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ABSTRACT 

Cruciform column section is an innovative column section which consists of 
two universal beam sections where one of the beams is cut into half along its web and 
welded onto the web of other beam. Distinct geometrical differences compared to 
conventional universal H-shaped column section are that the cruciform column has 
smaller width to depth ratio and lower flange thickness. Its advantages as an alternative 
vertical compressive member were well proven by previous researchers since 2005. 
This study focuses on structural behaviour of flush end plate and extended end plate 
connections of hybrid beam to cruciform column section. Experimental tests of four 
flush end-plate and four extended end-plate connections on hybrid beam to cruciform 
column section were conducted and the results were used to validate analytical study 
and finite element modelling (FEM). Analytical study was conducted based on 
Eurocode 3: Part 1.8 component method and existing mathematical models. It was 
found that Eurocode 3: Part 1.8 can be used to predict initial stiffness and moment 
resistance of cruciform column connections. Existing mathematical models were not 
able to predict moment rotation behaviour of cruciform column connections but were 
specifically useful for predicting connection behaviour within the limit of regression 
model. Hence, comprehensive finite element analysis using ANSYS 14.0 on the 
cruciform column connections was carried out to predict the moment rotation 
behaviour. Initial stiffness and moment resistance of the models were in good 
agreement with experimental test results with percentage difference well within 20%. 
In terms of failure mode, the deformation shown in FEM exhibited similar pattern with 
experimental tests and Eurocode 3: Part 1.8. Parametric analysis was carried out using 
validated FEM model. Critical zones were determined through stress distribution 
pattern using stress ratio and verified with linear-plastic and semi-rigid partial strength 
connection behaviour of cruciform column connections. From the parametric analysis, 
it was identified that the significant parameters for cruciform column connections were 
beam depth, end-plate thickness, and column flange thickness. Simple mathematical 
functions were developed to predict moment rotation behaviour of cruciform column 
connections using regression analysis and were strongly supported by statistical 
analysis. As compared to existing finite element models, the initial stiffness and 
moment resistance percentage differences were well within 15% for both single bolt 
row flush end-plate and extended end-plate cruciform column connections. Based on 
these outcomes, practising engineers will be able to predict the moment rotation 
behaviour of cruciform column connection conveniently and accurately using the 
developed mathematical function. 
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ABSTRAK 

Tiang krusiform merupakan tiang inovatif bentuk salib yang terdiri daripada 
dua rasuk di mana salah satu rasuk dipotong sepanjang web dan dikimpal ke web rasuk 
yang lain. Perbezaan daripada segi geometri berbanding dengan tiang konvensional 
yang berbentuk H ialah nisbah lebar dengan kedalaman dan ketebalan bebibir tiang 
krusiform adalah lebih kecil. Kelebihannya sebagai struktur mampatan alternatif telah 
dibuktikan oleh ramai penyelidik terdahulu sejak tahun 2005. Kajian ini memberi 
fokus kepada kelakuan struktur bagi sambungan jenis plat hujung rata dan plat hujung 
ditambah antara rasuk hibrid dengan tiang keratan krusiform. Ujian makmal yang 
terdiri daripada empat plat hujung rata dan empat plat hujung ditambah antara rasuk 
hibrid dengan tiang krusiform telah dijalankan dan keputusan ujian digunakan untuk 
pengesahan kajian analitikal dan pemodelan unsur terhingga (FEM). Kajian analitikal 
telah dijalankan dengan menggunakan kaedah komponen Eurocode 3: Part 1.8 dan 
model matematik yang sedia ada. Hasil kajian analitikal mendapati Eurocode 3: Part 
1.8 boleh diguna untuk meramal kekukuhan awal dan momen rintangan sambungan 
krusiform. Walau bagaimanapun, model matematik yang sedia ada tidak dapat 
meramal kelakuan putaran-momen bagi sambungan tiang krusiform, tetapi model 
tersebut hanya boleh diguna khusus untuk kelakuan sambungan model putaran-momen 
yang berada dalam julat model regresi. Oleh itu, pemodelan dan analisis unsur 
terhingga yang komprehensif menggunakan ANSYS 14.0 untuk sambungan krusiform 
telah dibuat untuk meramal kelakuan sambungan krusiform. Nilai kekukuhan awal dan 
rintangan momen yang diperolehi daripada analysis unsur terhingga dibandingkan 
dengan ujian makmal dan peratusan perbezaannya didapati dalam lingkungan 20%. 
Daripada segi mod kegagalan, perubahan bentuk yang ditunjukkan dalam keputusan 
analisis unsur terhingga mempamerkan corak yang sama dengan ujian makmal dan 
Eurocode 3: Part 1.8. Zon kritikal ditentukan melalui taburan tegasan menggunakan 
nisbah tegasan dan telah disahkan dengan pemodelan plastik-lelurus dan kelakuan 
kekukuhan separa sambungan tiang krusiform. Analisis parametrik juga telah 
mengenalpasti parameter sambungan tiang krusiform yang penting iaitu kedalaman 
rasuk, ketebalan plat hujung dan ketebalan bebibir tiang. Fungsi matematik yang 
mudah telah dibangunkan untuk meramalkan sifat sambungan tiang krusiform dengan 
menggunakan analisis regresi dan telah disokong oleh analisis statistik. Perbandingan 
dengan model unsur terhingga yang sedia ada mendapati perbezaan peratusan 
kekukuhan awal dan rintangan momen berada dalam lingkungan 15% untuk 
sambungan plat hujung rata dan plat hujung ditambah. Berdasarkan hasil kajian ini, 
jurutera struktur boleh meramal kelakuan sambungan tiang krusiform dengan mudah 
dan tepat berdasarkan fungsi matematik yang dibangunkan. 
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end- 
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tfb - thickness of beam flange 
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INTRODUCTION 

