RISK CONSEQUENCES ASSESSMENT OF GAS PIPELINE FAILURE INCORPORATING LOCAL LOSS FACTORS

NORHAMIMI BINTI MOHD HANAFIAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2020

DEDICATION

In the name of ALLAH, the Most Gracious, Most Beneficent. I dedicate this thesis special from the bottom of my heart to: My beloved husband for his unconditional love, patients and never ending support...Ahmad Izad Bin Ahmad Shokree My beautiful daughter and adorable son.. Amna Iman and Ahmad Iyad; ... My beloved parent for their trust and never giving up on me... Normah Abdul Fatah (Mama) and Mohd Hanafiah Asari (Ayah) ... My dear siblings who always endlessly supports me... Norhana (Kak Ana), Norhani (Kak ani), Mohd Shahrizman (Abg Man), Nornabilah (Bilot), Late Mohd Norhaniff (Haniff), Mohd Norhaziq (Haziq) and Zulkifly (Dekzul)... My lovely family in-laws for their support and never giving up on me...Ahmad Shokree (Abah), Faridah (Mak) Haffiz (Angah), Siti Adilah (Dila), Mohd Iqbal (Achik), Hazirah Hanis (Anis), Nur Asmida (Asmida); ... My playfull nieces and nephews who motivates me... Jauhar Rhea Nabiha, Jauhar Elya Nafeesa, Jauhar Ayna Nadjwa, Nur Husna Hani, Mohd Aqil Haniff. Nur Hasya Huda, Muhammad Al-Fateh, Muhammad Nazran, Nur Syafia, Siti Aisyah Humaira, Siti Aliah Hafizah, Muhammad Adam; ... My super awesome supervisors who always trust me and inspire me.. Professor Dr. Nordin Yahaya, Associate Professor Dr. Norhazilan Md. Noor and Dr. Libriati Zardasti. Thank you for everything. May ALLAH bless and grant us Jannatul Ferdous.

ACKNOWLEDGEMENT

The preparation of this thesis needs me to collaborate with many people i.e researchers, academicians and practitioners. They have helped a lot throughout my learning and understanding process. Hence, I shall express my acknowledgement of this thesis as a sign of my sincere appreciation to my awesome supervisors, Professor Dr. Nordin Yahaya, for his guidance and endless support. He is a father figure that I always look up to. I am very thankful and appreciate my co-supervisors who act none less than my main supervisors, Associate Professor Dr. Norhazilan Md Noor for never giving up on me and always teach me a valuable lesson. I am also very thankful to my second co-supervisors, Dr. Libriati Zardasti who helps me a lot especially in my thesis preparation. Without their continuous support and guidance, this thesis would not have been making its way today.

I am also indebted and thankful to Kementerian Pendidikan Malaysia for funding my Ph.D. study through myPhD programme; the staff of PETRONAS Gas Berhad (PGB) Malaysia, especially Encik Mohd. Nazmi Mohd Ali Napiah and his colleagues; staff and experts from various government agencies in Malaysia; for each countless assistance in supplying the relevant literatures, data and survey responses.

Not to be forgotten, my research group members of Reliability Engineering and Safety Assessment (RESA) who always with me through thick and thin, fellow postgraduate friends for their support and my sincere appreciation also extends to all who have delivered assistance at various occasions. Unfortunately, it is impossible for me to mention each name in this limited space. I do appreciate the supports from all of them in this PhD journey sincerely from the bottom of my heart.

ABSTRACT

Risk consequence assessment of gas pipeline damage is normally conducted to determine the losses of a failure event such as human, asset, production, public necessities and environmental loss. The current practice of pipeline risk consequences assessment is considered imprecise due to exclusion of the local loss factors, which led to the deterioration of the quality of estimated risk. As a result, the calculated consequences generate an equal risk value to any areas of the buried pipeline throughout the country regardless of the area's unique loss factors and consequences values. This study presents three separate risk consequences models to assess seven different sites which cover rural and urban areas. Similar frameworks are used for all the models but differ in terms of analyses and procedures in the assessment, to generate the risk ranking. Model₁ involved quantification of direct summation of all possible losses in terms of monetary value which is highly demanded by the industry. Model₂ deployed the use of the Fuzzy Analytic Network Process, Super Decision software and Complex Proportional Assessment (COPRAS) analysis procedure. Lastly, Model₃ utilised a series of Survey Analyses that provides outcome as priority vectors for each loss factors. In order to assess the validation of the developed models, the overall risk ranking category was calculated by comparing the obtained results of all models with the existing technical standard which is Pipeline Technical Guideline (PTG11.36.04). Results show percentage difference of 28.6 %, 57.1% and 17.14% for Model₁, Model₂, and Model₃, respectively. The difference can be observed spectacularly on sites with high scores of the public loss value, environmental loss factors considered in the assessment as well as classification of the selected areas. The finding shows significant differences of risk between the existing technical standard and the proposed models. However, Model₃ provided the lowest percentage difference can be considered as the most comprehensive and representative model because it involves prioritization of each loss factor in every loss category in monetary form. Through structured model validation and result verification process, the findings indicated that all models are considered comprehensive, fulfilled the objective, reliable, well-defined and practical. In conclusion, this research outcome is possible to be merged with existing technical standards towards the development of automated intelligent Pipeline Integrity Management System (i-PIMS). Consequently, these models are capable of prolonging the long-term integrity of pipeline assessments and simultaneously securing the pipeline owner's annual profit margins.

ABSTRAK

Penilaian risiko akibat kegagalan saluran paip biasanya dijalankan untuk menghitung kesan kerugian seperti kematian manusia, kehilangan aset, gangguan pengeluaran, kerosakan kemudahan awam dan kerosakan alam sekitar. Piawaian sedia ada dalam menilai kesan kerugian letupan saluran paip gas dianggap tidak tepat kerana terdapat kekangan dalam mempertimbangkan faktor tempatan yang menjurus kepada kemerosotan kualiti risiko yang dinilai. Dengan itu, kesan kerugian yang dihitung adalah sama pada mana-mana bahagian saluran paip yang ditanam di seluruh negara tanpa mengambil kira faktor tempatan yang unik pada setiap tempat dan nilai kesan daipada kegagalan tersebut. Kajian ini membentangkan tiga jenis model penilaian risiko untuk menilai tujuh tapak kajian yang meliputi kawasan bandar dan luar bandar. Kerangka model yang hampir sama digunakan untuk setiap model tetapi berbeza dari segi analisis dan prosedur didalam penilaian untuk menilai tahap risiko. Model1 melibatkan perjumlahan langsung daripada semua kehilangan yang berpotensi terlibat dengan menggunakan kuantifikasi dari segi nilai wang ringgit yang sangat diperlukan oleh industri semasa. Model2 melibatkan Proses Rangkaian Analitik Fuzzy, Perisian Super Decision dan prosedur analisis Complex Proportional Assessment (COPRAS). Model terakhir jaitu Model3 menggunapakai siri analisis kaji selidik yang menghasilkan vektor keutamaan untuk setiap faktor kehilangan yang dikira. Dalam usaha untuk menilai validasi model-model yang dibangunkan, perbezaan keseluruhan kategori risiko dikira dengan membandingkan keputusan kesemua model dengan piawaian teknikal sedia ada iaitu Pipeline Technical Guideline (PTG11.36.04). Hasilnya menunjukkan peratusan perbezaan sebanyak 28.6%, 57.1% dan 17.14% untuk Model1, Model2 dan Model3 masingmasing. Perbezaannya dapat dilihat secara ketara di kawasan yang mempunyai markah tinggi dalam nilai faktor kehilangan awam, faktor alam sekitar yang dikira dalam penilaian serta klasifikasi kawasan yang dipilih. Dapatan daripada kajian ini menunjukkan perbezaaan risiko yang siknifikasi antara piawaian teknikal sedia ada dengan model-model yang dibangunkan. Walaubagaimanapun, Model3 yang menghasilkan peratusan perbezaan terendah boleh dianggap sebagai model yang paling komprehensif dan berpotensi kerana pengiraannya melibatkan pengutamaan setiap faktor kehilangan di setiap kategori kehilangan dalam bentuk penilaian wang ringgit. Melalui proses pengesahan model dan verifikasi dapatan kajian yang berstruktur, keputusannya menunjukkan bahawa model-model ini dianggap komprehensif, memenuhi objektif, boleh dipercayai, jelas dan praktikal. Kesimpulannya, hasil kajian ini boleh digabungkan dengan piawaian teknikal sedia ada kearah pembangunan automasi Pipeline Integrity Management System pintar (i-PIMS). Dengan itu, model-model ini berupaya untuk memanjangkan integriti jangka panjang aset saluran paip dan pada masa yang sama menjamin keuntungan tahunan pemilik.

