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ABSTRACT 

Retrofit of structures is an inevitable task especially when buildings are not 

designed for seismic actions or their design was based on older design codes. Many 

retrofit strategies have been proposed and practiced. Use of dampers, base isolators, 

and active and semi-active energy dissipation devices are among the most common 

retrofitting methods. For base isolating, passive base isolator has been widely 

employed by engineers for conventional structures and bridges. However, very few 

applications of these base isolators for Nuclear Power Plants (NPPs) can be found in 

the literature. A new base isolation methodology based on intensity, which considered 

different earthquake parameters such distance of earthquake center to site was 

proposed by FEMA 58 in 2012 and this methodology has not been addressed in 

previous studies. Thus, this research investigated the effects of FEMA 58 base 

isolation method on the results of an analysis. This new analysis method investigated 

the distance effect of earthquake center to site. In this research, application of three 

types of base isolators for seismic retrofit of first generation NPP was investigated. 

Three levels of return periods comprising 105 years, 2.5*104 years and 104 years were 

introduced to investigate the highest level of performance for NPP based on FEMA 

58. The study applied both experimental and numerical analysis. For the experimental 

part, two scaled NPPs were constructed in laboratory with a scale factor of 1:36 and a 

total weight of approximately 1 ton. The NPPs were tested with the pushover method 

for two conditions: fixed and isolated base. Numerical studies were performed to 

investigate the effects of 11 earthquakes on the obtained results from the finite element 

models. Results indicated that regardless of the employed base isolators, the isolated 

NPP had a higher natural period and displacement compared to the fixed-base NPP. 

However, the isolated NPP showed significantly lower acceleration, stress, base shear, 

and overturning moment when compared with the fixed-base NPP. It was also 

observed that when frictional pendulum base isolator was used to retrofit, the highest 

energy dissipation and lowest base shear as well as overturning moment; and stress 

were achieved. Monitoring the strain distribution between base-isolated and fixed-base 

NPP revealed that the base isolators had reduced the strain in the containment of the 

NPPs. With regard to the results based near the fault and far field earthquake 

characteristics, it is concluded that the base isolators are more effective under or near 

the fault earthquake. 
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ABSTRAK 

Pengubahsuaian semula struktur merupakan tugas yang tidak dapat dielakkan 

terutamanya apabila bangunan tidak direka untuk tindakan seismik atau reka bentuk 

mereka berdasarkan kod reka bentuk yang lebih lama. Banyak strategi pengubahsuaian 

telah dicadangkan dan diamalkan. Penggunaan peredam, pengasing asas, peranti 

pelesapan tenaga aktif dan separuh aktif adalah antara kaedah pengubahsuaian yang 

paling biasa. Untuk mengasingkan asas, isolator asas pasif telah digunakan secara 

meluas oleh jurutera untuk struktur konvensional dan jambatan. Walau bagaimanapun, 

hanya beberapa aplikasi isolator asas untuk loji kuasa nuklear (NPP) boleh didapati 

dalam kajian terdahulu. Metodologi pengasing asas baru berdasarkan intensiti yang 

menilai parameter gempa bumi yang berbeza, iaitu jarak pusat gempa ke tapak telah 

dicadangkan oleh FEMA 58 pada tahun 2012, dan kaedah ini belum ditangani dalam 

penyelidikan terdahulu. Oleh itu, kajian ini mengkaji kesan pengasingan asas kaedah 

FEMA 58 pada hasil analisis. Kaedah analisis baru ini mengkaji kesan jarak pusat 

gempa ke tapak. Dalam kajian ini, penggunaan tiga jenis isolator asas  untuk 

pengubahsuaian seismik NPP generasi pertama dikaji. Tiga tahap tempoh pulangan 

yang terdiri daripada 105 tahun, 2.5*104 tahun dan 104 tahun telah dicadangkan untuk 

mengkaji tahap prestasi tertinggi untuk NPP, berdasarkan FEMA 58. Kajian ini 

menggunakan kedua-dua eksperimen dan analisis berangka. Untuk kajian eksperimen, 

dua NPP berskala telah dibina di makmal dengan faktor skala 1:36 dan jumlah berat 

kira-kira 1 tan. NPP telah diuji dengan kaedah pushover untuk dua syarat asas, tetap 

dan terpencil. Kajian berangka telah dilaksanakan untuk mengkaji kesan sebelas 

gempa bumi pada hasil yang diperoleh daripada model unsur terhingga. Keputusan 

menunjukkan bahawa tanpa mengasingkan pengasing asas yang digunakan, NPP 

terpencil mempunyai tempoh semula jadi dan anjakan yang lebih tinggi berbanding 

dengan NPP asas tetap. Walau bagaimanapun, NPP terpencil menunjukkan pecutan, 

ketegangan, geseran asas dan momen pembalikan dengan ketara berbanding dengan 

NPP asas tetap. Ia juga diperhatikan bahawa, apabila penebat asas pendulum geseran 

