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ABSTRACT

Natural frequency has been used as a reliable indicator for damage and
condition assessment in civil engineering application, where the in situ natural
frequency is compared to the theoretical natural frequency to determine the
condition of a structure. However, the theoretical natural frequency for integral
abutment bridge can be difficult to attain. It involves modelling for full bridge
and required extended knowledge of bridge modelling. Furthermore, the
integral abutment bridges in Malaysia are unique by themselves, due to the use
of different standard T-Beam by JKR and bored piles as the supporting element
which are different from other countries. Although there are several studies on
the model equation on predicting the natural frequency of a bridge, the
prediction model for integral type bridge is yet to be discovered. Therefore, this
research is carried out to produce model equation to determine theoretical
natural frequency for integral abutment bridge. This research consist of two
major tasks. The first task is to produce the theoretical model. The total
numbers of 168 finite element models of integral abutment bridge were
modelled using ABAQUS software with considering a combination of various
bridge configurations, including length, number of beam, modulus of elasticity
and soil types. Each combination model of integral abutment bridge was
analysed using Lanzcos Eigen Extraction to obtain the natural frequency. The
natural frequency was then recorded for further analysis. A step-wise multiple
linear regression approach was adopted to develop the prediction model
describing natural frequency relationship for a various combination of bridge
configuration. Then, the model equation was validated using empirical data
from experimental modal analysis as the second task of the research. The data
were collected on site from three different integral abutment bridges using
impulse hammer as excitation method. Dewesoft signal processing software
was used to acquire the raw data from the test. Then, the data was further
analysed using ME scope software. The determination of the natural frequency
from this software was based on the coherent, real part and modal indicator
function. Subsequently, the theoretical and observed natural frequencies were
compared statistically using T-test. The prediction model equation of natural
frequency shows a good conformance with the experimental modal analysis
obtained at site. The model equation describing the natural frequency for
integral abutment bridge is found to be influenced by length, number of beam
and modulus of elasticity significantly.
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ABSTRAK

Frekuensi semulajadi telah digunakan sebagai penanda yang diterima
pakai dalam proses mengenal pasti kerosakan dan pemeriksaan keadaan
sesebuah struktur kejuruteraan awam. Kerosakan yang wujud dikenalpasti
dengan cara membandingkan frekuensi yang dicerap dengan frekuensi semula
jadi yang diperolehi secara teori. Walau bagaimanapun, frekuensi semula jadi
teori jambatan agak sukar diperolehi memandangkan ianya memerlukan
pemodelan keseluruhan struktur jambatan dan kepakaran dalam memodelkan
struktur jambatan. Tambahan pula, jambatan jenis integral di Malaysia
merupakan sebuah rekabentuk yang unik kerana menggunakan rasuk jenis
standard oleh JKR dan juga menggunakan cerucuk jenis tergerek yang berbeza
dengan struktur di negara lain. Walaupun terdapat banyak kajian berkaitan
frekuensi semula jadi, kajian berkaitan frekuensi semula jadi bagi jambatan jenis
integral masih kurang. Dalam kajian ini terdapat dua tugas utama. Tugasan
pertama adalah bagi menghasilkan model matematik bagi mengenalpasti
frekuensi semula jadi bagi jambatan jenis integral. Sebanyak 168 model unsur
terhingga disediakan dengan merangkumi panjang jambatan, bilangan rasuk,
modulus keanjalan dan jenis tanah. Setiap gabungan model dianalisa
menggunakan kaedah Lanzcos Eigen Extraction bagi memperolehi frekuensi
semulajadi. Frekuensi ini direkodkan dan digunakan untuk analisa regresi
pelbagai menggunakan kaedah step wise bagi mendapatkan model matematik.
Model matematik ini kemudiannya ditentusahkan menggunakan data empirik
menggunakan pengujian di tapak. Data frekuensi daripada 3 buah jambatan
jenis integral diperolehi menggunakan tukul impulse sebagai penguja. Perisian
Dewesoft digunakan bagi mengumpulkan data frekuensi dan seterusnya
dipindahkan kepada perisian lain iaitu ME Scope bagi membolehkan data
frekeunsi semula jadi diperolehi berdasarkan kepada koheren, bahagian real dan
modal indicator function. Kemudiannya data secara teori dan data yang
diperolehi di tapak dibandingkan menggunakan kaedah statistik T iaitu ujian T.
Ujian T telah mengesahkan bahawa model matematik untuk mendapatkan nilai
frekuensi semula jadi boleh memberikan nilai yang agak tepat berbanding
dengan data yang diperolehi di tapak. Hasil kajian ini mendapati model
matematik bagi mendapatkan nilai frekuensi semula jadi untuk jambatan jenis
integral bergantung kepada panjang jambatan, bilangan rasuk dan modulus
keanjalan.
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CHAPTER 1

INTRODUCTION

1.1  Background

Bridges form a critical infrastructural connection for the road network
in Malaysia. Several cases of bridge collapse are due to unforeseen damage
and poor bridge monitoring management. In the event of these occurrences,
the continuity of daily traffic and business would be affected tremendously.
Apart from serious disruption to the public, bridge collapse could also resulted
in huge economic losses. For instance, in the case of the collapse of I35 bridge
in Minneapolis, the economic losses were approximately USD 200 Million

(Kim and Lynch, 2012).