TABLE OF CONTENTS

TITLE

DECLARATION	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xiv
LIST OF FIGURES	XX
LIST OF ABBREVIATIONS	xxiv
LIST OF SYMBOLS	xxvii
LIST OF APPENDICES	xxix

CHAPTER 1	INTRODUCTION	1
1.1	Preface	1
1.2	Background and Motivation	1
1.3	Research Problem	3
1.4	Aims and Objective	4
1.5	Research Scope	5
1.6	Significance of Study	6
1.7	Structure of Thesis	7
CHAPTER 2	LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Overview on Risk Assessment	9
2.3	Gas Pipeline Risk Assessment	12
	2.3.1 Natural Gas Pipeline Failure	15
	2.3.2 Intelligent Pipeline Integrity Management System (i-PIMS)	19

		2.3.3	Current Ir	ndustrial Practices	21
2	2.4	Consec	quences As	ssessment	26
		2.4.1	Accident	Scenario Analysis	31
		2.4.2	Identificat	tion and Classification of Losses	32
			2.4.2.1	Potential damage Radius	35
		2.4.3	Estimation	n of Losses	37
			2.4.3.1	Production Loss	39
			2.4.3.2	Assets Loss	41
			2.4.3.3	Human Health and Safety Loss	42
			2.4.3.4	Environmental Loss	47
			2.4.3.5	Public Loss	52
			2.4.3.6	Reputation Loss	54
2	2.5	Compr	ehensive F	Risk Consequences Model	55
		2.5.1	Advantag	es of Monetary Model	55
		2.5.2	Conseque	nces Index Scoring Model	56
			2.5.2.1	Fuzzy Analytic Network Process (FANP)	58
			2.5.2.2	COPRAS (Complex Proportional Assessment) analysis	62
		2.5.3	Survey A	nalysis	64
			2.5.3.1	Reliability Analysis	67
			2.5.3.2	Mann-Whitney Test	68
			2.5.3.3	Kruskal-Wallis Test	69
		2.5.4	Validation Conseque	n and Verification of the nces Assessment Models	69
			2.5.4.1	Verification of Results	70
			2.5.4.2	Validation of the Risk Consequences Models	71
2	2.6	Conclu	iding Rem	arks	72
CHAPTER	2	DECE	а рен м	ETHODOLOGY	75
		Introdu			75 75
			ch Phase		75
e					

3.3	Mode	ling of Acc	cident Scenario	78
3.4	Data (Collection/	Identifying Sources	79
	3.4.1	Prelimina	ary Studies	79
	3.4.2	Site Sele	ction	80
	3.4.3	Interview	with Experts	84
3.5	Desig	nation proc	cess of Loss Category	85
	3.5.1	Productio	on Loss	86
	3.5.2	Assets Lo	DSS	88
	3.5.3	Human H	Iealth and Safety Loss	90
	3.5.4	Environn	nental Loss	92
		3.5.4.1	Environmental Loss for Monetary Model (Model ₁ and Model ₃)	93
		3.5.4.2	EnvironmentalLossforConsequencesIndexModel(Model2)IndexIndex	95
	3.5.5	Public Lo	DSS	96
		3.5.5.1	Public Loss Estimation Guidelines (PLEG)	98
	3.5.6	Reputatio	on Loss	103
	3.5.7	Identifica	ation of Loss Factors of Model3	104
3.6	Data A	Analysis		106
	3.6.1	Modeling	g Analysis	108
	3.6.2	Damage	Radius Evaluation	109
		3.6.2.1	Sites Evaluation	111
	3.6.3	Direct M	onetary Value Summation (Model ₁)	113
	3.6.4	Conseque	ences Index (Model ₂)	114
		3.6.4.1	Fuzzy ANP using Chang's Method	118
		3.6.4.2	Sites Ranking using COPRAS Method	119
		3.6.4.3	Consequences Index	120
	3.6.5	Prioritize (Model ₃)	5	122
		3.6.5.1	Prioritization of factors	123

			3.6.5.2	Analytic Hierarchy Process (AHP) Framework	126
			3.6.5.3	Fuzzy Analytic Hierarchy Process (FAHP)	128
	3.7	Mode	l and Data	Validity	130
		3.7.1	Modified	l-Delphi Survey	131
		3.7.2	Validatio	on of the Risk Assessment Models	133
	3.8	Concl	uding Ren	narks	135
CHAPTE OF LOSS			TIFICAT	TION AND CATEGORISATION	137
	4.1	Introd	uction		137
	4.2	Identi	fication of	PTG11.36.04 Limitation	138
	4.3	Identi	fying Loca	ll Damage Radius	139
	4.4	Devel	opment of	Loss Category	145
		4.4.1	Production	on Loss	145
		4.4.2	Assets L	OSS	146
		4.4.3	Human H	Health and Safety Loss	147
		4.4.4	Environr	nental Loss	150
			4.4.4.1	Environmental Loss for Monetary Model (Model ₁ and Model ₃)	150
			4.4.4.2	EnvironmentalLossforConsequences Index (Model2)	151
		4.4.5	Public L	OSS	151
		4.4.6	Reputation	on Loss	156
	4.5	Concl	uding Ren	narks	157
СНАРТЕ	R 5	CON	SEQUEN	CES ASSESSMENT MODELING	159
	5.1	Introd	uction		159
	5.2	CoF n	nodel Usin	g Current Standard	160
	5.3	Mone	tary Loss I	Modeling (CoF Model ₁)	163
		5.3.1	Risk Ma	trix Severity Scale for CoF _{Model1}	164
		5.3.2	Result of	Risk Ranking Category	165
		5.3.3	Develop Model ₁)	ment of Monetary Loss Model (CoF	168

5.4	Conse	equences Index modeling (CoF Model ₂)	170
	5.4.1	Identified factors and classification of important for Environmental Loss	170
	5.4.2	Pairwise Comparison Matrices among Environmental Factors and Sites	172
	5.4.3	Created Network Structure	173
	5.4.4	Determining Un-Weighted, Weighted and Limited Super-Matrices	174
	5.4.5	Environmental Consequences Index Evaluation by COPRAS	175
	5.4.6	Risk Matrix Severity Scale for CoF _{Model2}	177
	5.4.7	Result of Risk Ranking Category	178
	5.4.8	Development of Consequences Index Model (Model ₂)	180
5.5	Mone	tary Loss Modeling (CoF Model ₃)	182
	5.5.1	Hypothesis Testing	184
	5.5.2	Prioritization of Loss Factors	185
	5.5.3	Priority Vector/Weightage of Loss Factor	190
	5.5.4	Model Development	190
	5.5.5	Risk Matrix Severity Scale for CoF Model3	194
	5.5.6	Result of Risk Ranking Category	196
	5.5.7	Development of Monetary Loss Model (CoF Model ₃)	198
5.6	Valida	ation and Verification	200
	5.6.1	Comparison of Developed Models with Industry Practices	201
	5.6.2	Validation of the Models by Experts	203
		5.6.2.1 Model Validation Survey	206
	5.6.3	Verification of Results	213
		5.6.3.1 Modified-Delphi Survey for verification of results	214
5.7	Limita	ations of the model	215
5.8	Concl	uding Remarks	216

СНАРТЕ	R 6	CONCLUSION AND RECOMMENDATIONS	219
	6.1	Summary	219
	6.2	Conclusions	220
	6.3	Significance of Research Contributions	221
	6.4	Recommendations	222
REFERE	NCES		225
Appendix	A		239
	Appe	ndix A1	239
	Appe	ndix A2	240
	Appe	endix A3	242
Appendix	B		244
	Appe	ndix B1	244
	Appe	ndix B2	245
	Appe	ndix B3	256
	Appe	ndix B4	260
Appendix	C		265

Appendix C

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Classification of Risk Assessment (Source: Anghel, 2009).	11
Table 2.2	Classification of Risk Assessment (Source: Anghel, 2009)	14
Table 2.3	Guidelines for assessment of risk category (Source: PTG11.36.04, 2015)	15
Table 2.4	Formula of onshore pipeline consequence assessment with scoring descriptor (Source: PTG11.36.04, 2015)	24
Table 2.5	Identification of potential consequences for pipeline (Source: DNV-RP-F107, 2010)	25
Table 2.6	Assessment of consequence of pipeline failure (Source: DNV-RP-F116, 2009)	26
Table 2.7	Summary of current practise on consequences assessment	26
Table 2.8	Impact on People (Source: PTG11.36.04, 2015)	28
Table 2.9	Impact on Asset (Source: PTG11.36.04, 2015)	29
Table 2.10	Impact on Environment (Source: PTG11.36.04, 2015)	30
Table 2.11	Impact on Reputation (Source: PTG11.36.04, 2015)	31
Table 2.12	Economic consequence ranking (Source: DNV-RP-F107, 2010)	40
Table 2.13	Six Level Safety, Health and Environmental Consequence Categories (Source: API-RP-580, 2009)	43
Table 2.14	Safety consequence ranking (human) (Source: DNV-RP-F107, 2010)	43
Table 2.15	The base values to estimates the road accident loss (Source: Yusof, 2013)	45
Table 2.16	Degree of Severity for Flammability (Source: Arunraj and Maiti, 2009b)	49
Table 2.17	Degree of Severity for Reactivity (Source: Arunraj and Maiti, 2009b)	49
Table 2.18	Degree of Severity for Explosiveness (Source: Arunraj and Maiti, 2009b)	49

