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Abstract. This paper investigates the effect of transition metals (Mo, Mn and Co) on mesoporous 

ZSM-5 support in carbon dioxide reforming of methane reaction. The mesoporous ZSM-5 

support was synthesized by micro emulsion technique and the metals were loaded by wet 

impregnation method. It was observed that ZSM-5 supported Co catalyst had higher surface area 

in comparison to other catalysts, which could favour well dispersion and wider utilization of 

active component. In addition, the ZSM-5 supported Co catalyst exhibited the highest methane 

and carbon dioxide conversions of 69 % and 65 % respectively at 850oC. The Co species were 

more active to decompose methane and carbon dioxide compared to Mo and Mn loaded catalysts. 

Hence, loading Co on mesoporous ZSM-5 produce an active catalyst in carbon dioxide reforming 

methane reaction. 

1. Introduction 

The challenge for cleaner energy sources has continued to receive tremendous attention due to lingering 

issues of climate change, global energy crisis and tropospheric air quality [1,2]. Hence, processes for 

conversion of harmful molecules into valuable products are being pursed. Syngas (H2/CO) is a valuable 

intermediate for production of chemicals via Fischer-Tropsch process, methanol and oxygenates 

synthesis [3–5]. Carbon dioxide reforming of methane (CRM) involves conversion of natural gas and 

carbon dioxide into syngas. The process is considered a viable route to produce pure syngas with H2/CO 

ratio of unity. During the transformation process, methane reacts with an equimolar amount of carbon 

dioxide over a catalyst to yield syngas according to: CH4 + CO2 ⇌ 2CO + 2H2. As such, it is an 

auspicious technology to address the issues of the two greenhouse gases with high global warming 

potentials [6]. The emission problems associated with carbon dioxide could be sequestrated by CRM 

process that is cheap as considered to current carbon capture technologies [7]. The critical issue 

associated with CRM is the fabrication of highly active and stable catalyst. The catalyst system must be 

robust to impede carbon deposition and high temperature sintering. A variety of support materials has 
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been developed for CRM such as KCC-1 [3], Al2O3 [8], SBA-15[9], MSN [10], SiO2 [7] and zeolite 

[11].  

 The nature of support material is pivotal in controlling the dispersion of metal particles and the 

stability of active metal particles. CRM has been studied with noble metal (Pt, Rh, Pd, Ru, Ir) based 

catalysts. Noble metal catalysts displayed remarkable coke resistance, stability and activity [6]. 

However, their high cost is a major demerit for application as an industrial CRM catalyst. In this 

scenario, other non-noble metals (Ni, Co, Fe) with low cost becomes potential option. Transition metal 

catalysts show reasonable performance in CRM reaction with the noble metals producing superior 

activity and high coke resistance [3]. Reasonable methane and carbon dioxide conversion was recorded 

by Ni/MCM-41 catalyst at reaction temperature of 750oC [12]. ZSM-5 support with 8 wt.% Ni produced 

reasonable syngas from CRM reaction [13]. Similarly, the incorporation of nickel on hydroxyapatite 

support displayed high CRM activity [14]. In addition, Zeng et al. prepared 20% Co/Ɣ-Al2O3 catalyst, 

which showed good potential as an active CRM catalyst [15]. Thus, the present study investigates the 

activity of transition metals (Mo, Mn and Co) supported on mesoporous ZSM-5 catalyst in CRM 

reaction. In this paper, a mesoporous ZSM-5 support was synthesized via micro emulsion technique and 

employed as carrier material in CRM reaction. This study focused on the activity of mesoporous ZSM-

5 supported Mo, Mn and Co catalysts in production of syngas from CRM reaction. 

2. Experimental 

2.1. Materials 

The materials used in this study are: Tetraethyl orthosilicate (TEOS), Urea, 1-butanol (C4H9OH), 

Cetyltrimethylammonium bromide (CTAB), ammonium nitrate (NH4NO3) and ZSM-5 seed (Si/Al= 23) 

(MERCK Sdn. Bhd., Malaysia).  MoO3, Mn(NO3)2·4H2O  and Co(NO3)2.6H2O were used as Mo, Mn 

and Co precursors respectively obtained from Merck Co. Industrial grade gases (CH4, CO2, H2, N2 and 

O2) were used in catalytic testing. H2 was used as reducing agent, while N2 and O2 were used as carrier 

and pre-treatment gases respectively.  

