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ABSTRACT

Porous asphalt is designed with high air voids that increases the voids 

interconnectivity to improve permeability and sound absorption. However, after few 

years in service, these functional performances become ineffective due to clogging. 

Due to high air voids, debris and dust from moving vehicles and surface runoff tend to 

clog the voids structure. This research investigates the effect of clogging on the 

functional performances and microstructural of porous asphalt. Initially, a 

comprehensive laboratory procedure with different variables (cycles, materials, 

concentrations) was established to characterise the clogging potential. Then, the 

changes in voids properties due to internal clogging were investigated using X-ray 

Computed Tomography scanner and imaging technique for microstructural 

characterisation. Detailed image analysis procedure was developed and verified with 

the volumetric properties of the mix. The functional performances such as 

permeability, sound absorption and skid resistance of the porous asphalt were then 

evaluated under various clogging conditions. Based on the microstructure analysis, 

repeated clogging cycles have densified the top region of porous asphalt and changed 

the air voids structure as well as the voids interconnectivity. This has caused reduction 

in water permeability as more time is needed for water to permeate through the voids 

channel. The results also suggest clogging phenomenon reduces the sound absorbing 

capabilities in the porous structure particularly at high frequency due to excessive 

energy attenuation. For frictional performance, deposition of clogging particles on the 

pavement surface has changed the properties of the macro and micro-texture as 

indicated by the difference in British Pendulum Number (BPN) under dry and wet 

conditions. Overall, these results suggest that clogging phenomenon is an important 

factor affecting the functional performance and microstructure of porous asphalt.
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ABSTRAK

Asfalt berliang direka bentuk dengan lompang udara yang tinggi bagi 

meningkatkan sambungan antara lompang untuk menambahbaik kebolehtelapan dan 

penyerapan bunyi. Walau bagaimanapun, selepas beberapa tahun digunakan, prestasi 

fungsian ini menjadi tidak efektif kerana masalah penyumbatan. Disebabkan oleh 

kandungan lompang udara yang tinggi, kotoran dan habuk daripada kenderaan yang 

bergerak dan air larian permukaan mendorong struktur lompang udara menjadi 

tersumbat. Kajian ini menyelidik kesan tersumbat terhadap prestasi fungsian dan 

mikrostruktur asfalt berliang. Diperingkat awal, satu prosedur makmal yang 

komprehensif dengan pembolehubah yang berbeza (kitaran, bahan, kepekatan) telah 

dibangunkan untuk mencirikan potensi tersumbat. Seterusnya, perubahan ciri-ciri 

lompang udara disebabkan oleh tersumbat dalaman dikaji dengan menggunakan 

pengimbas sinar-x tomografi berkomputer dan teknik pengimejan untuk pencirian 

mikrostruktur. Prosedur analisis imej telah dilaksanakan secara terperinci dan 

disahkan dengan ciri-ciri volumetrik campuran. Prestasi fungsian seperti 

kebolehtelapan, penyerapan bunyi dan rintangan gelinciran bagi asfalt berliang 

kemudiannya dinilai di bawah pelbagai keadaan tersumbat. Berdasarkan analisis 

mikrostruktur, kitaran tersumbat berulang telah memadatkan kawasan atas asfalt 

berliang dan menukar struktur lompang udara serta sambungan antara lompang. Ini 

telah menyebabkan pengurangan kebolehtelapan air kerana lebih banyak masa yang 

diperlukan untuk air meresap melalui saluran lompang. Keputusan ini juga 

mencadangkan fenomena penyumbatan akan mengurangkan keupayaan penyerapan 

bunyi dalam struktur berliang terutama pada frekuensi yang tinggi disebabkan oleh 

kehilangan tenaga yang berlebihan. Untuk prestasi geseran, pengumpulan zarah 

tersumbat di permukaan turapan mengubah sifat makro dan mikro-tekstur seperti yang 

ditunjukkan oleh perbezaan dalam British Pendulum Number (BPN) di bawah keadaan 

kering dan basah. Secara keseluruhan, keputusan ini mencadangkan bahawa fenomena 

penyumbatan merupakan satu faktor penting mempengaruhi prestasi fungsian dan 

mikrostruktur asfalt berliang.
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CHAPTER 1

INTRODUCTION

1.1 Background

Porous asphalt has been used in the road construction industry for decades. It 

was commercialised in 1960s, where initially the aim was to reduce hydroplaning and 

spray on highway especially during heavy rainfall conditions (Morgan, 2006). As 

more research was conducted on porous asphalt, it was shown that porous asphalt is 

not only permeable but it can also provide additional benefits to road users such as 

reducing traffic noise, good surface friction, visibility under wet condition and self- 

cleansing ability (Golebiewski, Makarewicz, Nowak et al, 2003; Kandhal and Mallick, 

1998; Rungruangvirojn and Kanitpong, 2010, Hamzah, Abdullah, Voskuilen et al, 

2012). However, there are issues related to functional and structural performance that 

could severely affect its service life (Alvarez, Martin, Estakhri et al, 2006; Poulikakos 

and Partl, 2012).

