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ABSTRACT 

 

 Rising temperature and changing rainfall patterns due to global warming 

would change the frequency and severity of meteorological droughts. This change in 

climate would impact on several sectors particularly agricultural and water resources. 

Groundwater, protected from surface hydrological extremes is considered a reliable 

source to supplement water deficit during droughts and therefore, considered a 

valuable resource for climate change adaptation across the world. However, 

prolonged droughts may also affect groundwater resources and hence, it is critical to 

understand how droughts and groundwater resources will be affected by climate 

change in order to aid reliable planning of adaptation. The major objective of the 

present study is to model the impacts of climate change on meteorological droughts 

during crop growing seasons and groundwater sustainability using general circulation 

model (GCM) projections. Nigeria, one of the most vulnerable countries of the world 

to climate change was considered as the case study area. Considering scarcity of 

data, gauge based gridded rainfall data of global precipitation climatology centre 

(GPCC) and temperature data of climate research unit (CRU) for the period 1901-

2010 and groundwater storage anomaly data of gravity recovery and climate 

experiment (GRACE) for the period 2002-2016 were used. The temporal variations 

in droughts estimated using standardized precipitation evapotranspiration index 

(SPEI) and their interrelations with rainfall and temperature trends were assessed 

using a 50-year moving window with a 10-year time step. The concept of reliability-

resiliency-vulnerability (RRV) was used for the assessment of groundwater 

sustainability. Novel entropy based methods were used for selection of GCMs to 

reduce uncertainties in climate change projections. The performance of four state-of-

the-art bias correction approaches was compared for selecting the best method for 

reliable downscaling of climate. Random Forest (RF) and Support Vector Machine 

(SVM) were used for the projection of groundwater storage anomaly due to climate 

change. Results revealed increase in drought severity for all the cropping seasons of 

Nigeria. Temperature was found to be the dominating factor for defining droughts in 

semi-arid regions in the north while rainfall influence dominates in the monsoon and 

tropical savanna zones in the south. Four GCMs namely MRI-CGCM3, HadGEM2-

ES, CSIRO-Mk3-6-0 and CESM1-CAM5 were found to be the most suitable for the 

projection of rainfall and temperature in Nigeria. Future projection of rainfall and 

temperature using ensemble model for the period 2010 – 2100 revealed increase in 

annual maximum temperature in the range of 0 – 5.1
o
C and changes in rainfall 

between 0 and 27.5% in rainy season. Maximum temperature was projected to 

increase more (3.5-5.1
o
C) in the northwest and least (2.0-2.5

o
C) in the south, while 

rainfall was projected to decrease up to 7.5% in the central and southern parts and 

increase up to 27.5% in north east. The study showed increase in droughts severity, 

frequency and affected area due to rises in temperature and changes in precipitation. 

Groundwater storage was projected to decline up to -12 m during rainy periods at 

some parts. Spatial assessment of changes in groundwater storage for future shows 

the northeast, southeast and south-south parts of Nigeria would mostly experience 

decrease in groundwater storage. Groundwater sustainability will be low in these 

areas and some other parts of the country for the future.  
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ABSTRAK 

 

Kenaikan suhu dan perubahan pola hujan disebabkan oleh pemanasan global 

akan mengubah kekerapan dan tahap keterukan kemarau meteorologi. Perubahan 

iklim tersebut akan memberi impak kepada beberapa sektor terutamanya sektor 

pertanian dan sumber air. Air bawah tanah, yang terlindung daripada hidrologi 

permukaan yang ekstrem dianggap sebagai sumber yang boleh dipercayai untuk 

menambah defisit air semasa kemarau dan disebabkan itu, dianggap sebagai suatu 

sumber yang berharga untuk pengadaptasian perubahan iklim di seluruh dunia. 