1.1 Background of Study 

Bolted end-plate connection undeniably is one of the most popular choices and 

has been widely used as beam to column connection in steel structure. The high 

demand is mainly due to its high ductility and moment resisting behaviour. On the 

other hand, the fabrication, assembly, and erection of bolted end-plate connection are 

fast and simple (Davison et al., 2012). Bolted end-plate connection can be categorised 

into flush end-plate and extended end-plate connections. The latter has an extra bolt 

row above beam flange as compared to flush end-plate connection to increase shear 

and moment resistance capacity.  

Recognising the advantage as a moment resisting joint, researchers began to 

explore this type of connection since 1970s in terms of classification, moment rotation 

behaviour, and failure mode. Numerical models, analytical analysis, and experimental 

tests are the common methods used by researchers to study the behaviour of bolted 

end-plate connections. These methods are complementary and supporting each other’s 

findings. High cost to conduct full scale experimental test is often a problem among 

researchers. Thus, numerical model and analytical analysis are used to predict the 

repeating behaviour of experimental test to reduce the cost of multiple experimental 

test. 

The steel industry is moving forward with the aid of researchers. Improvement 

and optimisation on steel joint have been carried out throughout the century and never 

ceased. The challenges faced are to reduce the cost of construction, faster and more 

effective construction methods, and at the same time not neglecting the safety of end 

users. New members and configurations are introduced to provide an optimal design. 

For instance, cruciform column section was introduced for solving sophisticated 
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connection design at minor axis of H-shape steel column and at the same time saving 

in steel weight (Tahir and Shek, 2005; Tahir et al., 2009). 

1.2 Background 

Cruciform column section is an innovative compound member introduced as 

an alternative vertical compressive resistance member. This section which is also 

known as cruciform column universal beam (CCUB) section, is a combination of two 

universal beam sections as shown in Figure 1.1. One of the universal beams is cut into 

half at the centre of minor axis and welded to the other universal beam. Fillet weld 

resistance must be higher than the parent material to avoid welding failure.  

  

Figure 1.1 Cruciform column and universal beam sections (Tahir et al., 2009) 

In a steel frame system, beam to column joint is often simplified as ideally 

pinned or fully rigid. These two extreme approaches do not represent the actual frame 

behaviour. Figure 1.2 shows pin, semi-rigid, and rigid joint frame. The pinned joint is 
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assumed to be simply supported. The beam will bear the full moment of the applied 

loads, whereas the columns are required to resist axial load and minimal moment from 

the beam. These assumptions result in a heavy and deep beam. In rigid joint frame, 

beam will transfer large part of the moment to column through connection. Hence 

larger columns are required to sustain the end moments of beam. A more complicated 

fabrication of connection must be provided. These two approaches could cause 

unrealistic and incorrect prediction in actual frame system which lead to wastage of 

materials. In fact, the actual frame system exhibits a behaviour between the two 

mentioned approaches, which is the semi-rigid joint (Cabrero and Bayo, 2005; Díaz et 

al., 2011b; Girão Coelho, 2013; Saggaff et al., 2007; Weynand et al., 1998). 