Table 2.19	Degree of Severity for Depth of Groundwater (Source: Arunraj and Maiti, 2009b)	50
Table 2.20	Degree of Severity for Distances from Nearby Waterbodies (Source: Arunraj and Maiti, 2009b)	50
Table 2.21	Degree of Severity for Water Solubility (Source: Arunraj and Maiti, 2009b)	50
Table 2.22	Degree of Severity for Mobility of Groundwater (Source: Arunraj and Maiti, 2009b)	50
Table 2.23	Degree of Severity for Permeability of the Soil (Source: Arunraj and Maiti, 2009b)	50
Table 2.24	Degree of Severity for Viscosity of Product (Source: Arunraj and Maiti, 2009b)	51
Table 2.25	Degree of Severity for Wind Speed (Source: Arunraj and Maiti, 2009b)	51
Table 2.26	Degree of Severity for Relative Humidity (Source: Arunraj and Maiti, 2009b)	51
Table 2.27	Degree of Severity for Mobility in Air (Source: Arunraj and Maiti, 2009b)	51
Table 2.28	Valid return rate of questionnaire for analysis and reporting purposes (Source: Miller, 1991)	65
Table 2.29	Data transformation scheme to pairwise judgment (Source: Chen, 2010)	67
Table 2.30	Cronbach's alpha reliability coefficient (Source: Gliem and Gliem, 2003)	68
Table 3.1	The Case Studies Sites and Main Classification	81
Table 3.2	Sites characteristic of the case study.	82
Table 3.3	Identified industries involved in the study.	85
Table 3.4	Identified list of general public owned properties	99
Table 3.5	Average Price of Primary Commodities in Malaysia (Source: MPIC, 2015)	101
Table 3.6	Estimated project cost for carriageway of RMK10 per KM (Source: Road Facilities Maintenance Branch, 2014)	102
Table 3.7	Human Health and Safety Loss (HHSL) factor for gas pipeline	105
Table 3.8	Asset loss (AL) factor for gas pipeline	105
Table 3.9	Environmental loss (EL) factor for gas pipeline	105

Reputation loss (RL) factor for gas pipeline (Source, Zardasti, 2016)	106
ALOHA input parameters for the analysis	112
ALOHA Inputs for Pipeline Data	112
Five-point Likert Scale for Risk Severity Level	121
Numerical score to convert monetary value in index form	121
Number of comparisons	124
Random Index for factors in the process of decision making (Saaty, 2008).	125
TFN pairwise comparison matrix for Criterion	129
Damage Radius Results	142
Identified loss results within damage radius	144
Production Loss values	146
Assets Loss values	146
HHSL Results	147
Environmental Loss values	151
PLEG for Agricultural	152
PLEG for Livestock/Rearing area	153
PLEG for Infrastructure	154
PLEG for Public Buildings	154
Related involved category for PLEG	155
Index value of loss factor	161
Scoring descriptors for Safety / Economic / Environment Loss (Source: PTG11.36.04, 2015)	161
Index value of CoF	161
CoF weightage using PTG11.36.04 (2015)	162
Risk category result for Site A using PTG11.36.04 (2015)	162
Risk Category Result of PTG11.36.04 (2015)	163
Risk Matrix Severity scale for CoF Model ₁	164
Full Form of Risk Matrix table for CoF Model ₁	165
Calculation procedure for CoF Model _{1SiteA}	166
	Zardasti, 2016)ALOHA input parameters for the analysisALOHA Inputs for Pipeline DataFive-point Likert Scale for Risk Severity LevelNumerical score to convert monetary value in index formNumber of comparisonsRandom Index for factors in the process of decision making (Saaty, 2008).TFN pairwise comparison matrix for CriterionDamage Radius ResultsIdentified loss results within damage radiusProduction Loss valuesAssets Loss valuesHHSL ResultsEnvironmental Loss valuesPLEG for AgriculturalPLEG for InfrastructurePLEG for Public BuildingsRelated involved category for PLEGIndex value of loss factorScoring descriptors for Safety / Economic / Environment Loss (Source: PTG11.36.04, 2015)Risk category result for Site A using PTG11.36.04 (2015)Risk Category Result of PTG11.36.04 (2015)Risk Matrix Severity scale for CoF Model1Full Form of Risk Matrix table for CoF Model1

Table 5.10	Monetary value of CoF for each site	166
Table 5.11	Risk category result for Site A	167
Table 5.12	Result of Risk Ranking Category for Monetary Loss Model (CoF Model ₁)	167
Table 5.13	Identified hazard factors of Natural Gas (Methane)	171
Table 5.14	Conversion of hazard factors to 5-point scale	171
Table 5.15	Pairwise comparison matrix between Material Hazard Factor	172
Table 5.16	Pairwise comparison matrix between Spreading Factor	172
Table 5.17	Normalized weight vector	173
Table 5.18	Un-weighted super-matrices of environmental factors	174
Table 5.19	Weighted super-matrices of environmental factors	175
Table 5.20	Weight of each environmental factor	175
Table 5.21	Calculated weight of COPRAS procedure	176
Table 5.22	Final ECI weight from COPRAS	176
Table 5.23	Ranking of Environmental Consequences Index	176
Table 5.24	Ranking of section to 5 Likert severity scale	176
Table 5.25	Risk Matrix Severity scale for CoF Model2	177
Table 5.26	Full Form of Risk Matrix table for CoF Model2	177
Table 5.27	Conversion to 5-point Numerical score for other loss category	178
Table 5.28	5-point Numerical score of CoF Model2	178
Table 5.29	Calculation procedure for CoF Model _{2SiteA}	179
Table 5.30	Risk category result for Site A	179
Table 5.31	Result of Risk Ranking Category for Consequences Index Model (CoF Model ₂)	180
Table 5.32	Result of return rate of pilot study (onshore pipeline)	183
Table 5.33	Demographic analysis result	184
Table 5.34	Hypothesis testing	186
Table 5.35	Loss factors dependency	187
Table 5.36	Pairwise comparison matrix for Criterion	189

Table 5.37	Normalized weight vector for factors in Criterion level	189
Table 5.38	Calculation procedure for Model ₃	190
Table 5.39	Calculation procedure for Model ₃ – Finalized	191
Table 5.40	Monetary value of human health and safety loss (HHSL) factors	192
Table 5.41	Monetary value of asset loss (AL) factors	192
Table 5.42	Monetary value of environmental loss (EL) factors	193
Table 5.43	Monetary value of reputation loss (RL) factors	193
Table 5.44	Ranges of CoF value for minimum and maximum	194
Table 5.45	COF severity	194
Table 5.46	Risk Matrix Severity scale for CoF Model ₃	195
Table 5.47	Full Form of Risk Matrix table for CoF Model ₃	195
Table 5.48	Calculation procedure for CoF Model _{3SiteA}	196
Table 5.49	Monetary value of CoF for each site	197
Table 5.50	Risk category result for CoF $Model_{3(Site A)}$ of PoF category C	197
Table 5.51	Result of Risk Ranking Category for Monetary Model (CoF Model ₃)	198
Table 5.52	Comparison of Developed Models with PTG11.36.04	202
Table 5.53	Respondent's demographics of models validation survey	204
Table 5.54	PETRONAS experts' profiles	204
Table 5.55	Results from the validation process of Model ₁	205
Table 5.56	Results from the validation process of Model ₂	206
Table 5.57	Expert opinions for validation criteria of level of comprehensiveness for $Model_1$	207
Table 5.58	Expert opinions for validation criteria of level of objectivity of $Model_1$	207
Table 5.59	Expert opinions for validation criteria of level of clarity for $Model_1$	207
Table 5.60	Expert opinions for validation criteria of level of reliability for $Model_1$	208
Table 5.61	Expert opinions for validation criteria of level of practicality for $Model_1$	209

Table 5.62	Expert opinions for validation criteria of level of comprehensiveness for Model ₂	210
Table 5.63	Expert opinions for validation criteria of level of objectivity for $Model_2$	210
Table 5.64	Expert opinions for validation criteria of level of clarity for $Model_2$	211
Table 5.65	Expert opinions for validation criteria of level of reliability for $Model_2$	211
Table 5.66	Expert opinions for validation criteria of level of practicality for $Model_2$	212
Table 5.67	Risk category results by comparison of the proposed models with PTG11.36.04	214

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 1.1	Pipelines network owned by PETRONAS Gas Berhad (Source: Oil Peak, 2012)	6
Figure 2.1	PETRONAS PIMS elements (Source: PTG 11.36.04,2015)	10
Figure 2.2	The ALARP tolerability risk triangle (Source: PTG 11.36.04, 2015)	10
Figure 2.3	Simple risk matrix (Source: Muhlbauer, 2004)	13
Figure 2.4	Burnt vegetation destruction and damaged pipeline due to a buried gas pipeline explosion in Lawas, Sarawak (Source: New Straits Times Online, 2014).	16
Figure 2.5	Location of Kaohsiung gas explosion events and the affected area (Source: Chen et al, 2016).	17
Figure 2.6	Main causes of natural gas pipeline accidents by frequencies (Source: 7th Report of the European Gas Pipeline Incident Data Group, 2008).	17
Figure 2.7	Natural Gas from wellhead to consumption (Source: Amir-heidari et al, 2014)	18
Figure 2.8	Comparison between the number of serious incidents of all pipeline systems (Source: Amir-heidari et al, 2014)	19
Figure 2.9	Consequences category (Source: PTG11.36.04, 2015)	22
Figure 2.10	Event tree analysis of natural gas pipeline leakage (Source: Khan and Haddara, 2003)	32
Figure 2.11	Illustration of threats, values and loss categories in risk – and vulnerability management (Source: Hokstad and Steiro, 2006)	38
Figure 2.12	Consequence categories with their loss indicators (Source: Arunraj and Maiti, 2009a)	39
Figure 2.13	Framework of production loss for chemical industry (Source: Arunraj and Maiti, 2009a)	40
Figure 2.14	Hierarchical structure of consequence parameters for chemical plant failure (Source: Arunraj and Maiti, 2009b)	48
Figure 2.15	Risk consequences loss factors under sphere of damage radius (Source:Arunraj and Maiti, 2009a)	53

