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ABSTRACT 

The Government of Malaysia has promoted the usage of Industrial Building 

System (IBS) since the early 1960s. However, based on the IBS Roadmap 2003-2010 

published by the Construction Industry Development Board Malaysia (CIDB), the 

factors contributing to the delay of IBS implementation in Malaysia are lack of 

knowledge among designers and requiring more local researches and developments, 

technologies and support services. One of the research areas is to develop a new type 

of load-bearing wall system to overcome the corrosion problem of reinforcement steel 

in the precast concrete wall panels. The aim of this study is to develop a new type of 

precast load-bearing wall panel system. The proposed system involved composite 

cold-formed wall panel (CCFWP) which consists of concrete and cold-formed steel 

sections, where the steel sections act as reinforcements. The load carrying capacity and 

the buckling behaviour of individual wall studs, wall frames, and CCFWP were 

assessed and validated with the relevant code of practices, and data from previous 

studies. The empirical equation to estimate the load carrying capacity of CCFWP has 

been proposed. The structural behaviour of individual wall studs, wall frames and 

CCFWP were investigated using full-scale experiment. Influences of web and flange 

holes, wall frame arrangements, aspect ratio and slenderness ratio on load carrying 

capacity of individual wall studs, wall frames, and CCFWP were also studied. It was 

found that web and flange holes with 150 mm spacing provide adequate compressive 

strength for the wall studs, and Arrangement 1 with one middle stud is considered as 

the best arrangement of the wall frame since it yielded higher and consistent results. 

The increment in ultimate axial strength ratio for CCFWP is 4% when the slenderness 

ratio of the CCFWP increased from 6 to 13, and the increment in ultimate axial strength 

ratio is 7.3% when the aspect ratio increased from 1.67 to 3.33. From the validation 

process, the closest prediction of the ultimate axial load of CCFWP is provided by 

BS8110. Subsequently, the proposed empirical equation for CCFWP is modified from 

the empirical equation as in BS 8110 by incorporating the effect of slenderness ratio, 

aspect ratio, and the contribution of the cold-formed steel.   
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ABSTRAK 

Kerajaan Malaysia telah menggalakkan penggunaan teknologi Sistem Binaan 

Berindustri (IBS) bermula pada awal tahun 1960-an. Walau bagaimanapun, 

berdasarkan IBS Roadmap 2003-2010 yang diterbitkan oleh Lembaga Pembangunan 

Industri Pembinaan Malaysia (CIDB), factor-faktor yang menyumbang untuk 

penangguhan pelaksanaan IBS di Malaysia adalah kurangnya pengetahuan di kalangan 

jurutera dan keperluan lebih banyak penyelidikan dan pembangunan, teknologi dan 

perkhidmatan sokongan. Salah satu bidang kajian adalah membangunkan sistem 

dinding galas beban yang baru bagi mengatasi masalah kakisan keluli tetulang dalam 

panel dinding konkrit pratuang.  Tujuan kajian ini adalah untuk membangunkan sistem 

panel dinding galas beban yang baru. Sistem yang dicadangkan melibatkan panel 

dinding komposit keluli terbentuk sejuk (CCFWP) yang terdiri daripada konkrit dan 

keluli terbentuk sejuk yang bertindak sebagai tetulang. Kekuatan dan tingkah laku 

tiang dinding individu, bingkai dinding daripada keluli terbentuk sejuk dan CCFWP 

telah dikaji dan disahkan dengan kod amalan yang berkenaan, dan data daripada kajian 

terdahulu. Persamaan empirikal untuk menganggarkan kapasiti kekuatan menanggung 

beban bagi CCFWP telah dicadangkan. Ujian berskala penuh telah dilakukan untuk 

mengkaji kelakuan tiang dinding individu, bingkai dinding dan CCFWP. Pengaruh 

lubang pada web dan bebibir, susunan bingkai dinding, nisbah aspek dan nisbah 

ketinggian pada kekuatan tiang dinding individu, bingkai dinding dan CCFWP juga 

telah dikaji. Didapati bahawa lubang pada web dan bebibir tiang dinding individu 

dengan jarak 150 mm memberikan kekuatan mampatan yang mencukupi dan Susunan 

1 yang mempunyai satu tiang dinding tengah adalah susunan bingkai dinding terbaik 

