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ABSTRACT 

Pentacosa-10,12-diynoic acid (PCDA) is one of the most highly used 

polymeric materials in radiation sensing applications. It is quintessential for its ability 

to indicate ionising radiation by colour transition. The PCDA monomer forms lipid 

vesicles in aqueous mediums that closely align themselves. This alignment enables 

polymerisation of the monomer upon irradiation. The polymerisation is visibly 

identified by the polymer colour transition from colourless to bluish-violet. However, 

the indication of radiation is hampered by the vesicle’s instability and low colour 

reflectance from its transparent body. Therefore, an opaque polystyrene-butyl acrylate 

(PSBA) latex was fused into the transparent PCDA vesicles to promote the stability 

while simultaneously enhancing the colour reflectance. The PSBA was copolymerised 

using the radiation route to avoid the presence of unwanted chemical residues, 

especially from the initiator. The fusion of PCDA and PSBA was accomplished by the 

hydrophobic-hydrophobic interaction. The effect of ionic layers on the PSBA surface 

against the effectiveness of PCDA immobilisation was also investigated. The ionic 

layers from polyelectrolytes (PEL), namely, poly(sodium 4-styrenesulfonate) (PSS) 

and poly(diallyldimethyl-ammonium chloride) (PDADMAC), were applied layer-by-

layer onto the PSBA surface for up to five layers prior to PCDA adsorption. The 

performance of all stable latexes (PCDA/PSBA-PEL0,1,3,5) as radiation indicators was 

evaluated using gamma ray source from Cesium 137 (0.662 MeV) and Cobalt 60 (1.17 

MeV). Colour transitions demonstrated by the latex were measured and reported as 

total colour difference (dE*). Results from the analysis confirm that PSBA-filled 

PCDA is responsive against gamma radiation from 1 to 50 kGy. The optimum colour 

transition response by irradiated samples compared to unirradiated samples is noted 

after 7 kGy of 137Cs and 10 kGy of 60Co. Moreover, the difference of colour measured 

for PSBA-filled PCDA is 50% higher than non-filled PCDA, suggesting that high 

colour reflectance was achieved by the presence of the opaque PSBA. All latex 

particles were stable during pre and post-irradiation up to 60 days of storage. Variation 

of colours was noted on the irradiated non-filled PCDA. However, the variation 

reduced with the presence of PSBA core inside PCDA envelope due to less available 

room between PCDA and PSBA, which usually allows for PCDA molecule relaxation.  
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ABSTRAK 

Asid pentakosa-10,12-dainoik (PCDA) adalah merupakan satu bahan polimer yang 

kerap digunakan dalam aplikasi pengesanan sinaran. Ianya adalah bahan yang penting 

disebabkan oleh kebolehannya memberi petunjuk kepada sinaran mengion berdasarkan 

perubahan warna.  Monomer PCDA ini membentuk vesikel lipid yang tersusun rapat di dalam 

medium akueus. Penyusunan ini membolehkan pempolimeran berlaku apabila monomer itu 

terdedah terhadap penyinaran. Pempolimeran dapat dikenalpasti secara tampak melalui 

perubahan warna bahan dari tiada warna kepada warna biru-ungu lembayung. Bagaimanapun, 

penunjukkan sinaran ini terhalang oleh faktor ketidakstabilan vesikel PCDA dan pembalikan 

warna yang rendah oleh badan lutcahaya tersebut.  Oleh itu, lateks daripada bahan poli(stirena-

butil akrilat) (PSBA) dimasukkan ke dalam vesikel PCDA untuk menambah kestabilan sambil 

menambah baik pantulan warna secara serentak. PSBA ini telah dihasilkan secara 

pengkopolimeran melalui kaedah sinaran bagi mengelakkan kehadiran sisa bahan kimia yang 

tidak diingini, khususnya dari bahan pemula. Percantuman PCDA dan PSBA telah 

disempurnakan melalui interaksi hidrofobik-hidrofobik. Kesan lapisan ion pada permukaan 

PSBA terhadap keberkesanan imobilisasi turut dikaji.  Lapisan-lapisan ion daripada 

polielektrolit (PEL), iaitu poli(natrium 4-stirenasulfonat) (PSS) dan poli(dialildimetil-

ammonium klorida) (PDADMAC), dikenakan secara berlapis-lapis di atas permukaan PSBA 

sehingga mencapai maksima 5 lapisan sebelum penjerapan PCDA.  Prestasi kesemua lateks 

yang stabil (PCDA/PSBA-PEL0,1,3,5) telah dinilai sebagai penunjuk sinaran dengan 

menggunakan sinaran gamma dari sumber Cesium 137 (0.662 MeV) dan Cobalt 60 (1.17 

MeV).  Peralihan warna yang ditunjukkan oleh lateks diukur dan dilaporkan sebagai jumlah 

perbezaan warna (dE*).  Hasil analisa mengesahkan bahawa PCDA terisi PSBA memberi 

tindakbalas terhadap sinaran gamma bermula 1 hingga 50 kGy.  Tindakbalas peralihan warna 

yang optima bagi sampel yang disinar tersebut dikenalpasti sebaik sahaja mencecah 7 kGy 

bagi 137Cs dan 10 kGy bagi 60Co.  Tambahan pula, perbezaan warna yang diukur bagi PCDA 

terisi PSBA adalah 50% lebih tinggi berbanding PCDA tanpa isi, mencadangkan bahawa 

pantulan warna yang tinggi telah dicapai dengan kehadiran PSBA yang legap.  Kesemua 

partikel lateks stabil semasa pra dan selepas penyinaran sehingga 60 hari penyimpanan. 