Figure 2.16	The effect of catastrophic underground pipeline gas explosion in Taiwan (Source: Chen et al, 2016)	54
Figure 2.17	Classification of total uncertainty (Source: Arunraj et al, 2013)	58
Figure 2.18	Table for determining minimum returned sample size for a given population size for continuous and categorical data (Source: Bartlett et al, 2001)	65
Figure 3.1	Frameworks of methodology by stages	78
Figure 3.2	Site visit of Site A	82
Figure 3.3	Site visit of Site B	82
Figure 3.4	Site visit of Site C	83
Figure 3.5	Site visit of Site D	83
Figure 3.6	GPS view of Site A	83
Figure 3.7	GPS view of Site B	83
Figure 3.8	GPS view of Site C	83
Figure 3.9	GPS view of Site D	83
Figure 3.10	GPS view of Site E	84
Figure 3.11	GPS view of Site F	84
Figure 3.12	GPS view of Site G	84
Figure 3.13	Proposed process for Production Loss	87
Figure 3.14	Designed process for Assets Loss	89
Figure 3.15	Designed process Human Health and Safety Loss	92
Figure 3.16	Designed process for Environmental Loss (Model ₁)	94
Figure 3.17	Identified hazard factors for natural gas.	96
Figure 3.18	Designed process for Public Loss	98
Figure 3.19	Process in developing Public Loss Estimation Guidelines	99
Figure 3.20	Agencies contributed in providing data and consultation.	100
Figure 3.21	Planting distance for rubber (Source: MPIC, 2015)	101
Figure 3.22	Planting distance for palm oil (Source: MPIC, 2015)	101
Figure 3.23	Process of overall Modeling Analysis	109
Figure 3.24	ALOHA steps	110

Figure 3.25	Total Population by Radius and Ethnic Group of Study Area (Source: Population and Housing Census of Malaysia, DOSM, 2010)	113
Figure 3.26	Monetary Model ₁ Process	114
Figure 3.27	Loss factors in Consequences Index (Model ₂) Process	115
Figure 3.28	Schematic illustration of research methodology of $Model_2$	116
Figure 3.29	Schematic illustration of mathematical analysis stage of $Model_2$	117
Figure 3.30	Triangular fuzzy number for intensity of important (Source: Saaty, 2008)	118
Figure 3.31	Monetary Model ₃ Process	122
Figure 3.32	AHP process flowchart	126
Figure 3.33	Sample of AHP framework in Super Decisions main window	127
Figure 3.34	FAHP process flowchart	129
Figure 3.35	Modified-Delphi procedure for verification of results.	132
Figure 3.36	Validation of Risk Consequences Model Questionnaire Design	134
Figure 4.1	Thermal radiation threat zone of studied sites (site A to site G)	140
Figure 4.2	Thermal radiation threat zone summary for all sites	141
Figure 4.3	Surrounding view of all sites	143
Figure 4.4	HHSL comparison of each site	148
Figure 4.5	VSL methods comparison	149
Figure 4.6	10 years market values for livestock analysis	153
Figure 4.7	Public Loss values summation for all sites	156
Figure 4.8	Reputation Loss values summation for all sites	157
Figure 5.1	Percentage breakdown for each loss category of $Model_1$ Site A	166
Figure 5.2	Percentage breakdown of CoF Model1 results	168
Figure 5.3	A snapshot of the ANP network process of environmental factors in Super Decisions main window	174
Figure 5.4	Percentage breakdown for each loss category of $Model_2$ Site A	179

Figure 5.5	A snapshot of pairwise comparison window of Super Decisions	188
Figure 5.6	A snapshot of priorities window of Super Decisions	189
Figure 5.7	CoF Results of Model ₃ for all sites	198
Figure 5.8	Final Models Output	200

LIST OF ABBREVIATIONS

ALARP	As Low As Reasonably Practicable
PIMP	Pipeline Integrity Maintenance Plan
CoF	Consequences of Failure
PGU	Peninsular Gas Utilisation
PIMS	Pipeline Integrity Management System
QRA	Quantitative Risk Assessment
PEAR	People, Environment, Asset and Reputation
SSGP	Sabah-Sarawak Gas Pipeline
RM	Malaysian Ringgit
USD	United States Dollar
API	American Petroleum Institute
PIA	Potential Impact Area
HVAC	Heating, Ventilation and Air-Conditioning
ALOHA	Areal Locations of Hazardous Atmospheres
PL	Production Loss
AL	Assets loss
HHSL	Human Health and Safety Loss
DA	Damage Area
VSL	Value of Statistical Life
LQI	Life Quality Index
GDP	Gross Domestic Product
ASME	American Society of Mechanical Engineers
ECI	Environmental Consequences Index
EL	Environmental Loss
PubL	Public Loss
ANP	Analytic Network Process
AHP	Analytic Hierarchy Process
FANP	Fuzzy Analytic Network Process
COPRAS	Complex Proportional Assessment
TFNs	Triangular Fuzzy Numbers

PPP	Public-Private Partnership
EIA	Environmental Impact Assessment
RoW	Right of Way
PGB	Petronas Gas Berhad
DOSM	Department of Statistic
JUPEM	Department of Survey and Mapping
MET	Malaysian Meteorological Department
GPS	global positioning system
GTS	Group Technical Solution
MPIC	Ministry of Plantation Industries And Commodities
DVS	Department of Veterinary Services
JKR	Public Works Department
КРКТ	Ministry of Housing and Local Government
TNB	Tenaga Nasional Berhad
bscf	billions of standard cubic feet
Mc	Material cost
PLEG	Public Loss Estimation Guidelines
km	kilometre
PoF	Probability of Failure
Ker	Kerteh
Ktn	Kuantan
Seg	Segamat
NDT	Non Destructive Test
LOC	Level of Concern
NE	Number of People
DAE	Damage Area due to Explosion
psig	per square inch gauge
ft	foot
JKR	Public Works Department
mil	million
id	identification
R	Radius of the impact circle
Rs	Safety distance

Pa	pressure in the pipeline
Pb	atmospheric pressure
Dp	pipe inside diameter
En	nozzle efficiency
IoT	Internet of Things
CPS	Cyber Physical System
ICT	information and communications technology
EA	Enterprise Architecture
EI	Enterprise Integration
CR	consistency ratio

LIST OF SYMBOLS

Kw/(sq.m)	-	Kilowatt per Square Metre
d	-	outside diameter of the pipeline
р	-	maximum allowable operating pressure
\$	-	dollar
E	-	Area within
g	-	GDP for Malaysian
Index _{max}	-	maximum index
Index _{min}	-	minimum index
Ν	-	number of rating scale index
Х	-	object set
U	-	goal set
gi	-	goal
m	-	extent analysis values
Si	-	fuzzy synthetic extent
M2	-	degree of possibility
d	-	ordinate of the highest intersection point
k	-	convex fuzzy numbers / number of attributes
W'	-	weight vector
Pi	-	attributes values which larger values are more favourable
Ri	-	attributes values which smaller values are more favourable
Qi	-	Relative weight
e	-	expectancy of life
q	-	average work ratio
W	-	part of human life
V	-	present value of 2014
¢	-	based value of 2014
ř	-	percentage of raised
Р	-	present year
Ъ	-	year of based value taken
%	-	percentage

°C	-	degree Celsius
*	-	times

W - weight

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A		236
Appendix B		241
Appendix C		262

CHAPTER 1

INTRODUCTION

1.1 Preface

Oil and gas pipelines accidents are susceptible to the environment and human as any leak or rupture in pipelines will cause product to spill and cause enormous negative impacts as well as life-threatening impact on human (Alzbutas et al, 2014; Shabarchin and Tesfamariam, 2017). Buried pipelines is built cross-country even though it is delicate to the environment due to its condition where it navigates through diverse terrain of crop fields, forests, rivers, population areas and mountains. In order to prevent accidents and to reduce risk, attempts have been made through identification and assessment of major risk contributors which can be accomplished by using appropriate risk assessment techniques and implementation of risk control measures (Singh, 2017). As an integral part of risk assessment, the consequences assessment must be devoted in detail by considering related major losses in order to improve the decisive value of risk thus an appropriate risk measures can be defined (Alzbutas et al, 2014). Although quantitative consequences modelling is widely applied in many industry, its application on risk assessment for buried gas pipeline are still literally minimal especially on representing local loss factors as it involves complex and time-consuming analysis (Paez and Roy, 2010).

