hydrophobicity. Then, biogranules were developed using synthetic textile wastewater 

with combination of MPAC. The cultivation of biogranules was investigated using 

two laboratory scale SBR under intermittent anaerobic and aerobic conditions. The 

SBR were operated in parallel with Reactor R1 as control and Reactor R2 containing 



 

 

5 

 

of MPAC. During development process, samples of biogranules were collected and 

examined. The physical, chemical and biological properties of matured biogranules 

were characterized. The reactor performances for post-development were studied 

based on COD, TOC, ammonia and color removal. Dye degradation in the treated 

wastewater was measured using ultraviolet visible spectroscopy (UV-Vis). 

Furthermore, field-emission scanning electron microscope analysis (FESEM) was 

used to inspect the microstructural characteristics of matured biogranules. The study 

also included analysis of extracellular polymeric substances (EPS) of biogranules. 

EPS compositions consist of proteins, polysaccharides and carbohydrates were 

determined in this study. Finally, an artificial neural network (ANN) model was 

developed to predict the performance of MPAC biogrnaules in term of color 

removal. 

1.5 Significance of the Study 

 Biogranulation technology is a promising method for wastewater treatment 

due to its low operational and investment cost as well as small space requirement 

(Liu et al, 2010). Recently, various approaches have been used by to improve the 

startup period of biogranules. Improving the initial biogranulation development stage 

could enhance the efficiency of biogranules. However, the influence of magnetic 

field combined with magnetic activated carbon is not yet evaluated. There is a lack of 

information on the effect of magnetic field and magnetic activated carbon on 

biogranules development.  Therefore, the significance of this study can be listed as 

follows. 

i.  The study investigates the effect of magnetic field (intensity 0-30 mT) on 

aggregation, surface hydrophobicity and COD performance of activated 

sludge. It further examines the impact of magnetic activated carbon on 

activated sludge for initial biogranules development. The findings would 

provide knowledge on suitable conditions for the development of the 

MPAC biogranules 
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