Variasi warna dikenalpasti pada sampel PCDA tidak terisi yang disinari.  Variasi ini 

bagaimanapun menyusut dengan kewujudan teras PSBA dalam sampul PCDA yang 

disebabkan oleh kurang ruang antara PCDA dan PSBA, di mana selalunya membolehkan 

perehatan molekul PCDA.   
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background 

Radiation dose indication and determination is an important subject that has 

received global recognition in the contemporary world.  Irradiation has applications in 

the sanitary and phytosanitary treatment of food1, polymer modification2, medical 

treatment3,4 and national security5.  The emerging application propelled the 

development of a new dosimeter and indicators from various types of substances to 

meet the radiation energy and range. 

Radiochromic polymers are among the materials studied for use as radiation 

indicators and dosimeters.  They are useful for radiation indication because their 

chromic response against radiation allows for quantification of the dose absorbed.   

Their high spatial resolution, minor energy dependence and near tissue-equivalence 

makes radiochromic dosimeters appropriate for dose distribution measurements6.   

They are either made from a combination of radiation/pH sensitive leuco dyes with a 

halogen containing compound or from a colourless photo-initiated monomer molecule 

such as the conjugate polymer.    

Pentacosa-10, 12-diynoic acid (PCDA) is an example of a conjugate material 

under the diacetylene group with radiochromic ability7–12.  It has a pi-conjugated 

electron in its structure that efficiently reacts against radiation, transforming its optical 

properties in a visible region.  It has been tested in the form of a solution13, Langmuir-

Blodgett film14,15, polymer blends16, 3D gel10,11,17 and modified structures18–22.  PCDA 

is seldom used alone due to its instability in aqueous mediums and brittleness in its 

dried form.  As such, conventional polymers are typically added to PCDA via direct 

mixing or blending for ease of film casting.  Common polymers used for film aid 

include polyester23, polyvinyl alcohol (PVA)24 and gelatine10,17.  A drawback of 
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blending an amphiphilic material such as PCDA with another polymer is the ability of 

the monomer to stay in proximity for the topochemical reaction.  In some cases the 

blend does not respond to radiation until the PCDA precipitates reaction, suggesting 

that oligomerisation only occurs after PCDA phasing is outside the matrix10.  PCDA 

in gelatine also experiences a turbidity effect from the gelation of the matrix upon 

irradiation11.  This inhibits the colour change of the PCDA itself, causing less colour 

to be reported by the indicator. 

One way to retain PCDA in a conventional polymer while keeping it functional 

for radiation indication is by avoiding high interaction between it and the conventional 

polymer.  The introduction of conventional polymer colloids as a core for 

radiochromic vesicles is one alternative for retaining the original orientation of the 

amphiphile material.  When PCDA is attached to a polymer latex, it can also be called 

a radiochromic latex. 

1.2 Problem Statement 

Colour visibility is an important property for indicating the radiation 

absorption.  The higher the response against low doses of radiation, the better the 

sensitivity of the radiochromic material as an indicator.  Pentacosa-10, 12-diynoic acid 

(PCDA) is a radiochromic material with high sensitivity to radiation10,17.  It is 

colourless in the monomer form and violet-bluish in the polymerised form11.  The shift 

in colour depends upon the molecular orientation of PCDA for topochemical reactions.  

The basic requirements for the reaction are a minimum molecular stacking distance of 

d ≈ 5Å and an angle of Φ ≈ 45° to enable 1, 4-additions of adjacent PCDA units to 

form a backbone for the polyPCDA8.  The longest backbone generated from 

polymerisation contributes to the maximum colour transition due to the extension of 

the pi-conjugation length.  The higher the degree of conjugation, the larger the 

nonlinear optical susceptibility25. 

The drawback of using the PCDA monomer is that its vesicles are short-lived 

at room temperature26, reducing the possibility of polymerisation and colour shifts.  
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Mixing other polymers with the PCDA monomer to aid dry-casting also contributes to 

the disintegration of the vesicle wall, releasing PCDA monomers freely in between the 

polymer matrix.  This causes the distance between molecules to increase and in turn, 

disrupts the minimum arrangement required for a topochemical reaction.  Due to 

increased distance, fewer chains are polymerised; thus, low colour (low intensity) is 

produced for radiation indication10,11. 