1.2 Background and Motivation

Risk assessment in oil and gas industry is an important issue in terms of safeguarding human and the ecosystem from damages (Arunraj and Maiti, 2009a). The damage varies based on the initiating event that may lead to explosion, jet fire, flash fire or combination any of it (Amir-Heidari et al, 2017). The comprehensive nature of risk assessment can be represented by quantitative aspect: (i) inclusion of

complex mathematical models to calculate the failure probability and consequences, (ii) incorporation of local loss factors related to site conditions of the failed pipeline, and (iii) future-proof readiness (Tong et al, 2016; Bonvicini et al, 2015; Ma et al, 2013). A lot of work has been carried out focusing in probability assessment e.g. reliability and statistical modelling (Cuny and Lejeune, 2003; Markowski and Mannan, 2009; Agrawal and Srivastava, 2014; Shabarchin and Tesfamariam, 2017; Singh, 2017). As an integral part of risk assessment, consequence assessment plays an important role nonetheless. Typical consequence estimation process involves simple assimilation of losses without considering all consequence factors that reflect site conditions. Among local loss factors that referred site conditions are population density, topography, vegetation and soil condition, just to mention a few. These factors are considered as local when the assigned value is exclusive to that particular site only. Hence, risk assessment of pipeline failure will be more representatives and vary according to site condition (Nazim, 2015).

Consequences modeling that reflect to particular site conditions have many advantages (Singh and Markeset, 2009). However, the inclusion of too many loss factors will make the risk assessment framework becomes complex, time-consuming and less practical (Amir-heidari et al, 2014; Fouladgar et al, 2012). The use of such simple methodology can ensure less computational time and less expert's user, making it more practical to the industry (Heino and Kakko, 1998). This creates such a dilemma in defining the best risk assessment framework for oil and gas industry, considering practical aspect versus representative aspect. A complete information is needed for the comprehensive risk assessment of pipelines but obtaining information in consequences estimation using quantitative method is not readily possible (Vianello and Maschio, 2014; Jonkman et al, 2003). A quantitative risk assessment means the calculation of risk and its components, including probability and consequences in single currency or monetary value instead of index value. Therefore, in order to risk assessment to be comprehensive, its framework should be quantitative-orientated geared towards monetary value in the calculation of consequence loss.

The use of monetary value to define Consequences of Failure (CoF) for comprehensive risk consequences assessment permit one to distinguish between prioritization made on each assessed category (Cunha, 2016; Khan and Haddara, 2004). A monetary loss approach as an inherent loss control procedure provides a single currency evaluation could also be employed as a support to decision-making in risk management (Brandie, 1996). In addition, detailed information on local environmental loss factors may help to increase the integrity level of a pipeline (Dey, 2002). If a reliable model of consequences risk assessment which incorporate site condition and local loss factors can be developed, a risk-based maintenance program can be well executed to prolong the integrity of the pipeline and might as well reduced the overall operating cost (Khan and Haddara, 2003). The results may provide a clear picture on the frequency of inspection as well as to determine the level of protection as part of mitigation measures in risk management of pipeline failure.

1.3 Research Problem

The current available standard is considered too general and not site specific because of the absence of local loss factors such as topography, demography, potential damage radius, population density, infrastructure layout, geography, environment, agricultural activities and livestock's in the assessment of risk (Shahriar et al, 2012). This method assigns weightage on priority of the loss factor and its severity is based on expert's judgment by using a subjective assessment where assessor's preferences may vary depending on his/her experience in assessing the risk of pipeline damage. The consequence assessment model of buried pipeline damage which considers its local loss factors are scarcely available. Consequently, the estimated risk may be miscalculated by speculated consequence assessment due to negligence of local loss factors; inclusion of local loss factors was proven highly influential upon the development of a model (Md Noor et al, 2012). A realistic and comprehensive pipeline risk assessment is needed in order to achieve a better and efficient maintenance and repair planning scheme.

The absence of monetary model shows a loophole in comprehensive risk consequences assessment procedures. Risk consequences analysis is conceivably subject to direct monetary estimation, which corresponds to the expected loss in revenues due to various reasons (Khan and Haddara, 2004). Brito and Almeida (2009) agreed that quantification of loss factors in monetary value is able to reflect company's financial status depending on how serious the outcomes of the accidents. With the inclusion of local loss factors and the loss factors were represented quantitatively monetary, then the consequences assessment will become more realistic.

Refinement of the existing procedure needs to be validated. Practicality and feasibility of the developed models has to be definitely agreed by the industry (Valipour et al, 2015). A structured validation process required to be carried out to ensure that the developed framework follows the principal of assessment and valid. Detailed investigation and assessment on the local loss factors are crucial because studies related to this area is relatively less and inconclusive. It is hypothesized that if a consequence model of buried pipeline damage incorporates monetary conversion of all related loss factors can be developed in a structured framework, a more realistic yet comprehensive risk consequence assessment towards intelligent Pipeline Integrity Management System (i-PIMS) can be achieved. Moreover, there are few, if any, studies that focus on analysis and assessing the consequences for risk assessment of gas pipeline considering overall possible losses including local loss factors in monetary evaluation. For this reason, this study aims to fill this research gap.

1.4 Aims and Objective

The main aim of this research is to develop a comprehensive local risk consequences assessment model for underground gas pipeline damage involving explosion. The proposed models convey some exclusivity where the models reflect the specific local loss factors of consequence loss. The search objectives are outlined as follows:

4

- 1. To evaluate the risk consequences of pipeline explosion in monetary form for selected sites using its unique identified and categorized loss factors.
- 2. To produce validated comprehensive risk consequences assessment models that incorporating the local loss factors.

The outcome may contribute to the knowledge of risk consequence assessment for a pipeline explosion by exploring all related loss for future risk consequence loss modeling.

1.5 Research Scope

As gas pipeline traveled across different region in the country, an additional category of public losses is considered in conjunction of other generally computed losses e.g. assets, production, environmental, reputation and human health and safety loss. This study focuses only on gas pipeline route at Peninsular Gas Utilisation (PGU) from Kerteh to Segamat as portrayed in Figure 1.1. It was selected due to high corrosion activities that led to indication of high consequences area based on recorded data. Therefore, this research and all the parameters selected on the development of the models were limited to this route's topography, demography, potential damage radius, infrastructure layout, geography, environment, agricultural activities and livestock data within the high consequence area. This study focuses on failure due to leakage that leads to explosion as a worst-case scenario. The index method was used to rate the severity level of overall risk consequences for the modeling purposes. Qualitative judgments from the experts using Delphi method and validation survey applied in the final stage to verify and validate the models.

Figure 1.1 Pipelines network owned by PETRONAS Gas Berhad (Source: Oil Peak, 2012)

1.6 Significance of Study

The main challenge of the local risk consequences loss model development is to have a better understanding in the selection of the factors to reflect the site environment and local conditions in order to obtain higher accuracy of the model. Hence, the importance of the research is to develop models, which use a complex quantitative assessment in a simpler sequence to present a clearer picture of the consequences loss if failure happens to occur. Previous studies scarcely include local loss factors in the risk consequences assessment on the impact of pipeline damage subject to explosion. Therefore, the outcome of this study offers a model tailored to specific local condition and considering all possible losses. This research produces models of overall consequence assessment comprising all possible related loss and the quantitative nature can eradicate the subjectivity of index assessment with the use of monetization in quantifying the loss factors. These models fulfil the industrial needs by providing a future-ready assessment and subsequently contribute to the academia of knowledge. The validated models can be incorporated into Intelligent Pipeline Integrity Management System (i-PIMS) in order to improve the risk assessment by considering the local loss in the risk consequences modeling. If proven significant, the quantitative nature of each developed model with its own strength and flexibility may be used based on the preferred assessment method towards a realistic and comprehensive risk consequences assessment which can benefit both industry and the development of a body of knowledge, thus increase the pipeline integrity assessment.

1.7 Structure of Thesis

This thesis is separated into six chapters. The structure of this research is as follows:

- 1. Chapter 1 delivers the introduction of the research study. This section delves into the fundamental problem of the proposed research. It covers the background, research problem, research aim and objectives, scope and significance of the research. The research methodology and the structure of the research report are also outlined.
- 2. Chapter 2 comprises an extensive literature review covering the pertinent literature about definition and its level of practicality for the industry in term of pipeline integrity management. It aims to enlighten the readers about the importance of comprehensive consequences assessment. Particular attention is paid to the application of such approaches in Malaysia. Essential published literature on risk assessment, particularly on consequences analysis, is reviewed in this chapter.
- 3. Chapter 3 illustrates the overall research methodology for the research study. Different methods of data collection as well as designing process of factors to be considered in each loss category are explained in detail. The chapter describes the research design, process and data analysis procedures used.
- 4. Chapter 4 comprises of the process of identification and categorizing the consequences loss factors related to pipeline explosion within damage radius.