Walau bagaimanapun, kemarau berpanjangan juga boleh menjejaskan sumber air 

bawah tanah dan dengan itu, adalah penting untuk memahami bagaimana kemarau 

dan sumber air bawah tanah akan terjejas oleh perubahan iklim bagi membantu 

perancangan adaptasi yang boleh diharap. Objektif utama kajian ini adalah 

permodelan kesan perubahan iklim terhadap kemarau meteorologi semasa musim 

tanaman dan kelestarian air bawah tanah menggunakan unjuran model peredaran 

umum (GCM). Nigeria, salah satu negara yang paling terdedah kepada perubahan 

iklim telah dipertimbangkan sebagai kawasan kajian kes. Disebabkan kekurangan 

data, data hujan bergrid berasaskan tolok oleh pusat iklim hujan global (GPCC) dan 

data suhu oleh unit penyelidikan iklim (CRU) bagi tempoh 1901-2010 serta data 

simpanan anomali air bawah tanah oleh pemulihan graviti dan eksperimen iklim 

(GRACE) bagi tempoh 2002-2016 telah digunakan. Variasi temporal dalam kemarau 

yang dianggarkan menggunakan indeks hujan sejat peluhan terpiawai (SPEI) dan 

hubungannya dengan tren hujan dan suhu telah dinilai menggunakan tempoh 

bergerak 50-tahun dengan langkah masa 10 tahun. Konsep kebolehpercayaan-

kelangsungan-kerentanan (RRV) telah digunakan untuk penilaian kelestarian air 

bawah tanah. Kaedahberasaskan entropi baru digunakan untuk pemilihan GCM 

untuk mengurangkan ketidakpastian dalam unjuran perubahan iklim. Prestasi empat 

pendekatan pembetulan bias telah dibandingkan untuk memilih kaedah terbaik bagi 

iklim turun-skala yang boleh dipercayai. Hutan Rawak (RF) dan Mesin Vektor 

Sokongan (SVM) telah digunakan untuk unjuran simpanan anomali air bawah tanah 

disebabkan perubahan iklim. Keputusan mendedahkan peningkatan keterukan 

kemarau untuk semua musim menanam di Nigeria. Suhu didapati menjadi faktor 

yang dominan untuk mendefinisikan kemarau di kawasan-kawasan separa gersang di 

utara manakala hujan mendominasi di zon monsun dan tropika di selatan. Empat 

GCM iaitu MRI-CGCM3, HadGEM2-ES, CSIRO-Mk3-6-0 dan CESM1-CAM5 

didapati paling sesuai untuk unjuran hujan dan suhu di Nigeria. Unjuran masa depan 

hujan dan suhu menggunakan model berkumpulan untuk tempoh 2010 - 2100 

menunjukkan kenaikan suhu maksimum tahunan dalam lingkungan 0 - 5.1ºC dan 

perubahan hujan antara 0% dan 27.5% pada musim hujan. Suhu maksimum dijangka 

meningkat lebih banyak (3.5-5.1ºC) di barat laut dan kurang (2.0-2.5ºC) di selatan, 

manakala hujan dijangka menurun sehingga 7.5% di bahagian tengah dan selatan dan 

meningkat sehingga 27.5% di timur laut. Kajian menunjukkan peningkatan tahap 

keterukan kemarau, kekerapan dan kawasan yang terjejas berikutan kenaikan suhu 

dan perubahan hujan. Simpanan air bawah tanah dijangka berkurangan sehingga -

12m semasa musim hujan di beberapa bahagian. Penilaian spatial terhadap 

perubahan dalam simpanan air bawah tanah untuk masa hadapan menunjukkan 

bahagian timur laut, tenggara dan selatan-selatan di Nigeria akan mengalami 

pengurangan dalam simpanan air bawah tanah. Kelestarian air bawah tanah akan 

menjadi rendah di kawasan-kawasan ini dan beberapa bahagian lain di negara di 

masa hadapan.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of the Study  

The increased dynamics of the climate of the earth due to global warming is 

accompanied by tremendous shifts in the balance of its atmospheric system. The 

frequency and intensity of floods (Aich et al., 2016; Akter et al., 2018; Rojas et al. 

2013; Nashwan et al., 2018), heat waves (Schar et al., 2004; McMichael et al., 2006; 

Khan et al., 2018a), droughts (Ahmed et al., 2015; Ward, 2014; Mohsenipour et al. 

2018; Spraggs et al., 2015), ecosystem disturbances (Pérez-Ruiz et al., 2018; Wagena 

et al., 2018) among others are increasing or would increase across the globe due to 

these changes. The increases in climate related hazards subsequently may affect 

several sectors including water resources leading to water scarcity and economic 

losses, deterioration of social aspects of lives, health hazards leading to losses of 

lives, damages to agriculture causing several billions of dollars of destruction to 

crops, and the environment at large (Guhar-Sapir et al., 2016; Hinkel et al., 2013; 

Howitt et al., 2015). In addition, the ecosystem which is the most fragile part of the 

environment are being widely affected by droughts due to the changing climate 

(Bond et al., 2008; Corlett, 2016; Clark et al., 2017).  These challenging impacts of 

global climate change would not decline in the near future, at least not until several 

decades of cutting down on greenhouse gases emission.  