According to Putman and Kline (2012), the performance of porous asphalt can 

be categorised into two main criteria that are functional and structural performance. 

The functional performance can be described as the ability of the pavement to remain 

permeable, absorb traffic noise and offer high skid resistance, while the structural 

performance is referred to low structural strength due to the high design voids content 

in the pavement. The open structure of the porous asphalt could expedite aging 

problem due to the direct exposure of weathering effects such as heat, air and water. 

Additionally, some adhesion loss might occur that results in ravelling and stripping 

problem within the pavement. As a result, many studies have been conducted to 

improve the structural performance through modification of aggregate gradations and 

bitumen quality as well as adding fibre to the mix (Mallick, Kandhal, Cooley et al, 

2000; Liu and Cao, 2009; Mo, Huurman, Woldekidan et al, 2010).
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On the other hand, researchers have stated that functional performance loss in 

porous asphalt occurs due to blockage of interconnected air voids as a result of road 

debris and post-compaction effect under traffic loads (binder creep). Therefore, 

insufficient amount of interconnected air voids in the porous asphalt layer will reduce 

the efficiency of the functional performance as well as its service life (Krol, Khan. & 

Andrew, 2017).

In Malaysia, porous asphalt is constructed with great challenges for the road 

industries particularly in dealing with climate conditions, cost and maintenance. 

Among all of the issues highlighted, clogging problem can be a major disadvantage 

and discouragement to the industry as it reduces and shortens the effective pavement 

service life. This is due to lack of maintenance in cleaning the porous surface and low 

structural strength, making the pavement ineffective in its years of service life. One 

of the preferred solutions by the authorities is to resurface the pavement with 

conventional dense graded asphalt due to budget constraint. Higher maintenance and 

construction cost discourages the authorities from the wide spread use of porous 

asphalt except for unique road conditions. Therefore, collective and continuous 

studies by researchers on the clogging issue from different perspectives should be 

undertaken to provide better understanding and improve the properties of porous 

asphalt (Suresha, Varghese & Ravi, 2010; Hamzah, Samat, Joon et al, 2004; Kandhal 

and Mallick, 1998).

1.2 Problem Statement

Apart from all the aforementioned benefits, porous asphalt is struggling with 

short service life (approximately 3 to 4 years) due to clogging problem. Although the 

structural performance of porous asphalt is still remained in good condition after few 

years in service, the functional performance has sometimes reached its limit and has 

become dysfunctional. As a result, the authorities requested to resurface the road with 

dense graded mixture due to maintenance cost. The maintenance issue of porous 

asphalt is closely associated with its significant loss in functional performance due to 

excessive clogging effect. Clogging phenomenon does not only affect the
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permeability, but also the acoustic properties and the skid resistance of the road 

surface. Therefore, the clogging issue is of great concern among researchers as 

clogged porous asphalt reduces the dimension of the interconnected air voids channel 

and thus limits the water flow and noise absorption through the internal structure of 

the surface layer. On the other hand, the presence of excessive clogging materials on 

the surface will reduce the macro and micro-texture causing reduction in the surface 

friction.

According to Poulikako and Partl (2012), the issues related to deterioration of 

functional performance and service life of porous asphalt are mainly due to its 

microstructural properties as it could further define the volumetric changes in porous 

asphalt. For example, the air voids characteristics within the porous asphalt play a 

major role in providing the desired voids connectivity. Currently, there have been 

limited studies on the characterisation of microstructural properties of porous asphalt 

mixture and its correlation with the functional performance. This is important in order 

to evaluate the volumetric changes due to the presence of clogging materials and its 

effect towards permeability, noise absorption and surface friction of porous asphalt. 

Fortunately, with the advancement of imaging technology, it is possible to non

destructively capture the internal structure of the asphalt mixture including porous 

asphalt. This study took the initiative to monitor the changes in volumetric and 

microstructural properties of the porous asphalt under various clogging variables 

subjected to different functional performance tests. Additionally, a set of laboratory 

procedure to simulate the clogging conditions was developed in this study.

1.3 Aim and Objectives

The aim of this research was to investigate the effect of clogging on functional 

performance and microstructural properties of porous asphalt. The objectives were as 

follows:-

i. To examine the clogging materials properties and establish laboratory 

clogging procedures;
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ii. To establish the imaging procedure and evaluate the effect of clogging 

on the air voids properties of porous asphalt; and

iii. To evaluate the functional performance of porous asphalt in terms of 

permeability, sound absorption and skid resistance when subjected to 

different clogging variables.

1.4 Research Framework

For this research, the operational framework was divided into three phases as 

shown in Figure 1.1. The first phase was mainly focused on the literature reviews of 

the related topics and some preliminary works undertaken to justify the aim and 

objectives. The reviews cover porous asphalt overview, its functional performance 

(permeability, sound absorption characteristics and surface friction), clogging 

phenomenon, and imaging techniques for microstructural characterisation.
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Figure 1. 1 Research framework
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The second phase involves materials and mix design selection. These 

investigations are basically divided into four tasks. The first task involved material 

properties characterisation for aggregate, bitumen and clogging materials. The 

clogging materials properties were also characterised at the microscopic scale using 

Field Emission Scanning Electron Microscopy (FESEM) and its physical properties 

including gradation, specific gravity, and plasticity index. The second task involves 

the evaluation of different aggregate gradations of porous asphalt used in different 

countries that are from Australia, Malaysia, Singapore and the United States of 

America. Several laboratory tests along with imaging technique were conducted to 

determine the most performed gradation to be used in this study. The third task 

involved the preparation of the compacted sample and the fourth task involved the 

development of imaging technique for further analysis.