REFERENCES

- Abelson, P. (2008) Establishing a Monetary Value for Lives Saved: Issues and Controversies. Delivering better quality regulatory proposals through better cost-benefit analysis. Sydney: Office of Best Practice Regulation.
- Agrawal, J.P.N and Srivastava, S.P. (2014) Methodology of Risk Management in Pipeline Projects. ASME 2013 India Oil and Gas Pipeline Conference. American Society of Mechanical Engineers. 1-2 February. India, 1-15.
- Alexander, D. (2002) *Principles of Emergency Planning and Management*. Harpended: Terra Publishing.
- Alzbutas, R., Iešmantas, T., Povilaitis, M. and Vitkutė, J. (2014) 'Risk and uncertainty analysis of gas pipeline failure and gas combustion consequence' *Stochastic environmental research and risk assessment*, 28(6), 1431-1446.
- Amir-Heidari, P., Ebrahemzadih, M., Farahani, H. and Khoubi, J. (2014)
 'Quantitative risk assessment in Iran's natural gas distribution network' *Open Journal of Safety Science and Technology*, 4(01), 59-72.
- Amir-Heidari, Payam; Ebrahemzadih, Mehrzad; Giahi, O. (2017) 'Worst-case scenario consequence modeling in natural gas transmission pipeline using PHAST software', *Journal of Pipeline Engineering*, 16(4), 231–239.
- Anghel, C.I. (2009) 'Risk assessment for pipelines with active defects based on artificial intelligence methods', *International Journal of Pressure Vessels and Piping.* 86(7), 403–411.
- Aparicio, L.V. and Tonelli, S.M. (2005) 'Consequence evaluation in buried natural gas pipelines'. 4th Mercosur Congress on Process Systems Engineering. (3), 1-10.
- Arunraj, N.S. and Maiti, J. (2009a) 'A methodology for overall consequence modeling in chemical industry'. *Journal of hazardous materials*, 169(1-3), 556-574.
- Arunraj, N.S. and Maiti, J. (2009b) 'Development of environmental consequence index (ECI) using fuzzy composite programming'. *Journal of hazardous materials*, 162(1), 29-43.

- Arunraj, N.S., Mandal, S. and Maiti, J. (2013) 'Modeling uncertainty in risk assessment: An integrated approach with fuzzy set theory and Monte Carlo simulation'. Accident Analysis & Prevention, 55, 242-255.
- Ashenfelter, O. (2006) Measuring the value of a statistical life: problems and prospects. *The Economic Journal*, *116*(510), C10-C23.
- Babuska, I. and Oden, J.T. (2004) 'Verification and validation in computational engineering and science: Basic concepts'. *Computer Methods in Applied Mechanics and Engineering*.
- Bai, Y. and Bai, Q. (2014) 'Consequences of Failure Modeling for Oil and Gas Spills'. Subsea Pipeline Integrity and Risk Management, 347-349.
- Bartlett, J. E., Kotrlik, J. W. K. J. W., and Higgins, C. (2001) 'Organizational Research: Determining Appropriate Sample Size In Survey Research Appropriate Sample Size In Survey Research'. *Information Technology, Learning, and Performance Journal*, 19(1), 43.
- Biasuque, V. (2012) 'The Value of Statistical Life: A Meta-analysis'. Working Party on National Environmental Policies, 33(2010), 1–33.
- Bonvicini, S., Antonioni, G., Morra, P. and Cozzani, V. (2015) 'Quantitative assessment of environmental risk due to accidental spills from onshore pipelines'. *Process Safety and Environmental Protection*. 93(April), 31–49.
- Brito, A.J. and de Almeida, A.T. (2009) 'Multi-attribute risk assessment for risk ranking of natural gas pipelines'. *Reliability Engineering & System Safety*, 94(2), 187-198.
- Brown, J.D. (2011) 'Likert items and scales of measurement'. *Statistics*, 15(1), 10-14.
- Burke, R. J. (2011) Chapter 1: Corporate Reputations: Development, Maintenance, Change and Repair. Corporate Reputation: Managing Opportunities and Threats. United Kingdom, 4–43.
- Carli, G. and Canavari, M. (2013) 'Introducing direct costing and activity based costing in a farm management system: A conceptual model'. *Procedia Technology*, 8, 397-405.
- Carson, J.S.I. (2002) Model verification and validation. *Proceedings of the Winter Simulation Conference*. California.
- Chang, D.Y. (1996) 'Applications of the extent analysis method on fuzzy AHP'. *European journal of operational research*, 95(3), 649-655.

- Chatterjee, N. and Bose, G. (2013) 'A COPRAS-F base multi-criteria group decision making approach for site selection of wind farm'. *Decision Science Letters*, 2(1), 1-10.
- Chen, C.H., Sheen, Y.N. and Wang, H.Y. (2016) 'Case analysis of catastrophic underground pipeline gas explosion in Taiwan'. *Engineering Failure Analysis*, 65, 39-47.
- Chen, Z. (2010) A Cybernetic Model For Analytic Network Process. Ninth International Conference on Machine Learning and Cybernetics. 11-14 July. Qingdao, 1914–1919.
- Crawley, F.K., Lines, I.G. and Mather, J. (2003) 'Oil and gas pipeline failure modeling'. *Process Safety and Environmental Protection*, 81(1), 3-11.
- Cunha, S.B. (2016) 'A review of quantitative risk assessment of onshore pipelines'. *Journal of Loss Prevention in the Process Industries*, 44, 282-298.
- Cuny, X. and Lejeune, M. (2003) 'Statistical modeling and risk assessment'. *Safety Science*, 41(1), 29-51.
- Dalalah, D., Al-Oqla, F. and Hayajneh, M. (2010) 'Application of the Analytic Hierarchy Process (AHP) in Multi-Criteria Analysis of the Selection of Cranes'. Jordan Journal of Mechanical & Industrial Engineering, 4(5).
- Davies, L.P. (2002) 'Risk assessment in the UK nuclear power industry'. Safety Science, 40(2002), 203–230.
- Delignette-Muller, M.L., Cornu, M., Pouillot, R. and Denis, J.-B. (2006)Use of Bayesian modeling in risk assessment: application to growth of Listeria monocytogenes and food flora in cold-smoked salmon'. *International journal* of food microbiology. 106(2), 195–208.
- DeWolf, G.B. (2003) 'Process safety management in the pipeline industry: parallels and differences between the pipeline integrity management (IMP) rule of the Office of Pipeline Safety and the PSM/RMP approach for process facilities'. *Journal of hazardous materials*, 104(1-3), 169-192.
- Dey, P.K. (2002) 'An integrated assessment model for cross-country pipelines'. Environmental Impact Assessment Review. 22(6), 703–721.
- Dey, P.K., Ogunlana, S.O. and Naksuksakul, S. (2004) 'Risk-based maintenance model for offshore oil and gas pipelines: a case study'. *Journal of Quality in Maintenance Engineering*, 10(3), 169-183.

- Det Norske Veritas (2013) *DNV-DSS-316. Verification of Onshore Pipelines.* United States of America, Det Norske Veritas AS.
- Det Norske Veritas (2010) DNV-RP-F107. Risk Assessment of Pipeline Protection. United States of America, Det Norske Veritas AS.
- Det Norske Veritas (2009) DNV-RP-F116. Integrity Management of Submarine Pipeline Systems. United States of America, Det Norske Veritas AS.
- Economic and Social Commission for Asia and the Pacific. (2016) ESCAP Population Data Sheet, Public information and advocacy materials. Thailand, ESCAP.
- EPA (2007) ALOHA User's Manual. Washington. U.S., Environmental Protection Agency.
- Falck, A., Skramstad, E. and Berg, M. (2000) 'Use of QRA for decision support in the design of an offshore oil production installation'. *Journal of hazardous materials*, 71(1-3), 179-192.
- Fouladgar, M.M., Yazdani-Chamzini, A., Zavadskas, E.K. and Haji Moini, S.H. (2012a) 'A new hybrid model for evaluating the working strategies: case study of construction company'. *Technological and Economic Development* of Economy, 18(1), 164-188.
- Fouladgar, M.M., Yazdani-Chamzini, A., Lashgari, A., Zavadskas, E.K. and Turskis, Z. (2012b) 'Maintenance strategy selection using AHP and COPRAS under fuzzy environment'. *International Journal of Strategic Property Management*. 16(1), 85–104.
- Fombrun, C. J. (1996) *Reputation: Realizing Value from the Corporate Image*. United States of America: Harvard Business School Press.
- Gentile, M., Rogers, W.J. and Mannan, M.S. (2003) 'Development of an inherent safety index based on fuzzy logic'. *AIChE Journal*, 49(4), 959-968.
- Gharabagh, M.J., Asilian, H., Mortasavi, S.B., Mogaddam, A.Z., Hajizadeh, E. and Khavanin, A. (2009) 'Comprehensive risk assessment and management of petrochemical feed and product transportation pipelines'. *Journal of Loss Prevention in the Process Industries*, 22(4), 533-539.
- Glenn, P. (2016) The Advantages Of Integrating Major Hazard Safety And Impact Assessments For Pipeline Projects. Proceedings of The 11th International Pipeline Conference. Canada.
- Gliem, J. A, and Gliem, R. R. (2003) Calculating, Interpreting, and Reporting

Cronbach's Alpha Reliability Coefficient for Likert-Type Scales. *Midwest Research-to-Practice Conference in Adult, Continuing, and Community Education.* Columbus, Ohio, 82–88.