With continuous changes in the climatic variables and the effects they are 

having on our existence, understanding of the whole process from the causes to the 

changes that have occurred in the past to those that may happen in the future is 

crucial for preparation or mitigation of the impacts. The developing countries would 

be more affected by the impacts of climate change due to their lower adaptation 

capabilities (Abiodun et al. 2013, Collins et al. 2013).  Most developing countries 

also have higher density of population with less awareness of climate change (Lee et 
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al., 2015). This implies that a significant population of the world is at the risk of one 

or more form of the impacts of the changing climate.  

Among natural disasters, droughts are critical and found to be more difficult 

to understand. They can occur due to increase in temperature, reduction of relative 

humidity, high winds, and precipitation timing and characteristics. Additionally, they 

can occur in both dry and wet climates (Mishra and Singh, 2010) and can be 

prolonged making their impacts very devastating. Droughts have become 

increasingly destructive in recent years in many parts of the world. For example, 

Brazil experienced its worst droughts in 80 years in 2014 (Freire - González et al. 

2017). Some parts of the United States have experienced consecutive drought 

conditions between the years 2011 and 2016 with losses from agriculture running 

into several billions of dollars (NCEI, 2017). Three countries in Africa; Ethiopia, 

Kenya, and Somalia were battered by severe droughts between the years 2011 and 

2012 leaving 13 million people affected and tens of thousands of lives lost (Slim, 

2012). 

Water scarcity is the major issue that results from the impacts of droughts on 

natural systems. Groundwater has the ability to compensate for the decreases in 

rainfall and increase in water demands that occur during droughts. Therefore in some 

countires in recent times, groundwater development is seen as a viable solution in 

combating scarcity of water due to increased severity and frequency of droughts 

induced by the changing climate. In line with this and due to the need of water for 

food security, countries are gradually directing focus to groundwater based irrigated 

agriculture. Some recent studies have however noted that groundwater resources 

would also face threats from climate change in the near future (Ranjan et al., 2006; 

Shahid et al., 2017; Salem et al., 2018; Kahsay et al., 2018). Precipitation pattern 

changes due to temperature rise will affect runoff (Cullen et al., 2002; Ionita et al., 

2012), and consequently, the recharge of groundwater and its storage (Hanson et al., 

2004; Holman et al., 2009; Venencio and Garcia, 2011; Tremblay et al., 2011; Perez-

Valdivia et al., 2012). Decrease in soil moisture contents could also reduce recharge 

of groundwater and its availability as higher temperatures will increase evaporation 

and plant transpiration rates (Yu et al., 2015).  
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Understanding on-going changes and possible future changes in climate are 

essential components of adaptive capacity and necessary in the development of 

effective climate change adaptation policies (Batisani and Yarnal, 2010; Wang et al., 

2016). Therefore, reliable assessment of the changes in droughts and groundwater 

resources due to climate change is very important for impact assessment and 

formulation of effective drought preparedness plans. However, availability of reliable 

data is the major obstacle in the quantification of the impacts of climate change in 

many parts of the world, particularly on the African continent. The suitability of 

gridded climate and hydrological data and robust methods for analysis of climate 

change impacts using limited data should be explored for hydro-climatic studies in 

data scarce regions. 

1.2 Problem Statement 

Climate change has serious potential impacts on the economic, 

environmental, social, and agricultural sector of any nation. Without doubt, water 

resources and the agricultural sectors which are the most important to human 

existence are among the mostly affected sectors by the changing climate. There have 

been several reports of the impacts of climate change on droughts in different parts 

of the world (Wilhemi and Wilhite, 2002; Piao et al., 2010; Ward, 2014; Byakatonda, 

2018). The impacts of climate change on droughts have been assessed using various 

droughts indices. However, most of the studies didn’t assess droughts based on the 

cropping season in which droughts can be very destructive to crops (Alamgir et al., 

2015; Mohsenipour et al., 2018). There is also a gap in research to understand the 

time varying changes in droughts characteristics during cropping season in order to 

understand their variability with time and identify the driving factors behind the 

changes in droughts.  