2.2. Catalyst Preparation 

In this study, microemulsion synthesis technique coupled with ZSM-5 seeds crystallization was adopted 

to prepare mesoporous ZSM-5 according to the previous reported procedure [16,17]. Metal loading was 

fixed at 5 wt% for all samples via wet impregnation method. The catalysts prepared were denoted as 

MoZ, MnZ and CoZ representing Mo, Mn and Co loaded mesoporous ZSM-5 catalysts respectively. 

2.3. Catalyst Characterization 

The phase of the prepared catalysts was confirmed by utilizing a Bruker D8 X-ray diffraction (XRD) 

analyzer. Specific surface area of all synthesized catalysts was determined from N2 adsorption–

desorption (at 77 K) in an analyzer (Beckman Coulter SA 3100). Catalytic tests were carried out in a 

micro catalytic fixed bed reactor over different temperature range 550-850oC. 20 mg catalyst with 40–

60 meshes size was packed into the isothermal reaction zone of the fixed bed reactor. 

 Pre-treatment was done for an hour at 850oC under O2 flowrate of 50 mL min-1. Thereafter, reduction 

was done at 850oC under H2 flow rate of 50 mL min-1 which was maintained for 1 h. Then, the gaseous 

feed comprising of CH4:CO2:N2 in a ratio of 1:1:3 were feed into the reactor at flow rate of 100 mL min-

1. An online gas chromatograph device (Agilent GC, 7820 N) was used to continuously detect and 

analyze the product gases. Product sampling at the considered temperatures were conducted an hour 

after commencement of the reaction. The sampling for each reaction run is 20 min. The feed conversion 

and corresponding products yield were computed by the following equations: 

 

 𝐶𝐻4 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
𝐹(𝐶𝐻4) 𝑖𝑛−𝐹(𝐶𝐻4) 𝑜𝑢𝑡

𝐹(𝐶𝑂2) 𝑖𝑛
× 100           (1) 

𝐶𝑂2 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 =
𝐹(𝐶𝑂2) 𝑖𝑛−𝐹(𝐶𝑂2) 𝑜𝑢𝑡

𝐹(𝐶𝑂2) 𝑖𝑛
× 100           (2) 
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𝐻2 𝑦𝑖𝑒𝑙𝑑 =
𝐹(𝐻2 ) 𝑜𝑢𝑡

2[𝐹(𝐶𝐻4)𝑖𝑛]
× 100           (3) 

𝐶𝑂 𝑦𝑖𝑒𝑙𝑑 =
𝐹(𝐶𝑂 ) 𝑜𝑢𝑡

[𝐹(𝐶𝐻2)𝑖𝑛+𝐹(𝐶𝑂2) 𝑜𝑢𝑡]
× 100          (4) 

3. Results and discussion 

The X-ray diffractogram of the synthesized catalysts are shown in figure 1. From the XRD analysis, 

reflections were observed corresponding to ZSM-5 structure as indicated by sharp diffraction peaks in 

2θ range of 5–10 and 20–26 respectively [16,18]. The intensity of peaks (figure 1) below 10o slightly 

increased in the order CoZ > MnZ > MoZ. These might be due to Al removal from the framework, 

which did not invoke significant damage to the lattice [19]. The peak intensities of ZSM-5 supported 

Co catalyst had obvious increase, which may be attributed to increase of framework Si species [20]. 

Furthermore, XRD patterns of MoZ and MnZ seem to be identical. There exist no Mo and Mn species 

peaks in the XRD patterns, while CoZ demonstrated presence of Co3O4 cubic phase by diffraction peaks 

at 2θ= 31.3o, 36.7o, 45.1o, 55.9o, 59.8o and 65.5o (JCPDS 01-076-1802) [21].  

 

 
Figure 1. X-ray diffractogram of the catalysts. 

 

 Generally, activity of a supported catalyst is significantly related to surface area. Catalyst system 

with large surface area promote well dispersion and wider utilization of active metals component which 

result in high CRM performance [22]. Figure 2 illustrates the N2 physisorption isotherms and the 

estimated pore volumes of the catalysts are presented in Table 1.  