- Guzman U.A (2014) Measuring the Benefit of the Investment in Pipeline Safety Using Fuzzy Risk Assessment. Graduate School of Management Ritsumeikan Asia Pacific University.1-23.
- Han, Z.Y. and Weng, W.G. (2011) 'Comparison study on qualitative and quantitative risk assessment methods for urban natural gas pipeline network'. *Journal of hazardous materials*, 189(1-2), 509-518.
- Hanafiah, N.M., Zardasti, L., Nordin, Y., Noor, N.M. and Safuan, A.A. (2015) 'Comparison of human health and safety loss due to corroded gas pipeline failure in rural and urban Areas: A case study in Malaysia'. *Solid State Phenomena*, 227, 221-224.
- Hanafiah, N.M., Zardasti, L., Yahaya, N., Noor, N.M., Hassan, N. and Valipour, A. (2015) 'Comparison Study on Human Health and Safety Loss for Rural and Urban Areas in Monetary Value Subjected to Gas Pipeline Failure'. *Journal* of Environmental Science and Technology, 8(6), 300.
- Hashemzadeh, G., Modiri, M. and Rahimi, Z. (2014) 'Identification and ranking effective factors on establishment of green supply chain management in railway industry'. *Uncertain Supply Chain Management*, 2(4), 293-302.
- Heino, P. and Kakko, R. (1998) 'Risk assessment modeling and visualisation'. *Safety Science*. 30(1–2), 71–77.
- Henselwood, F. and Phillips, G. (2006) 'A matrix-based risk assessment approach for addressing linear hazards such as pipelines'. *Journal of Loss Prevention in the Process Industries*. 19(5), 433–441.
- Hokstad, P. and Steiro, T. (2006) 'Overall strategy for risk evaluation and priority setting of risk regulations'. *Reliability Engineering & System Safety*, 91(1), 100-111.
- Jamshidi, A., Yazdani-Chamzini, A., Yakhchali, S.H. and Khaleghi, S. (2013) 'Developing a new fuzzy inference system for pipeline risk assessment'. *Journal of loss prevention in the process industries*, 26(1), 197-208.

- Jo, Y.D. and Crowl, D.A. (2008) 'Individual risk analysis of high-pressure natural gas pipelines'. *Journal of Loss Prevention in the Process Industries*, 21(6), 589-595.
- Jonkman, S.N., Van Gelder, P.H.A.J.M. and Vrijling, J.K. (2003) 'An overview of quantitative risk measures for loss of life and economic damage'. *Journal of hazardous materials*, 99(1), 1-30.
- Kaklauskas, A., Zavadskas, E.K., Raslanas, S., Ginevicius, R., Komka, A. and Malinauskas, P. (2006) 'Selection of low-e windows in retrofit of public buildings by applying multiple criteria method COPRAS: A Lithuanian case'. *Energy and buildings*, 38(5), 454-462.
- Khan, F.I. and Haddara, M. (2004) 'Risk-based maintenance (RBM): A new approach for process plant inspection and maintenance'. *Process safety progress*, 23(4), 252-265.
- Khan, F.I. and Haddara, M.R. (2004) 'Risk-based maintenance of ethylene oxide production facilities'. *Journal of Hazardous Materials*, 108, 147–159.
- Khan, F.I. and Haddara, M.M. (2003) 'Risk-based maintenance (RBM): a quantitative approach for maintenance/inspection scheduling and planning'. *Journal of loss prevention in the process industries*, 16(6), 561-573.
- Kishawy, H.A. and Gabbar, H.A. (2010) 'Review of pipeline integrity management practices'. International Journal of Pressure Vessels and Piping, 87(7), 373-380.
- Kontis, V., Bennett, J.E., Mathers, C.D., Li, G., Foreman, K. and Ezzati, M. (2017)'Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble'. *The Lancet*, 389(10076), 1323-1335.
- Krejcie, R.V. and Morgan, D.W. (1970) 'Determining sample size for research activities'. *Educational and psychological measurement*, 30(3), 607-610.
- Koller, G., Fischer, U. and Hungerbühler, K. (2001) 'Comparison of methods suitable for assessing the hazard potential of chemical processes during early design phases'. *Process Safety and Environmental Protection*, 79(3), 157-166.
- Konersmann, R. (2009) The Risks of Transporting Liquid and Gaseous Fuels in Pipelines. *Federal Institute for Materials Research and Testing*, 289, 2-65.

- Kotrlik, J.W.K.J.W. and Higgins, C.C.H.C.C. (2001) 'Organizational research: Determining appropriate sample size in survey research appropriate sample size in survey research'. *Information technology, learning, and performance journal*, 19(1), 43.
- Krejcie, R. V, and Morgan, D. W. (1970) 'Determining Sample Size for Research Activities'. *Educational And Psychological Measurement*, 30, 607–610.
- Krüger, N. a. and Svensson, M. (2009) 'The impact of real options on willingness to pay for mortality risk reductions'. *Journal of Health Economics*, 28(3), 563– 569.
- Kumar, M., Talib, S.A. and Ramayah, T. (2013) Business Research Methods. Malaysia: Oxford University Press.
- Lachaine, J., Laurier, C. and Contandriopoulos, A.P. (2003) 'Defining monetary values for quality of life improvements: An exploratory study'. *PharmacoEconomics*, 21(12), 865–874.
- Lu, Y. (2017) 'Industry 4.0: A survey on technologies, applications and open research issues'. *Journal of Industrial Information Integration*, 6, 1-10.
- Luo, S., Wang, H. and Cai, F. (2013) 'An integrated risk assessment of coastal erosion based on fuzzy set theory along Fujian coast, southeast China'. Ocean & coastal management, 84, 68-76.
- Ma, L., Cheng, L. and Li, M., (2013) 'Quantitative risk analysis of urban natural gas pipeline networks using geographical information systems'. *Journal of Loss Prevention in the Process Industries*, 26(6), 1183-1192.
- Ma, L., Li, Y., Liang, L., Li, M. and Cheng, L. (2013) 'A novel method of quantitative risk assessment based on grid difference of pipeline sections'. *Safety Science*. 59, 219–226.
- Macrotrends (2018). *Crude Oil Prices*. Retrieved on June 12, 2018, from https://www.macrotrends.net/.
- Malaysia (1974). Environmental Quality Act 1974. Act 127 [P.U.(B) 113/75].
- Malaysia (2012) Akaun Negara. Jabatan Perangkaan Negara.
- Malaysian Meteorological Department (2014) MET Automatic Weather Observation. Jabatan Meteorologi Malaysia. Retrieved on June 13, 2014, from http:// http://www.met.gov.my/

- Markowski, A.S. and Mannan, M.S. (2009) 'Fuzzy logic for piping risk assessment (pfLOPA)'. *Journal of Loss Prevention in the Process Industries*, 22(6), 921–927.
- Martino, E.D., Nigro, A.L., and Kolios, A. (2017) Pirm-Dms: a Decision Making Tool for Pipeline Integrity and Risk Management. 13th Offshore Mediterranean Conference and Exhibition. Ravenna, 1-14.
- McGillivray, A., Saw, J.L., Lisbona, D., Wardman, M. and Bilio, M. (2014) 'A risk assessment methodology for high pressure CO2 pipelines using integral consequence modeling'. *Process Safety and Environmental Protection*, 92(1), 17-26.
- Md Noor, N., Othman, S.R., Nordin, Y., Lim, K.S. and Abdullah, A. (2012) 'Qualitative assessment of chloride and sulphate influence on soil corrosivity'. *Advanced Materials Research*, 446, 3462-3466.
- Miller, D. (1991). Handbook of Research Design and Social Measurement. California: SAGE Publications Ltd.
- Ministry of Plantation Industries and Commodities (2015) *Strategic Planning and International Division Report.* MPIC. Malaysia.
- Mohamed, A., Hamdi, M.S. and Tahar, S. (2016) 'A hybrid intelligent approach for metal-loss defect depth prediction in oil and gas pipelines'. *Studies in Computational Intelligence*. 1-18.
- Mohamed, A.M. and Saad, S.M. (2016) 'Development of risk assessment model for equipment within the petroleum industry'. *IFAC-PapersOnLine*. 49(28), 37– 42.
- Muhlbauer, W. K. (2004) Pipeline Risk Management Manual: ideas, techniques, and resources, Third Edition. Houston, Texas: Gulf Publishing Company.
- Muhlbauer, W. K. (2006) Enhanced Pipeline Risk Assessment: Part 2 Assessments of Pipeline Failure Consequence. Houston, Texas: Gulf Publishing Company.
- Nazim, F. A. M. (2015) Soil Corrosivity Condition Index for Buried Steel Pipeline.Master Thesis. University Teknologi Malaysia, Malaysia.
- New Straits Times Online (2014, June 13). Lawas explosion: PETRONAS to completely remove residual gas. *New Straits Times*. Retrieved on June 15, 2014, from http://www.nst.com.my/node/2447.

- The Borneo Post Online (2014, August 18). Gas pipeline explosion. *The Borneo Online*. Retrieved on August 18, 2014, from https://www.theborneopost.com/2014/06/11/gas-pipeline-explosion/
- Norhamimi, M.H., Libriati, Z., Nordin, Y. and Norhazilan, M.N. (2015) 'Environmental loss assessment for gas pipeline failure by considering localize factors using fuzzy based approach'. *Applied Mechanics and Materials*, 735, 163-167.
- Norhazilan, M.N., Nordin, Y., Lim, K.S., Siti, R.O., Safuan, A.R.A. and Norhamimi, M.H. (2012) 'Relationship between soil properties and corrosion of carbon steel'. *Journal of Applied Sciences Research*, 8(3), 1739-1747.
- Oil Peak (2012) Malaysia Energy Report. Available at: http://www.endofcrudeoil.com/2012/04/malaysia-energy-report.html.
- Paez, J. and Roy, A. (2010) Developing a pipeline risk assessment tool for the upstream oil and gas industry. *Talisman Energy Inc.* Calgary.
- Pandey, M.D. and Nathwani, J.S. (2004) 'Life quality index for the estimation of societal willingness-to-pay for safety'. *Structural Safety*, 26(2), 181-199.
- Palazzi, E., Currò, F. and Fabiano, B. (2004) 'Simplified modeling for risk assessment of hydrocarbon spills in port area'. *Process Safety and Environmental Protection*, 82(6), 412-420.
- Parvini, M. and Gharagouzlou, E. (2015) 'Gas leakage consequence modeling for buried gas pipelines'. *Journal of Loss Prevention in the Process Industries*, 37, 110–118.
- Perumal, K.E. (2014) 'Corrosion risk analysis, risk based inspection and a case study concerning a condensate pipeline'. *Procedia Engineering*, 86, 597-605.
- Pettitt, G. and Westfall, S. (2016) The Advantages of Integrating Major Hazard Safety and Impact Assessments for Pipeline Projects. 11th International Pipeline Conference. 26-30 September. Canada, 1-9.
- Pula, R., Khan, F.I., Veitch, B. and Amyotte, P.R. (2005) 'Revised fire consequence models for offshore quantitative risk assessment'. *Journal of Loss Prevention in the Process Industries*. 18(4–6), 443–454.
- Petroliam Nasional Berhad (2015) *PTG11 .36.04 PETRONAS Technical Guidelines-Pipeline Operational Risk Assessment.* Malaysia: Petroliam Nasional Berhad.