The third phase focused on the effect on clogging towards the functional 

performance and microstructural properties of porous asphalt mixture. Various 

clogging variables were considered including different clogging agents, 

concentrations, and clogging cycles. Hence, a set of performance tests (for evaluating 

permeability, sound absorption and skid resistance) and volumetric properties tests (for 

measuring bulk specific gravity, air void content and porosity) were conducted 

repeatedly after each clogging cycle. The properties of the clogged samples were 

continuously monitored and x-rayed at every clogging cycle. Finally the functional 

performance and microstructure properties of the porous asphalt were correlated for 

further discussion.

1.5 Scope of Study

The initial stage of the investigation evaluates different porous asphalt mixture 

gradations that were used in Australia, Malaysia, Singapore and the United States of 

America (nominal maximum aggregate size range between 12.5 to 14 mm). The 

Design Bitumen Content (DBC) of these porous asphalt gradations were evaluated 

using Jabatan Kerja Raya (JKR) Malaysia standard specification for road works 

(Jabatan Kerja Raya, 2008). The bitumen used in this study was Performance Graded
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Asphalt Binder 76 (PG76) and the samples were compacted using gyratory compactor. 

The selection of suitable gradation were based on two main criteria that are the 

performance of the porous asphalt mixture (permeability, durability and resilient 

properties) and air voids homogeneity. Next, the clogging phenomenon was simulated 

by conditioning the porous asphalt samples at various clogging variables such as the 

clogging agent (clayey and sandy materials), clogging concentrations and clogging 

cycle (five repeated cycles). Within the cycle interval, the samples were subjected to 

functional performance tests such as permeability, sound absorption and skid 

resistance as well as the X-ray CT scanning. This study utilised two imaging software 

packages for the microstructure properties analysis such as ImageJ and Avizo. The X- 

ray CT scanning was conducted at Universiti Teknologi Petronas with the capacity of 

225 kV. The impedance tube test was performed at Universiti Tun Hussien Onn 

Malaysia and the remaining tests were conducted at Universiti Teknologi Malaysia.

1.6 Significance and Contribution to Knowledge

Porous asphalt offers numerous benefits to the road users. The ability of the 

pavement surfacing to be permeable, mitigate traffic noise and provide better skid 

resistance improves the driving conditions to the road users. However, clogging issue, 

which reduces its service life, has become one of the main challenges of this type of 

pavement. In the early stage of the life span, porous asphalt is able to self-clean its 

internal structure. However, as the pavement was subjected to regular clogging cycles 

by dirt and organic debris over the years, the clogging particles will start to settle and 

harden within the pores structure, making it difficult to be cleaned and function as it 

was designed.

Numerous researchers have been performed to evaluate the functional 

performance of porous asphalt such as permeability, sound absorption and skid 

resistance. However, not much emphasis has been placed previously on the internal 

porous structure properties and in correlating these properties with the functional 

performance. Hence, this investigation is significant for the fact that any changes in
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the internal structure at the macro and micro-level due to the clogging problem can 

determine the efficiency of the porous asphalt to perform under severe condition.

As for the internal structure, the assessment is quite difficult and complex. For 

a clogged porous asphalt, an additional consideration should be given to the presence 

of clogging materials in the composite asphalt mixture together with the aggregates, 

mastic and bitumen. By using an industrial X-ray CT scanner together with imaging 

technique, the technology has managed to capture and analyse the complexity of the 

porous structure down to the micro-level without destructing the sample. This enables 

the assessment of clogging within the internal structure to be made at multiple clogging 

cycles by repeatedly scanning the samples. Therefore through this research, intensive 

efforts were made in providing insight into the continuous effect and severity of 

different clogging variables within the porous structure associated with the functional 

performance from the microstructural perspective.

1.7 Thesis Outline

This thesis consists of six main chapters. Chapter 1 describes the background 

of study, problem statement, aim and objectives, research framework, scope of study 

as well as the contribution of the study.

Chapter 2 provides comprehensive literature review on numerous related 

topics. It introduces an overview of porous asphalt that covers the history, mixture 

design and field application. Detailed explanations on the functional performance of 

porous asphalt were also provided that include permeability, sound absorption and skid 

resistance. The review also explains the clogging phenomenon such as clogging 

mechanism and laboratory clogging methods used by previous studies. Detailed 

reviews on digital image and X-ray CT scan are presented in this chapter.

Chapter 3 presents the details of mixture design and preliminary investigation. 

The explanation covers the materials characterisation (aggregates, bitumen, and 

clogging materials), compacted sample preparations, and laboratory tests for
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