kerana ia memberi hasil yang lebih tinggi dan konsisten. Peningkatan nisbah kekuatan 

paksi muktamad untuk CCFWP adalah sebanyak 4% apabila nisbah ketinggian 

CCFWP meningkat dari 6 ke 13, dan peningkatan nisbah kekuatan paksi muktamad 

adalah sebanyak 7.3% apabila nisbah aspek meningkat dari 1.67 ke 3.33. Daripada 

proses pengesahan mendapati ramalan terhampir bagi kekuatan beban paksi muktamad 

CCFWP diberikan oleh BS8110. Seterusnya, persamaan empirikal yang dicadangkan 

telah diubah dari persamaan empirikal oleh BS8110 dengan mengambil kira kesan 

nisbah ketinggian, nisbah aspek dan sumbangan kekuatan keluli terbentuk sejuk.  
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Background 

Malaysia is known as one of the developing countries in the world with the 

number of population reaching 32 million in 2017 which is an increase of about 1.3% 

from 2016 (Bernama, 2017). As the population increases, the demand for facilities 

including housing areas for shelters, industrial areas for job opportunities and the urban 

areas also increases. With reverence to this issue, the function of the construction 

industry can take part in order to consummate these needs. In many countries, the 

construction industry plays an important role in the economic development. According 

to RAM Ratings (2016), the recorded growth in the construction of residential 

buildings at about 11% and the non-residential buildings recorded a 14% expansion 

from 2014. Therefore, the construction sector in Malaysia has proved to be the sector 

that ranked first in terms of its development economic in 2015. 

 

 

 Aligned with the growth of the construction industry and demand for housing 

in Malaysia, therefore the Construction Industry Development Board Malaysia also 

known as CIDB has initiated the use of the Industrialized Building System (IBS). IBS 

is a new construction technique that was introduced in Malaysia since the 1960s and 

the main objective is to solve the problem of shortage of houses. This is due to the 

available method of construction (conventional) is ineffective and incapable to deal 

with the incrementing demand of facility in Malaysia especially housing area and 

industrial area. According to CIDB, IBS can be defined as a construction activities that 

relate to the utilising of off-site prefabricated construction components and products 

such as beam, column, floor panel and wall panel. All the components will be 

transported, arranged and installed on-site (CIDB, 2003). The advantages of IBS 
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construction technique is that it can reduce the on-site activities that lead to more 

organized construction site, thus significantly reducing the completion time of 

construction. Furthermore, the adoption of the IBS construction technique can reduce 

the use of unskilled workers, less volume of building material on-site, thus reducing 

wastage and increasing construction site cleanliness.  

 

 

Based on Rahim and Qureshi (2018), the private sector in Malaysia is still 

cannot fully accept the use of IBS and CIDB is still in the process of encouraging the 

use of IBS in this sector. One of the factors that contributing to the delay of its 

implementation in Malaysia is insufficient knowledge on IBS method among designer 

(Kamarul et al, 2007). In order to overcome this problem, more local research and 

development (R&D), technologies and support services are required. One of the areas 

or components in IBS that can be developed is the load-bearing wall panels, where 

there is a need to produce an effective and suitable load-bearing wall panel system for 

IBS construction. Other than CIDB, the involvement of universities (academia), 

research institutes, contractors, consultants, and companies are critical towards the 

implementation of IBS. 

 

 

Nowadays, the used of cold-formed steel in Malaysia construction sector 

is quite common but only familiar in the roof truss constructions. There are a few 

factors that limit the usage of cold-formed steel in Malaysia i.e. the market perception 

that the cold-formed steel is expensive and lack of knowledge among local design 

engineers and architects on the application and design of cold-formed steel structure. 

However, the application of cold-formed steel in a developed country is becoming very 

popular due to several advantages such as speedy construction, high strength to weight 

ratio, dimensional stability and recycle material (Billah et al, 2019). The application 

of the cold-formed steel sections is not limited to the interior non-load bearing and 

curtain walls, storage racks and various types of equipment but getting attention for 

use as load-bearing wall panel, floor panel and roof truss members in residential and 

commercial building (Hu, 2008). 
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 The chapter onwards will discuss the new technology of a composite load-

bearing wall panel with cold-formed steel section that has a great potential to be further 

studied and developed in Malaysian's IBS construction industry.  