- Petroliam Nasional Berhad (2012) PTS 30.40.60.33 PETRONAS Technical Standards-Procedure Pipeline Operational Risk Assessment Malaysia: Petroliam Nasional Berhad.
- Qu, X., Meng, Q., Yuanita, V. and Wong, Y.H. (2011) 'Design and implementation of a quantitative risk assessment software tool for Singapore road tunnels'. *Expert Systems with Applications*, 38(11), 13827-13834.
- Rabbani, A.; Zamani, M.; Yazdani-Chamzini, A.; Zavadskas, E.K. (2014) 'Proposing a new integrated model based on sustainability balanced scorecard (SBSC) and MCDM approaches by using linguistic variables for the performance evaluation of oil producing companies'. *Expert Systems with Applications*, 41, 7316–7327.

Rhodes, C. (2014) Natural gas pipeline safety setback. Canada. Rhodes.

- Risk-Based Inspection Technology (2008) *API-RP-581*. United States of America: American Petroleum Institute.
- Road Facilities Maintenance Branch (2014) Anggaran Kos Projek Jalan bagi RMK10 per KM. Malaysia, Jabatan Kerja Raya.
- Roy, C.J. (2005) 'Review of code and solution verification procedures for computational simulation'. *Journal of Computational Physics*, 205(1), 131-156.
- Saaty, T. L.; Vargas, L.G. (2006) 'Decision making with the analytic network process'. *Springer Science*, 363.
- Saaty, T.L. (2008) 'Decision Making With the Analytic Hierarchy Process'. International Journal of Services Sciences, 1(1), 83-98.
- Sargent, R.G. and Balci, O. (2018) History of verification and validation of simulation models. *Proceedings - Winter Simulation Conference*. 3-6 December. USA, 1-10.
- Sarokolaei, M.A., Saviz, M., Moradloo, M.F. and Dahaj, N.S. (2013) 'Time Driven Activity based Costing by Using Fuzzy Logics'. Procedia-Social and Behavioral Sciences, 75, 338-345.
- Shabarchin, O. and Tesfamariam, S. (2017) 'Risk assessment of oil and gas pipelines with consideration of induced seismicity and internal corrosion'. *Journal of Loss Prevention in the Process Industries*. 47, 85-94.
- Shahriar, A., Sadiq, R. and Tesfamariam, S. (2012) 'Risk analysis for oil & gas pipelines: A sustainability assessment approach using fuzzy based bow-tie

analysis'. Journal of Loss Prevention in the Process Industries, 25(3), 505-523.

- Singh, M. and Markeset, T. (2009) 'A methodology for risk-based inspection planning of oil and gas pipes based on fuzzy logic framework'. *Engineering Failure Analysis*. 16(7), 2098–2113.
- Singh, R. (2017) Basic Concept of Risk Management and Risk Defined. Pipeline Integrity Handbook. Amsterdam: Elsevier.
- Singh, R. (2014) *Chapter Five Hazards and Threats to a Pipeline System*. Pipeline Integrity Handbook. Amsterdam: Elsevier.
- Sklavounos, S. and Rigas, F. (2006) 'Estimation of safety distances in the vicinity of fuel gas pipelines'. Journal of Loss Prevention in the Process Industries. 19(1), 24–31.
- Skulmoski, G.J., Hartman, F.T. and Krahn, J. (2007) 'The Delphi method for graduate research'. Journal of Information Technology Education: Research, 6(1),1-21.
- Swati, J., Andrea, N.S., Shan, G., Shanshan, W., Francois, A., Narasi, S., (2015) Probabilistic assessment of external corrosion rates in buried oil and gas pipelines. NACE International Corrosion Conference. Texas, 5529.
- Taylor, D.W., (2007) 'The role of consequence modeling in LNG facility siting'. *Journal of hazardous materials*, 142(3), 776-785.
- Thacker, B.H., Doebling, S.W., Hemez, F.M., Anderson, M.C., Pepin, J.E. and Rodriguez, E. a. (2004) LA-14167-MS Concepts of Model Verification and Validation. America: Los Alamos National Labarotary.
- Thames, L. and Schaefer, D. (2016) 'Software-defined Cloud Manufacturing for Industry 4.0'. *Procedia CIRP*, 52, 12-17.
- The American Society of American Engineers (2005) ASME B31.8S Managing System Integrity of Gas Pipelines Managing System Integrity of Gas Pipelines. United States of America, ASME.
- Tong, S.J., Wu, Z.Z., Wang, R.J. and Wu, H. (2016) 'Fire Risk Study of Longdistance Oil and Gas Pipeline Based on QRA'. *Procedia Engineering*, 135, 369-375.
- Tuluca, A.C., Adjallah, K.H., Sava, A. and Zichil, V. (2017) Characterisation, monitoring and failure risks assessment of buried ductile steel pipeline subject to earthquakes by using wireless sensors. *Proceedings of the 2017 IEEE 9th*

International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2017. 21-23 September. France, 1-52.

- Tweeddale, M (2003) 'Quantitative Risk Assessment : Computer Modeling , Uses in Setting Buffer zones, Strengths and Limitations, Uses and Abuses'. Managing Risk and Reliability of Process Plants. 188–216.
- Urbina, A.G. and Aoyama, A. (2014) 'Measuring the benefit of investing in pipeline safety using fuzzy risk assessment'. *Journal of Loss Prevention in the Process Industries*, 45, 116-132.
- Valipour, A., Yahaya, N., Md Noor, N., Kildienė, S., Sarvari, H. and Mardani, A. (2015) 'A fuzzy analytic network process method for risk prioritization in freeway PPP projects: an Iranian case study'. *Journal of Civil Engineering* and Management, 21(7), 933-947.
- Vianello, C. and Maschio, G. (2014) 'Quantitative risk assessment of the Italian gas distribution network'. *Journal of Loss Prevention in the Process Industries*, 32, 5-17.
- Wang, J., Li, M., Liu, Y., Zhang, H., Zou, W. and Cheng, L. (2014) 'Safety assessment of shipping routes in the South China Sea based on the fuzzy analytic hierarchy process'. *Safety Science*, 62, 46-57.
- Wentao, W. (2015) Oil and Gas Pipeline Risk Assessment Model by Fuzzy Inference System bnd Neural Network. Master Thesis, University of Regina, Saskatchewan.
- Xu, Y., Yeung, J.F., Chan, A.P., Chan, D.W., Wang, S.Q. and Ke, Y. (2010)
 'Developing a risk assessment model for PPP projects in China-A fuzzy synthetic evaluation approach'. *Automation in Construction*, 19(7), 929-943.
- Xu, L. Da, Xu, E.L. and Li, L. (2018) 'Industry 4.0: state of the art and future trends'. *International Journal of Production Research*. 56(8), 2941-2962.
- Yeung, J.F.Y., Chan, A.P.C., Chan, D.W.M. and Li, L.K. (2007) 'Development of a partnering performance index (PPI) for construction projects in Hong Kong: a Delphi study'. *Construction Management and Economics*, 25(12), 1219– 1237.
- Yusof, M.F.M., Nor, N.G.M. and Mohamad, N.A. (2013) 'Malaysian value of statistical life for fatal injury in road accident: A conjoint analysis

approach'. Journal of Society for Transportation and Traffic Studies, 2(2), 30-40.

- Zadeh, L.A. (1976) 'A fuzzy-algorithmic approach to the definition of complex or imprecise concepts'. *International Journal of Man-machine studies*, 8(3), 249-291.
- Zardasti, L. (2016) Reputation Loss Framework For Consequence Assessment Of Onshore Pipeline Damage. PhD Thesis, Universiti Teknologi Malaysia, Skudai.
- Zavadskas, E. K. and Kaklauskas, A. (1996) 'Determination of an efficient contractor by using the new method of multicriteria assessment'. *International symposium for "The organisation and management of construction". Shaping theory and practice.* 2, 94–104.
- Zhou, K., Liu, T. and Zhou, L. (2016) Industry 4.0: Towards future industrial opportunities and challenges. 12th International Conference on Fuzzy Systems and Knowledge Discovery. 15-17 August. China, 19-43.