digunakan untuk retrofit, pelesapan tenaga tertinggi dan ricih pangkalan terendah, 

momen membalik dan ketegangan dicapai. Pemantauan pengagihan ketegangan antara 

NPP asas terpencil dan asas tetap telah mengurangkan ketegangan dalam 

pembendungan NPP. Berkenaan dengan keputusan yang berasaskan ciri-ciri gempa 

bumi berhampiran dan jauh, dapat disimpulkan bahawa penebat asas memiliki lebih 

banyak keberkesanan di bawah gempa bumi berhampiran. 
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INTRODUCTION 

1.1 Introduction 

In the recent decade, the use of Nuclear Power Plants (NPPs) in different fields 

of science and industry such as generation of electricity, medicine, agriculture, and 

military has increased dramatically. Figure 1.1 illustrates the world wide distribution 

of constructed and under-construction NPPs as well as those planned to be constructed.  

Figure 1.1 Worldwide Distribution of Nuclear Power Plants (Association, 2010) 
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There are different types of NPPs based on their application and their structure, 

as can be seen in Figure 1.2.  

In general, based on the way NPPs are applied, they are classified into two 

different categories, Light Water Reactor (LWR) and Heavy Water Reactor (HWR).   

 

 

 

Figure 1.2 Different types of Nuclear Power Plants based on application and 

their structures (Ludwig & Renier, 1989) 

Based on the structural system, there are three classes, which named 

containment mark (I) to containment mark (III). As can be seen in Figures 1.3-1.5, the 

NPP which marked by containment mark-I is constructed of two structural parts, the 

upper part is made up of steel and the lower part is constructed from concrete; the 

shape of secondary containment is rectangular.  Although NPPs’ containment mark-II 

has the cylindrical shape, it is also made up of two structural part, similar to   mark-I. 

moreover, the NPPs’ containment mark-III is made up of only concrete, which causes 
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higher safety in this type of structure. Because of the structural weakness of the first 

generation NPPs (containment mark-I), this study is focused on this type of NPPs.   

Figure 1.3 NPPs’ Containment mark-I (Joskow & Parsons, 2012) 

Figure 1.4 NPPs’ Containment mark-II (Joskow & Parsons, 2012) 
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Figure 1.5 NPPs’ Containment mark-III (Joskow & Parsons, 2012) 

It is well known that many structures designed based on older codes may be 

susceptible to severe damage during strong earthquakes. Older buildings have been 

structurally designed for much lower seismic actions compared to buildings that are 

designed today. This is because the relevant seismic codes have been continually 

revised as knowledge about seismic behavior has increased. 

Many structures that are built prior to the 1970's were designed for either 

gravity loads alone, or combination of gravity loads and wind loads. Seismic loads 

often were not considered in the design of these structures. As a result, poor 

performance of these structures is anticipated and observed under moderate to severe 

seismic loading. 

In some of the most important structures, such as NPPs, it is necessary to 

continue their service after different events such as an earthquake.  Based on FEMA 

(2000) and ATC (2005) codes, this level of performance was called “immediate 

occupancy level”.  
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Therefore, the first generation of NPPs, which have not been designed based 

on new guidelines and codes, must be redesign and retrofit based on the latest cods 

(e.g. ASCE 43-05 (2005), FEMA 58 (2012)).  One of the most effective methods to 

reduce damage during an earthquake is the use of energy dissipation devices in NPPs.  

These devices consume the earthquake energy and lead to a safer situation. Different 

types of energy dissipation devices have been used in infrastructures, as illustrated in 

Figure 1.6.  

 

Figure 1.6 Unconventional earthquake protection systems (Castaldo, 2014) 

This research investigates the behaviour of retrofitted NPPs by base isolators.  

Energy dissipation capacity, yield and ultimate load bearing capacity and failure 

mechanism of two scaled NPPs with isolated base and fixed base isolator were 

evaluated experimentally.  Numerical studies were performed in order to investigate 

the effect of different base isolators on the seismic behavior of the retrofitted NPPs. 
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1.2 Problem Statement 

In recent decade, earthquakes are the most important problems in NPPs, 

causing severe problems. To cope with that, codes and guidelines have been changed 

during recent decades.  The design methods in many of the building codes are based 

on a strength criterion while according to surveys structure behaviors in recent 

earthquakes, strength alone cannot be considered as a single criterion in designing 

structures against earthquakes, and increasing the strength does not necessarily lead to 

increased safety.  Therefore, in new codes, performance criterion is used instead of 

strength criterion in order to design the structures.   