 

 

According to ACI 318-08 Clause 2.2, wall is defined as a vertical member used 

to enclose or separate spaces in a building or structure (Fanella, 2011). Walls as a 

structural element in the building system contribute to multiple different purposes and 

sometimes perform two or three roles together. Walls are divided into two types which 

is a non load-bearing wall and load-bearing wall. A non load-bearing walls usually has 

the function of dividing space, providing sound insulation and fire resistance 

requirements for the buildings. There are no others load carried by this wall, but only 

its own self-weight.  

 

 

 A load-bearing wall or sometimes called as structural walls whose length is not 

less than four times its thickness may perform the roles in two ways (Fisher, 1972). 

The first role, a load-bearing wall must be designed to resist the axial or vertical loads 

applied, in addition to their own self-weight. Second, the stabilising wall is also 

identified as shear walls are designed to resist the horizontal forces from wind load 

and earthquake load in the direction parallel to the length of the wall.  

 

 

 Walls can be classified as stocky wall if the effective height (𝑙𝑒) divided by the 

thickness (ℎ) of the wall does not exceed 15 and slender wall if 
𝑙𝑒

ℎ
 greater than 15 

(BS8110). 
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1.2 Statement of the Problem 

 Many low to medium rise buildings are built to have the load-bearing walls as 

the main supporting elements. The appropriate thickness of the load-bearing walls 

usually depend on the application and height of building. There is a possibility that an 

external wall could become unstable and failed if the applied load is greater than the 

strength of the material used, thus able to cause the collapse of the structure and 

building. Nowadays, the most popular materials used in the construction of load-

bearing walls in buildings are concrete, blocks and bricks. 

 

 

 Traditionally, a brick wall was used as a load-bearing wall in low to medium-

rise buildings, for internal walls and cladding of buildings but there are a few 

limitations when using a brick wall. Beasley (2000) mentioned that there are two broad 

categories of traditional wall failures which is the stability failures and serviceability 

failures. Stability failures include complete wall collapse or partial collapse and loose 

of pieces or crushing while stability failures include water leakage, formation of cracks 

or aesthetic deterioration to the structures. There are a few relevant factors in deciding 

the use brick walls from the construction point of view which are the obtainability of 

the skilled labour, the time of construction and the phasing of the overall building 

planning. This is because each brick must be mortared and placed by hand and as a 

form of ‘wet’ construction, the brick needs time to dry out and as a result slows down 

the rate of the construction. Other than that, bricks are susceptible to water absorption 

and when they absorb water they deteriorate quicker than other materials. 

 

 

 In the 20th century, most of the constructions started to change the direction of 

traditional brick walls to reinforced concrete walls. A few limitations and issues with 

brick walls were solved by using reinforced concrete walls. Nevertheless, reinforced 

concrete wall can fail due to inadequate strength thus end up to the mechanical failure, 

a reduction in durability and corrosion problem. When reinforcement bar corrodes, the 

oxidation products expand and results in the formation of cracks in the concrete, and 

finally unbonding the rebar from the concrete. The expansion of corrosion products 

will result in serious defects in reinforced concrete walls (Kyung et al, 2004). 
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Extensive studies also have shown that under high axial compressive load ratio, the 

conventional RC walls will have low ductility and limited deformation capacity when 

subjected to cyclic lateral loads (Qian et al, 2012). 

 

 

 Therefore, the precast concrete wall panel has been introduced as the newest 

product in the concrete industry and gaining popularity to replace the conventional 

brick walls and reinforced concrete walls. There are many advantages of precast 

concrete wall panels such as lightweight, speed of erection, fire resistance and 

minimum maintenance. However, the main problems encountered with the precast 

concrete wall panels is bulging of panels and heat transmission problem (Leabu, 1959). 

Popovic and Arnold (2000) also mentioned that due to the exposure to freeze-thaw 

cycles, the surface of precast concrete wall panels will develop cracks and shallow 

spalls, tend to caused corrosion to the embedded reinforcing steel. 

 

 

The idea to use a cold-formed steel section as reinforcement in the wall instead 

of reinforcement bars can overcome the corrosion problem in the precast concrete wall 

panels. Rondal (2000) and Davies (2000) reported that the production of economic 

coated steel coils and improving the technology of manufacture for cold-formed steel 

have given a solution to the architectural and corrosion problems in construction and 

resulting to the increased use of cold-formed in new structural applications. It is 

believed that, application of a cold-formed steel can derive benefits to the new 

composite cold-formed load-bearing wall panel proposed in this study due to its 

characteristics of high strength to weight ratio and high resistance to corrosion. 