Repair and maintenance of infrastructure facilities are rapidly becoming
a major financial burden for authorities bringing forth many new challenges
for civil engineers (Whelan et al, 2009). Key to the successful upgrading of
such structures is timely detection and quantification of damage and
deterioration, and in particular, those which build-up over time during the
operational lifetime of the structure. Aging infrastructure facilities, especially
those made of concrete, are currently deteriorating at a rapid pace, and this
poses a big challenge to the authorities and owners who need to manage a

large inventory of these structures.



In 2003, government of Malaysia has gazetted a new Weight

Restriction Order 2003 (JPJ, 2003) which affected almost 9000 structures

along the federal route (JKR, 2009). In conjunction with the order, the

government of Malaysia through the Jabatan Kerja Raya has come up with the

reviewed report on the existing structures along the federal route throughout

Peninsular Malaysia.

From the report, almost 1200 structures are considered substandard,
damaged and unsuited to service and recommended to be replaced (JKR,

2006). The report however, did not cover all the structures in State Roads,

Municipal Roads and Rural Roads.
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Figure 1.1 Length of Road in Malaysia (JKR, 2016)

Figure 1.1 shows the total length of roads in Malaysia (JKR, 2016).
The increased trend on road link in Malaysia according to JKR (2016) also

showed the possibility of increasing number of bridges all over Malaysia. The



federal roads and the state roads is under provision and maintenance of Jabatan
Kerja Raya Malaysia. This two types of road forming the basic networks inter-
state and within a state. It serves intermediate trip lengths and medium

travelling speed.

Jabatan Kerja Raya Malaysia is entrusted to execute the Bridge
Replacement Program which was one of the biggest programmes in every
consecutive Malaysia Plan. In 2011, the Deputy Minister of Works stated that,
94 bridges would be replaced with the total budget of RM 500 million in
second term of 10" Malaysian Plan. (Utusan Online, 2011; Berita Harian

Online, 2011).

With a huge allocation of for bridge replacement annually, the accuracy
of condition assessment is vital to assure that the allocation of spending can be
beneficial and objective. It is a necessity to find a suitable method to
accurately accessing all the structures along the route. Given the cost of
rebuilding is quite expensive, and allocation rather scarce, the method of
detection of damage in the structure should be accurately assessed to prioritise

the allocation of government spending.

In addition, the Jabatan Kerja Raya Malaysia carry out yearly bridge
inspection to monitor the performance and damage in the bridges all over
Malaysia under the supervision of Jabatan Kerja Raya Malaysia. This annual
inspection also has some practical weightage to justify that the replacement is

necessary.

The inspection would also include visual inspection to foresee any

noticeable damage to the structures. Visual inspections are time-consuming



and resource exhausted. The inspection also solely relies on the visual which

may lead to the error in accepting the bridge condition assessment.

The condition rating as the outcome from the inspection reports is
subjective and varies from person to person. The rating given for the
assessment may result in significant differences between experienced
personnel with new personnel. Any unforeseen damages on the structure may

not be addressed and thus may jeopardize the road users and the public.

1.2 Problem Statement

Currently structural health monitoring is an emerging field in the
structural engineering due to the rapid development of monitoring equipment
such as wireless transducers, lightweight signal analysers, new operating

systems. (Miao et al, 2013b; Shye et al, 1987; Ko and Ni, 2005).

One of the trending approaches in damage detection nowadays is using
vibration characteristics (Kuras et al, 2011; Stubbs and Kim, 1996). There are
numerous researches on the use of vibration characteristic as damage detection
and health monitoring tools. Among the various parameters, the natural
frequency is widely used as a reliable indicator of damage occurring in a

structure since it can be readily identified from model tests (Kim et al, 2003).

The inference that being made is, if the damage occurs in a structure,

stiffness degradation will take place, which accordingly causes the change of



resonant frequencies for various modes (Flesch and Kernbichler, 1988;

Sawalu, 1997; Kuras et al, 2011).

The significant reduction in stiffness can be inferred when the
measured resonance frequencies are substantially lower than the baseline
values (usually defined as frequencies in the undamaged state) (Atamturktur et

al, 2013; Kim et al, 2003).

Baseline dynamic characteristics is now being captured right after the
bridges completed before the bridges is opened to the public. The recorded
data is then being kept by the relevant authorities and the monitoring of
dynamic characteristic is done from time to time. If there is a change in the
dynamic signatures of the bridge, the data is then being analysed to see the

fitness of the bridge for the next action.