The use of base isolation systems in buildings and also some of particular 

structures such as bridges have been evaluated and their performance has been 

confirmed.  However, the application of them to some other important structures such 

as NPPs, specially first generation NPP (due to their special loads and designing), has 

not been investigated comprehensively and there is a need for considering them 

specially in areas susceptible to natural disasters and phenomena.   

In addition, there was a few research on the effects of seismic load on isolated 

NPPs, especially first generation NPPs. The performance response of the isolated and 

non-isolated NPPs will be useful for rehabilitation and retrofitting of existing and new 

generation of NPPs.  Generally, the main problems of this study are: 

i. Unknown isolated and non-isolated performance of the first generation NPPs 

under earthquake loads with respect to new criteria and conditions of 

guidelines and codes.  

ii. Unknown isolated and non-isolated performance of the first generation NPPs 

under lateral loads with respect to new criteria and conditions of guidelines and 

codes.  

iii. How accurate is the current Analysis method based on performance in the 

actual NPP under earthquake loads?  
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1.3 Objectives of the Study 

This research develops assessments of NPP’s seismic performance for two 

conditions of the base, namely fixed base and isolated base.  A new procedure based 

on FEMA58 (2012) is considered based on intensity and time.  Finally, the numerical 

seismic analysis responses of NPPs are compared with the result of laboratory tests. 

The objectives of the present research are as follow:  

a) To evaluate the effectiveness of high damping rubber, frictional pendulum and 

lead rubber base-isolated NPPs through numerical studies. 

b) To study the seismic response of high damping rubber base-isolated NPPs 

through comparing pushover laboratory test results and finite element model. 

c) To evaluate the effectiveness of far field and near fault ground motion on 

isolated and fixed base NPPs through numerical studies. 

1.4 Scope and Limitations 

The The research is conducted to retrofitting the first generation NPP using 

base isolators. Experimental works are conducted on two scaled NPPs with scaling 

factor 1:38 of the actual model and scaled dimensions are 100 cm high,100 cm wide, 

and 4 cm thickness of wall with a total weight of approximately 1 ton. The compressive 

strength of concrete used in this study is 40 MPa for foundation and 35 MPa for NPPs’ 

containment. The yield and ultimate stress of employed reinforcement bars are 355 

N/mm2 and 532 N/mm2, respectively. The earthquake return period factors for scaling 

records are 104 years, 2.5*104 years and 105 years return period. For retrofitting NPPs; 

High Damping Rubber (HDR), Frictional Pendulum (FP), and Lead Rubber Bearing 

(LR) base isolations were used in the base isolated NPPs. The resulting energy 

dissipation, base shear and stress are used to determine the levels of structural and non-

structural damage inflicted on each base isolated NPPs. The tests conducted to 

performance assessment of base isolated NPP under FF and NF earthquake. 
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1.5 Significant of the Research 

This study attempts to retrofit NPPs through the use of different Isolators. The 

outcome of this research can be used to increase the safety and performance level of 

NPPs and prevent the possibility of occurring any damage to NPPs under seismic 

loads. 

1.6 Structure of the Thesis 

The following paragraphs briefly describe the six chapters organized in the 

present thesis. 

Chapter 1: Introduction. It presents a general overview of the research program. 

An introduction to other chapters is given and also the scope and objectives of the 

current research are highlighted. 

Chapter 2: Literature review. This chapter reviews the key topics that are 

related to Nonlinear time history and pushover analysis of buildings. Moreover, the 

building codes required to design the base isolation and NPPs are described. 

Chapter 3: Methodology. Design procedures of base isolated NPPs subjected 

to extreme loading were investigated. Design procedures for Frictional Pendulum 

(FP), Lead Rubber (LR), and High Damping Rubber bearing (HDR) were also 

considered in this chapter to address nonlinear time history and pushover requirements. 

Chapter 4: Experimental work. In this chapter, the obtained results of the 

proposed retrofit technique for NPPs on the experimental tests are presented. In 

addition, the fabrication procedure and modeling setup are explained in detail. 

Changes to the stiffness and ductility of NPPs before and after retrofitting are 

explained as well.       
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Chapter 5: Numerical simulation. This chapter develops the case studies for 

assessment of the pushover and nonlinear time history. In addition, acceptance criteria 

and loading protocol for both of them are discussed in detail. For each loading 

protocol, the numerical simulation is explained.  

Chapter 6: Results and discussion. It reports and discusses the results obtained 

from the experiments carried out on the base isolated NPPs exposed to pushover and 

nonlinear time history analysis tests in case of base-isolated NPPs in comparison with 

the fixed-base NPPs. This chapter also examines the stiffness degradation and the 

energy dissipation capacity of all three base isolations. 

Chapter 7: Conclusion and recommendations. The research finding, 

contribution of the thesis and the recommendations for future work are also described 

in this chapter. 
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