Therefore, the main intentions of this research are to fulfill the demands for more 

innovative wall panel construction method and to overcome the shortcomings in the 

conventional wall construction and problems in precast concrete wall panels. 
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1.3 Objectives of the Study 

The aim of this study is to develop a new load-bearing wall panel using 

concrete and cold-formed channel section. In order to achieve this aim, several 

objectives are identified as follow: 

 

 

1. To assess the load carrying capacity and buckling behaviour of individual wall 

studs and cold-formed wall frames proposed in this study. 

2. To validate the performance of the individual wall studs and cold-formed wall 

frames by comparing the experimental results and predictions by Eurocode 3. 

3. To investigate the structural behaviour of the proposed composite cold-formed 

load-bearing wall panel (CCFWP) by means of the experimental investigation 

of full-scale tests. 

4. To propose an empirical equation to estimate the load carrying capacity of the 

proposed CCFWP. 

 

 

 

1.4 Scope of the Study 

 The focus of this study is to develop a new type of load-bearing wall panel 

utilizing concrete and cold-formed channel section as a reinforcement in the wall 

panel. The scope of this study consists of two phases of experimental investigation. 

The first phase focuses on testing the cold-formed individual wall studs from lipped 

channel sections to determine the suitable position and spacing of drilled holes (shear 

connector) and testing of the wall frames with four different proposed arrangement. 

The proposed cold-formed wall frames are embedded in composite wall panels and act 

as the steel reinforcement. The second phase of experimental investigation focuses on 

testing the full-scale composite cold-formed wall panels (CCFWP) with different 

height of wall panels. The composite wall panels were prepared with normal strength 

concrete. All the specimens were tested under axial loading. The behaviour of CCFWP 
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studies from the experimental results and observations are the load carrying capacity, 

load-deflection profiles, crack pattern, strain distribution, the efficiency of the wall 

frame arrangements and the influence of vertical steel.  

 

 

 The experimental results from the first and second phase of testing are 

validated by comparing with the predictions by Codes of Practices and previous 

researchers. A suitable empirical equation is proposed to determine the ultimate load 

carrying capacity of proposed CCFWP under axial compressive load.    

1.5 Significance of the Study 

 Throughout this study, information about the structural behavior of the 

CCFWP is being provided. The results of this study are very important to provide 

further justification and important information on the CCFWP in terms of strength, 

failure mechanism, and deformation capacity under axial compressive loading. The 

information will assist in the design of CCFWP to be used as a precast wall panel and 

as an alternative to conventional reinforced concrete walls. An empirical equation 

proposed in this study is able to predict the ultimate load carrying capacity of CCFWP 

under axial compressive load. In addition, this study will broaden knowledge in the 

field of wall panels. 
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1.6 Thesis Outlines 

This thesis consists of six (6) chapters. The outlines of each chapter are depicted as 

follows: 

 

Chapter 1 - This chapter presents the background of the study, statement of the 

problem, objectives of the study, scope of the study and significance of the study. 

 

Chapter 2 - This chapter presents the comprehensive review on the area of study 

including research on cold-formed steel wall frame, load-bearing composite wall 

panels, discussion on empirical equations developed from previous researchers and 

code of practices to predict the ultimate axial load of wall. 

 

Chapter 3 - This chapter describes the methodology of the study. The fabrication of 

the individual wall studs, wall frames and CCFWP specimens. The detail description 

of the test set-up, instrumentation and procedure of the testing also presented. 

 

Chapter 4 - This chapter presents and discusses the experimental results of individual 

studs test and wall frames test. The experimental results were verified using the current 

code of practice. 

 

Chapter 5 - This chapter presents and discusses the experimental results of CCFWP 

test under axial loading. The theoretical validation of experimental results were 

performed by using empirical equations proposed by current code of practices and 

previous researchers. The suitable empirical equation also developed to predict the 

ultimate axial load capacity for CCFWP. 

 

Chapter 6 - This chapter provides conclusions and recommendation for future works 

on CCFWP. 
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