 

Figure 1.2 Pin, semi-rigid, and rigid frame (Tahir et al., 2005) 

1.3 Problem Statement 

Previous studies had concluded that the performances of the cruciform column 

section in terms of axial resistance capacity and wind moment frame resistance 

capacity are the most cost efficient as compared to existing H-shape column section 

(Shek et al., 2015; Tahir and Shek, 2005; Tahir et al., 2009). The advantages of 

cruciform column section will be further discussed in Section 2.2. The moment 

rotation behaviour and failure mode of beam to cruciform column connection are still 

in the grey area. Prediction with a factored constant has been used to represent 

flexibility of cruciform column connection. For example, a factored increase was 

applied on calculated sway deflection to take into consideration of semi-rigid 
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connection (Shek et al., 2015). Hence, identifying moment rotation behaviour of 

cruciform column connection helps to fill gap of research. 

The proposed cruciform column section uses I-shaped universal beams instead 

of conventional H-shaped column. Due to geometrical differences, mainly width to 

depth ratio and flange thickness, hypothetically existing analytical methods are unable 

to predict the moment rotation behaviour accurately in terms of initial stiffness and 

moment resistance (Tan et al., 2015). Numerous prediction models are developed to 

predict moment rotation behaviour of a joint but the models are often explicitly for the 

proposed connection. It is difficult to incorporate all geometrical and mechanical 

properties for all connections (Mohamadi-Shoore and Mofid, 2011). 

Developing mathematical model to predict beam to cruciform column bolted 

end-plate connection requires accurate and large number of results. Due to cost and 

time constraint, it is impossible to conduct all configurations using experimental tests. 

Hence, comprehensive three-dimensional finite element models for the proposed beam 

to cruciform column bolted end-plate connections are required. 

1.4 Objectives of Study 

The aim of this research is to study the structural behaviour of hybrid beam to 

cruciform column bolted flush end-plate and extended end-plate connections. Moment 

rotation comparisons are conducted in terms of initial stiffness, moment resistance, 

and failure mode between experimental test, analytical analysis, and numerical 

analysis. Lastly, mathematical models are developed to predict moment resistance 

using regression analysis and supported by statistical test. These aims consist of the 

following objectives: 

1. To conduct full scale experiment tests on hybrid beam to cruciform column 

bolted end-plate connections for validation on finite element analysis. 
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2. To assess the accuracy of existing design code and mathematical models 

predicting moment rotation behaviour of cruciform column connections using 

analytical analysis. 

3. To simulate moment rotation behaviour of cruciform column connections 

using three-dimensional finite element models and validate with experimental 

test results. 

4. To develop mathematical models for predicting the initial stiffness and 

moment resistance of cruciform column connections. 

1.5 Scope of Study 

The scope of this research involves full scale experimental test, analytical 

study, numerical and parametric analysis, and regression analysis supported by 

statistical test on beam to cruciform column bolted flush end-plate and extended end-

plate connections. Figure 1.3 shows the flowchart of research. 

 

Figure 1.3 Flowchart of research 
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Full scale experimental tests are carried out to identify the actual behaviour of 

cruciform column connections. There are a total of 8 experiment test specimens which 

consist of 4 flush end-plate and 4 extended end-plate connections with varied beam 

depth, beam width, beam flange thickness, beam web thickness, end-plate thickness, 

end-plate width, and bolt diameter. The experimental test results are used to validate 

analytical study and numerical analysis. 

Analytical study is carried out to predict initial stiffness and moment resistance 

of cruciform column connections. It is based on component method using Eurocode 3: 

Part 1.8 (BSI, 2005b; SCI and BCSA, 1995; SCI and BCSA, 2013), and mathematical 

models by Frye and Morris (Frye and Morris, 1975), Kukreti et al. (Kukreti et al., 

1990; Kukreti et al., 1989), Krishnamurthy et al. (Krishnamurthy et al., 1979), Bahaari 

and Sherbourne (Bahaari and Sherbourne, 1997), and Mohamadi and Mofid 

(Mohamadi-Shoore and Mofid, 2011). These methods are used and compared to 

experimental results to identify the accuracy and reliability on cruciform column 

connections. 

Finite element method modelling software, ANSYS 14.0 is used for three-

dimensional modelling on the proposed cruciform column connections. Finite element 

models consisting of 4 flush end-plate and 4 extended end-plate beam to cruciform 

column connections are validated with experimental test results. They are also used 

numerically to determine initial stiffness, moment resistance, failure mode, and stress 

distribution.  