General Circulation Models (GCMs) are generally used to simulate the 

present climate and project the future climate. However, a major challenge in 

projection of climate for impact assessment is the selection of appropriate set of 

GCMs (McSweeney et al., 2015; Salman et al., 2018). In practice, a small ensemble 
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of appropriate GCMs is selected for the region of interest by excluding those that are 

considered unrealistic in order to reduce uncertainties associated with GCMs (Lutz et 

al., 2016; Pour et al., 2018; Khan et al., 2018b). A number of attempts have been 

made to assess the performance of climate models using different performance 

indices (Perkins et al., 2007; Masson and Knutti, 2011; Yokoi et al., 2011; Jiang et 

al., 2015a; Salman et al., 2018; Khan et al., 2018b). The major disadvantage of these 

performance indices is that they are based on the time-mean state of climate 

(Reichler and Kim, 2008) and thus, unable to capture the temporal variability of 

climate such as variation in the frequencies of climatic extremes which is equally 

important for the assessment of model performance. There is a need of finding more 

sophisticated approach for the ranking of GCMs and selection of ensemble of GCMs 

for projection of climate.  

Due to their coarse resolutions, GCMs are generally downscaled into finer 

resolutions through either dynamical downscaling (DD) or statistical downscaling 

(SD) techniques for impacts assessment studies (Ahmed et al., 2018a). Statistical 

downscaling compared to dynamical are mostly preferred due to their flexibility, 

simplicity, computational speed, and provision of local scale information (Pour et al., 

2014; Ahmed et al., 2015; Sachindra et al., 2014). There are two main subdivisions 

of the SD, the model output statistics (MOS) and the perfect prognosis (PP) (Maraun 

et al., 2010).  The MOS method has the ability to account for errors that are inherent 

in GCMs (Turco et al., 2011; Eden and Widmann, 2014), making them widely 

applied in climate change projections (Eden and Widmann, 2014; Sunyer et al., 

2015; Sa’adi et al., 2017; Bi et al., 2017; Shirvani and Landman, 2016; Moghim and 

Bras, 2017). There is always complexity in the relationship between local variables 

and GCM hindcasts, it is therefore important to explore the suitable approach that is 

sophisticated for this purpose in order to improve the downscaling performances and 

reliability in projection of climate.   

Historical studies of droughts have shown their occurrences in many parts of 

the world (Sung and Chung, 2014; Ahmed et al., 2015; Zhang et al., 2017; 

Mohsenipour et al., 2018) including Nigeria (Oloruntade et al., 2017). Studies on 

future characteristics of droughts under a changing climate are also being conducted 
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in different parts of the globe (Meza, 2013; Hernandez and Uddameri, 2014; Vu et 

al., 2017). However, most of the studies did not assess how the intensity, frequency, 

and areal extent of droughts are going to change during different cropping seasons 

under the different climate change scenarios. Besides, literature search shows while 

there are some studies on the projection of climate over Nigeria (e.g. Abiodun et al., 

2013; Okoro et al., 2017), studies to assess the impacts of climate change on 

droughts during various crops growing seasons using CMIP5 have not been explored 

yet in this highly drought vulnerable region. The impacts of climate change on 

groundwater resources may affect its capability to offset large water demand during 

droughts (Wada et al., 2012; Pengra, 2012; Gandhi and Bhamoriya, 2011; Treidel et 

al., 2012). Groundwater resources are not very renewable in many areas including 

Nigeria (Macdonald et al., Kløve et al., 2014), and therefore may be faced with the 

devastating effects of climate change in the near future as predicted by some studies 

(Davidson and Yang, 2007; Ranjan et al., 2006; Treidel et al., 2012; Shahid et al., 

2017). However, most of these studies did not assess how the changing climate is 

going to change sustainability of groundwater resources under different RCPs which 

is very important for areas where groundwater storages are declining due to climate 

change.  

1.3 Research Objectives 

The major objective of this study is to develop a methodological framework 

for the modeling of seasonal meteorological droughts and groundwater sustainability 

to assess the vulnerability of water resources in the context of climate change in 

Nigeria. The specific objectives of the study are: 

i. To evaluate the historical changes in meteorological and groundwater 

droughts in Nigeria using gridded climate and terrestrial water storage data. 

ii. To select an ensemble of GCMs for Nigeria based on their performances in 

simulating historical climate using entropy-based similarity assessment 

methods.   
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iii. To downscale and project the future changes in climate of Nigeria under 

different representative concentration pathways (RCPs) scenarios using state-

of-the-art MOS approach.   

iv. To assess the impacts of climate change on meteorological droughts and 

groundwater sustainability in Nigeria under different climate change scenarios. 