In this study, a tailor-made polymer latex, poly (styrene-co-butyl acrylate) also 

known as PSBA, was introduced to the PCDA monomer without altering its minimum 

molecular stacking using the non-covalent method.  The advantage of PSBA is its 

adaptability in terms of glass transition temperature for film formation.  It was prepared 

via radiation method as a safety measure because ready-made latex may contain 

unwanted chemical residues that would interrupt the PCDA’s attachment to the latex.  

The hydrophobic surface of PSBA latex has functions to hold the PCDA monomer 

onto it via hydrophobic-hydrophobic interaction and ionic bond.  Besides additional 

interaction between the PCDA and PSBA surfaces, the incorporation of PSBA into 

PCDA vesicles can cause them to hold PCDA molecular stacking longer by reducing 

the osmotic force on the lipid wall.  The PSBA latex is formulated for glass transition 

temperatures (Tg) below 25°C, thus making dry-casting possible.  This combination of 

PCDA and PSBA can provide a better radiation-sensitive indicator in the form of latex 

while being applicable as a coating material for indication.  The lowest and highest 

radiation doses that caused colour shifts in the PCDA/PSBA latex were assessed and 

evaluated along with other characteristics.  A conclusion of the findings was drawn 

concerning the dose response curve of the latex and its stability during pre and post 

irradiation. 

1.3 Research Objectives 

The main objective of this study is to develop a radiochromic latex from a 

combination of the pentacosa-10, 12-diynoic acid (PCDA) monomer and the poly 

(styrene-co-butyl acrylate) (PSBA) latex.  The PCDA/PSBA latex is intended for the 
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indication of gamma radiation.   In order to achieve this goal, four objectives are 

highlighted below: 

(a) To formulate and optimize a uniform size poly (styrene-co-butyl acrylate) 

(PSBA) latex as a function of irradiation dose and monomer in water ratio. 

(b) To study the surface charge density on the PSBA surface by the deposition of 

polyelectrolytes (PSS and PDADMAC) through the layer-by-layer method. 

(c) To diffuse the PCDA monomer onto the modified PSBA surface at different 

volume ratios. 

(d) To characterise the optical response of PCDA/PSBA upon exposure to gamma 

radiation. 

1.4 Scope of the Study 

The first part of this study began with the preparation of the poly (styrene – 

butyl acrylate) polymer in the form of a latex.  The preparation involved the radiation-

induced synthesis of the copolymer in emulsion.  Gamma irradiation was used only to 

produce uniform latex particles with an average diameter between 100-300 nm. The 

range of PSBA size was chosen to fit inside PCDA vesicle as a polymer core without 

distorting the original assembly. The ratio of styrene to butyl acrylate in the copolymer 

was formulated for a Tg lower than 25°C to allow for particle coalescence during water 

removal at room temperature when required.  The optimum formulation for particle 

recovery was identified for the next objective. 

The development of polyelectrolyte (PEL) multilayers on the PSBA sphere 

created additional interaction between the PCDA and PSBA cores besides the existing 

hydrophobic-hydrophilic interaction.  Multiple layers were built through the layer-by-

layer deposition method.  This method involves the deposition of poly (sodium 4-

styrenesulfonate) (PSS) as a polyanion, and poly (diallyldimethyl-ammonium 

chloride) (PDADMAC) as a polycation on the PSBA surface at five different layers 

(L1, L2, L3, L4 ad L5).  Their stability in colloidal form (zeta potential) and particle 

sizes were monitored and characterised. 
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The PCDA, which was prepared in vesicle form, was introduced to the 

PSBA/PEL via an aqueous medium.  The colloidal stability of the latex after the PCDA 

deposition was then monitored and evaluated.  The unstable colloid that formed 

agglomerates as a result of the deposition was terminated.  At this stage, the 

background optical absorbance of every latex was measured as a reference for the next 

step. 

Radiation exposure was carried out in series on the PCDA/PSBA-PEL to 

evaluate their performance as radiation indicators.  The field test was limited to a 

gamma-ray source obtained from Cobalt 60 (60Co) and Cesium 137 (137Cs).  The 

radiation dose for low energy 137Cs is between 5 Gy to 7 kGy and the radiation dose 

for high energy 60Co is between 5-50 kGy.   The minimum dose of radiation that 

stimulates the optical response of the PCDA/PSBA-PEL was identified using the 

CIElab colour space within a visible region of 400-700 nm.  An evaluation of the 

PCDA/PSBA-PEL optimum response against radiation exposure was also conducted 

to determine its limitations for application. 

1.5 The Novelty of the Study 

The novelty of this study lies in the addition of the white PSBA core into PCDA 

for polymer support and reflectance enhancement.  Unlike the blending method, the 

PCDA in this study was deposited on the outer surface of individual PSBA particles 

and maintains its colloidal stability for radiation indication.  The advantage of this 

technique is the possibility of the PCDA to self-assemble on the PSBA surface.  In 

terms of colour response, the true colour of PCDA can be seen directly upon radiation 

exposure for it always stays on top of the surface. 
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