 

 
Figure 2. N2 adsorption–desorption and the pore size distribution (a) MoZ (b) MnZ and (c) CoZ. 
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 The catalysts portrayed type IV isotherms with H3 hysteresis loops. This signals the existence of 

non-uniform slit-shaped mesopores structure. The surface area was MoZ= 395 m2/g, Mn= 404 m2/g and 

CoZ= 419 m2/g respectively. The MoZ catalyst had the lowest surface area as compared to other 

catalysts. The MnZ and CoZ catalysts displayed higher N2 uptake as compared to MoZ, signifying more 

porosity. The N2 uptake at partial pressure (P/Po) are characteristics of micropore presence. 

Furthermore, the step P/Po of 0.2 and 0.9 are attributed to inter and intra particle pores respectively 

[23,24]. As reported in literatures [25–27], the microemulsion synthesis condition invoke large amount 

of interparticle pores, which shows the presence of large surface area materials.  

 

Table 1. Physical catalytic properties. 

 

Sample Surface area 

 (m2/g)a 

Total pore volume  

(mL/g)a 

Mesopore volume  

(mL/g)b 

MoZ 395 0.2626 0.1722 

MnZ 404 0.2838 0.1862 

CoZ 419 0.2694 0.1925 

   aObtain by the BJH method. 

   bComputed by subtracting micropore volumes from total pore volume. 

 

 To determine the effect of prepared catalysts in the CRM process, series of tests were conducted in 

the micro catalytic fixed bed reactor over 550–850oC temperature range. The results are depicted in 

figure 3. As can be seen, temperature increase led to enhanced conversion and yield due to the 

endothermicity of CRM reaction. CoZ displayed high reactants conversion of 69 % and 65 % for CH4 

and CO2 respectively. The CoZ catalyst produced the highest activity than other catalysts. This suggest 

that ZSM-5 supported Co catalyst is highly active for transformation of CH4 and CO2 gases into syngas. 

These is in accordance with findings in the catalyst characterizations. CoZ catalyst had higher activity 

as a result of larger amount of pore sizes and higher surface area which lead to better dispersion of active 

Co species [14]. These observations are affirmed by the XRD and N2 adsorption–desorption analysis. 

Moreover, these features aid higher CH4 and CO2 adsorption which is pivotal in CRM reaction. Large 

surface area enhances the adsorption of the reactants. Hence, this observation is directly related to 

decomposition of CH4 and CO2 dissociation. However, the higher conversion of CH4 than CO2 suggest 

suppression of side reactions [11].  

 

 
Figure 3.  Effect of metal loaded catalysts on (a) CH4 and (b) CO2 conversions.  
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Figure 4.  Effect of metal loaded catalysts on (a) H2 and (b) CO yield. 

 

 It is reported that active metal sites play crucial role in CH4 adsorption to produce CHX fragments 

[28,29]. Thus, Co species are more active to decompose CH4 and CO2 compared to Mo and Mn loaded 

catalysts. Fayaz et al. achieved initial H2 and CO yield of 37.5 % and 39 % respectively over 10Co/Al2O3 

catalyst. This is in accordance with findings of Khan et al. [30] and Zeng et al. [15]. Similarly, the 

catalysts investigated displayed different effect on product yield as shown in figure 4. The H2 and CO 

yield for CoZ is 58 % and 50 % respectively. There is significant difference in CRM activity of the CoZ 

and other catalysts as seen in figure 4. This performance is due to the higher activity of Co, coupled with 

the greater adsorption and dissociation of reactants which was remarkable on CoZ than other catalysts. 

 

4. Conclusion 

Mesoporous ZSM-5 support was synthesized by micro emulsion technique and the metals were loaded 

by wet impregnation method. This study revealed that ZSM-5 supported Co catalyst is a highly active 

catalyst system for CRM reaction as compared to MoZ and MnZ catalysts. Higher surface area resulted 

in higher activity of CoZ catalyst in CRM. The Co species and mesoporous ZSM-5 support had a 

beneficial interaction which led to the suitable CRM activity. The Co species were more active to 

decompose CH4 and CO2 compared to Mo and Mn loaded catalysts. Thus, CoZ is an efficient catalyst 

in the quest for a viable CRM catalyst. 
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