These initial vibration signatures are precious pieces of information that
can be used for further damage identification and damage detection. This

information also a vital information for the bridge monitoring purposes.

Currently in Malaysia, the vibration data of bridges are difficult to
obtain, largely due to a lot of procedures to be met and lengthy processes
required by the authorities before getting access to the bridge or bridge data.
The initial natural frequencies of the newly built bridges also not being
documented unless there is a provision under the construction or contract terms
which specify that the data of natural frequency should be recorded before the
bridge is opened to the public.



If there is a tool or prediction theory to predict the natural frequency of
a bridge at service, it may favour the researcher and authority to further use the
technique to investigate the bridge structural health. Therefore, this study is
carried out to establish a reliable baseline to determine the natural frequency of
an integral bridge which may come handy for the authorities and researchers,

should further investigation need to be done.

1.3 The Research Motivation

Integral bridge is a bridge that being designed with the elimination of
expansion joints and bearing so that the superstructures and substructures are
cast together and worked integrally. This design is an innovation in bridge
technology due to its ability to cater for movement and the rotation of the
whole structure, compared to the conventional type of bridge where the
movement and rotation are being addressed by expansion joints and bearings

(Ahn et al, 2011).

Considering the beneficial contribution of integral bridges, most of the
design for simple bridges in Malaysia started to embark on this type of
construction since 2003. Integral bridge type has been proven to be cost

effective in terms of construction as well as its overall lifespan (Dicleli, 2000).

Integral bridge construction method has become a matter emphasized in
the Design Terms of Reference since 2008 by the Bridge Unit of the Jabatan
Kerja Raya to be considered by bridge designers, whether in the private or

government sector (JKR, 2008).



Integral Abutment Bridges are likely to be adopted as the concept of
construction if the bridges are going to use the integral system for single span
structures. In Malaysia, most of the integral bridges are from the integral

abutment bridge type (JKR, 2014).

Considering the unavailability of the vibration data and the current
procedure by the authority, this study will be focusing on the prediction model

of an integral abutment bridge.

1.4  Research Objectives

1. To develop and validate the finite element model of an integral
abutment bridge.
ii. To develop and validate the empirical prediction model of natural
frequency of integral abutment bridge
iii.  To establish the measurement procedures conducting experimental

modal testing on integral abutment bridges.

1.5 Research Scopes and Limitations

1. The research will focus on the integral bridges made from JKR
Standard Pre-Stressed T-Beam with lengths from 15m to 30m.

ii.  The designed abutment bridge is kept at 1000mm width.



1il.

The selected bridges are those constructed using 600 mm bored

piles as the foundation.

1.6  Research Significance

Due to the relevancy using dynamic signature as a practical approach in

bridge monitoring, the accurate empirical model determining the baseline

natural frequency definitely assist the successive procedure to determine the

damage level in bridge. Hence, this study contributes significantly towards

modal experimental fields.

The contributions of the study are listed in the following:

1i.

1il.

1v.

Establish the alternative equation of predicting the natural
frequency to other established equations.

Establish the empirical model to determine natural frequency of
single span integral bridge.

The established model is capable to determine the natural
frequency considering the factor of length, number of beams and
modulus of elasticity.

Simplification of present modelling procedure or method in
determining the natural frequency of an integral bridge.

The direct and simple prediction model can be used by the
practitioners and researchers to anticipate the natural frequency

in the design process and optimizing the design.



1.7  Organisation of Thesis

The organisation of the thesis is as follows:

Chapter 1 presents the background of the research, the problem
statements, the objectives of the research, the scopes and the limitations,

significance of the research and the outlines of the thesis.

Chapter 2 discussed the previous literature on vibration characteristic,
the modal analysis and experimental, the established models and the modal

experimental test conducted on real bridges.

Chapter 3 discussed the details methodology on conducting this
research, the sequence of research works and the details of each phase. In this
chapter as well, the calibrations of each method and instrumentation are

presented.

Chapter 4 presents the numerical model of Integral Abutment Bridge
technique using ABAQUS as the modelling tools. In this chapter the steps of
modelling the 3 D finite element model of the Integral Abutment bridges are
listed down including all the types of elements, the selection boundary

condition, the analysis and the element parameters.

Chapter 5 discussed on the development of the empirical prediction
model of an integral bridge. Each factors or manipulations affecting the

natural frequency will be discussed separately and the final prediction models



used multiple regression to find the relationship of each factor to natural
frequency of the integral bridge. The final empirical expression is presented to

predict the first natural frequency of integral abutment bridge.

Chapter 6 presented and discussed the results of site validation for the
prediction model of integral bridge. In this chapter, the location, the
arrangement of beam, the soil profile as well as the configuration of the
selected integral bridges are presented. The result of the experimental modal
analysis of the bridges is tabulated and compared to the finite element model

and the empirical model developed.

Chapter 7 provides the conclusion of this research and the contribution
to the current field of health monitoring. The recommendations for future

research are also presented.
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