1.4 Scope of the Study 

This study mainly aimed to assess the impacts of climate change on 

meteorological droughts during crop growing seasons and sustainability in 

groundwater resources to understand the vulnerability of water resources under 

climate change scenarios. The developed framework in this study for modeling 

droughts and groundwater resources was tested through its application to the total 

area of Nigeria.  

There are many gauged and satellite based gridded climate data that are used 

in place of observed data due to data scarcity. Amongst the commonly used gridded 

climate data are the Global Precipitation Climatology Center (GPCC) rainfall and 

Climate Research Unit (CRU) temperature data. These data were assessed and 

validated in this study for climate and hydrological modeling in Nigeria.   

Different droughts indices, particularly standardized precipitation index (SPI) 

and standardized precipitation evapotranspiration index (SPEI) have been used for 

the identification and characterization of droughts. However, evapotranspiration 

which plays a significant role in semi-arid and arid regions incorporated into the 

SPEI method and thus, made it suitable for assessment of droughts in such 

environments. As a significant portion of Nigeria is arid and semi-arid, SPEI was 

adopted for assessing the changing characteristics of meteorological droughts for the 

entire country.   
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For the future assessment of the impacts of climate change on droughts and 

groundwater resources, the CMIP5 GCM simulations are used. Among the pool of 

GCMs of the CMIP5, 20 models were selected for Nigeria based on their availability 

of simulation for all the representative concentration pathways (RCPs).  Of these, 

few highest performing models were selected and aggregated into an ensemble 

rainfall and temperature model based on their performances using a number of 

criteria.  

The impacts of the changing climate on water resources were assessed from 

the changing characteristics of rainfall and temperature and by using gridded Gravity 

Recovery and Climate Experiment (GRACE) terrestrial water storage data in 

assessing the past, present, and future changes in groundwater for Nigeria.  

Various parametric and non-parametric methods were used in the study for 

the assessment of trends. Empirical models were developed using data mining 

methods and were compared based on their performances for the assessment of the 

changes in climate and groundwater storage.    

1.5 Significance of the Study 

Among natural disasters, droughts are most difficult to understand. Droughts 

can be very devastating due to their prolonged periods of occurrence and their extent 

and intensity of occurrences. Furthermore, their occurrences during crop growing 

season are more ravaging, causing severe damages to agricultural crops, thereby, 

resulting in large economic losses or famine. A methodology is proposed in this 

study for the assessment of time varying properties of droughts for understanding the 

factors responsible for the changes in droughts. The method can be used in any other 

regions for systemic assessment of changing characteristics of droughts during 

different periods due to climate change. 

The methodological framework developed in this study will be invaluable for 

the assessment and validation of GCM simulation in order to provide more 
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confidence in their use for the assessment of the changing characteristics of droughts. 

The selection of an ensemble of GCM will reduce the uncertainties associated with 

individual GCMs for climate projections.  

The methods proposed for downscaling of the rainfall and temperature will 

give a confidence in climate projections. The downscaled climate for Nigeria would 

provide insights into the future changing characteristics of climate variables which 

may be used in understand their impacts on various natural systems. This will be 

significant in developing appropriate adaptation plans and preparedness, prevention 

and mitigation measures against global environmental changes.    

A comprehensive understanding of the historical droughts during crop 

growing seasons will be significant in understanding the spatial and temporal trends 

in droughts which can be useful in understanding droughts progression over time. 

The use of easily available gridded data would make the method used for drought 

assessment in this study replicable in any other regions of the globe including areas 

where climate data are scarce. 

The changing climate is changing the spatial and temporal patterns of climate 

variables especially rainfall and temperature. These changes are increasingly 

aggravating the frequencies and intensities of disasters. Nigeria, like many other 

countries of the globe is struggling with the impacts of the changing climate. 

Intermittent years of droughts and increasing droughts in some areas of the country 

due to increasing temperature are occurring. It has been projected that droughts in 

Africa will be more devastating in the future due to its location in a drought prone 

area. For a country like Nigeria with a significant population depending on rain-fed 

agriculture, and experiencing continuous increase in population, it is required to 

boost its sustainability in natural resources. The findings of the study can be used for 

climate change adaptation planning to mitigate the impacts of climate change on 

agriculture and water resources for sustainable development. 
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