Validated finite element models are further expanded to conduct parametric 

analysis on beam depth, beam width, beam web thickness, beam flange thickness, 

column web thickness, column flange thickness, end-plate thickness, bolt diameter, 

and bolt gauge distance. The results are used to identify the influencing factor of each 

parameters towards the behaviour of the proposed cruciform column connections. At 

the same time, a range of upper and lower limit for each parameters are determined to 

perform multiple regression analysis. 
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Development of mathematical functions representing moment rotation curve 

of cruciform column connections are carried out using regression analysis on initial 

stiffness, plastic stiffness, reference moment, and shape function. Regression analysis 

is carried out based on the identified influencing factors and ranges. By using 11 key 

parameters with a total of 25 variations, a total of 6912 combinations of joints are 

created. 50 combinations are randomly selected for regression analysis. Statistical 

significance F-tests are used to determine the significance and reliability of the 

regression model. 

1.6 Significance of Study 

Research works on cruciform column section have been carried out since year 

2005 and the advantages of cruciform column section are well proven (Shek et al., 

2015; Tahir and Shek, 2005; Tahir et al., 2009). The main aims are to introduce and 

implement cruciform column section in steel industry. This study is important to fill 

the gap in cruciform column connections behaviour.  

Comprehensive three-dimensional modelling for cruciform column flush end-

plate and extended end-plate connections are made. Detailed study on the behaviour 

of cruciform column connection can be done without depending on experimental test. 

On the other hand, new mathematical models are introduced to predict the moment 

rotation behaviour of cruciform column connections. These mathematical models are 

supported by statistical test to provide a reliable prediction on moment rotation 

behaviour of cruciform column connections. Economical moment rotation behaviour 

of semi-rigid frame design is adopted. 

The developed mathematical models can be applied to computer software. 

Beam section, column section, end-plate thickness, connection configuration, and 

material strength can be determined in accordance to the required shear and moment 

resistance. This makes introducing the proposed new cruciform column section easier 

to be approached and accepted by steel industry practitioner.  
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By completing this study, huge database specifically for cruciform column 

connection is created. More than 200 models of cruciform column connections with 

various geometrical configurations and material properties are generated and analysed 

numerically. The moment rotation curve of each models contains important results 

such as initial stiffness and moment resistance. These models and results can be used 

as reference for future studies. 

1.7 Thesis Outline 

This thesis consist of 6 chapters. The first chapter, Chapter 1 gives an overview 

of this thesis on structural behaviour of end-plate connections on hybrid beam to 

cruciform column section. A general introduction followed by background study on 

cruciform column section are discussed. Problem statements, objectives, scope, and 

significance of this study are highlighted.  

Chapter 2 is the literature review of this study. A detailed insight of previous 

study on cruciform column section and semi-rigid connection are presented. 

Advantages of cruciform column section are summarised. On the other hand, methods 

of predicting moment rotation behaviour of a joint are also discussed based on 

Eurocode 3: Part 1.8 and existing mathematical models proposed by previous 

researchers. The proposed methods used are evaluated and adopted to develop 

mathematical model predicting the proposed cruciform column connections.  

Chapter 3 begins with the methods and procedures used to conduct the full 

scale experimental programme of end-plate connections on hybrid beam to cruciform 

column section. The results obtained from experimental test are briefly discussed and 

are used to validate analytical and finite element models. Then, analytical study on 

cruciform column connections using component method based on Eurocode 3: Part 

1.8 and existing mathematical models are conducted. Accuracy and suitability of each 

methods are evaluated.  
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Chapter 4 focuses on finite element modelling. Modelling procedures, 

techniques, and assumptions are explained. Finite element modelling is carried out and 

validated with experiment test results. Stress distribution of each test specimens are 

explored and discussed based on stress ratio of each individual components of a joint. 

The most critical component for cruciform column connections is identified. In  

Chapter 5, the validated model is used and expanded for parametric analysis to 

identify the influencing factor of all components (parameters) for cruciform column 

connections. The range of each respective investigated parameters are identified based 

on pratical and common sizes. These results are used to conduct regression analysis to 

develop mathematical models predicting the behaviour of cruciform column flush end-

plate and extended end-plate connections. Statistical analysis is performed to check 

the significance and validity of the developed mathematical function.  

Lastly, the findings of this study are concluded and summarised in Chapter 6. 

In addition, recommendation of works for future study are proposed. 
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