SEISMIC BEHAVIOUR OF REINFORCED CONCRETE STRUCTURE WITH VERTICAL STEEL SHEAR LINK

SEYED HAMED HOSSEINI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> School of Civil Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > APRIL 2019

ACKNOWLEDGEMENT

Foremost, I would like to thank my supervisor Assoc. Professor. SUHAIMI ABU BAKAR for the continuous support of my PhD study and research, for his patience, motivation, enthusiasm, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my PhD study. I would also like to thank all the members of staff at Universities Technology Malaysia who helped me. In particular I would like to thank Dr MOHAMAD REZA VAFAEI for his comments that help me in this research.

My sincere gratitude goes to my beloved family: parents and sister for their supports and prayers.

Last but not least, my thanks go to my all friends for their help and support specially MOHSEN KHODAPARAST, Dr . EMAD HOSSEINI POUR and Dr. MASEOD RAZAVI and Dr. Farinaz Behrooz.

•

ABSTRACT

Steel cross bracing system is a simple, economical and effective method of resisting lateral loadings for multi-story buildings. Vertical Shear Link (VSL), known as steel shear panel, is an efficient passive control system suitable for construction resistance against earthquakes. VSL has been installed between the joints of invert V-brace and reinforced concrete beams. VSL absorbs earthquake energy through the yielding of steel, while other structure's members stay in an elastic condition. Limited numerical studies have been conducted on VSL applied to Reinforced Concrete (RC) building frames with eccentric steel bracing. Furthermore, studies seeking to identify performance level and the seismic response of RC structures using VSL and plastic hinge formations are also limited. A study of ductility and stiffness of RC frames with/without VSL is required. Therefore, a lateral load transfer mechanism, from RC frame to VSL, needs to be investigated. The aim of this research is to conduct a numerical study, verification and parametric investigation through time history and pushover analyses. The experimental intention is to study the stiffness, ductility and energy absorption of RC frame using VSL. This system has the ability to control the stiffness and ductility of a structure; while both are important structural seismic characteristics. The experimental study is conducted on a conventional RC frame in comparison with a VSL retrofitting system. The experimental findings are used to validate Finite Element Analysis (FEA) models using ABAQUS software. Further parametric studies are developed to evaluate the effect of VSL shear capacity. Two categories of RC frame i.e., low-level and midlevel, are analysed using SAP 2000 structural analysis software. Two types of analysis are considered i.e., nonlinear static (pushover) and nonlinear time history. The parameters considered are invert V-brace and RC structure with VSL. FEA results show that the frame with the VSL system increased shear force capacity to 170% compared to the conventional RC frame. Meanwhile, invert V-brace increased the shear force capacity of the frame to approximately 200%. The ductility of the RC frame reduced to 160% due to buckling of the invert V-brace, while the RC frame with VSL satisfied the ductility. Observations from the experimental test show that VSL worked correctly inside the RC frame. The VSL system could properly absorb the imported lateral force to the RC frame; where the shear yielding mechanism of the VSL could prevent buckling of the braces. The VSL system, as a proposed alternative method to construct ductile structures, is clarified with great lateral stiffness. Moreover, the axial forces developed in the braces can be controlled by the VSL system.

ABSTRAK

Sistem perembat bersilang keluli adalah keadah yang mudah, ekonomi dan berkesan untuk menahan beban sisi bagi bangunan berbilang bertingkat. Perangkai ricih tegak (VSL) yang dikenali sebagai panel ricih keluli adalah satu sistem binaan kawalan pasif yang berkesan dan sesuai untuk memberi rintangan terhadap gempa bumi. VSL dipasang di antara sambungan perembat-V terbalik dangan rasuk konkrit bertetulang. VSL boleh menyerap tenaga gempa melalui alahan bahan keluli manakala anggota struktur lain masih kekal dalam keadaan elastik. Kajian ke atas VSL yang digunakan untuk pembinaan bangunan konkrit bertetulang (RC) dengan kesipian bagi perembat keluli adalah didapati sangat terhad. Tambahan pula, kajian tentang gerak balas seismik bagi struktur RC yang menggunakan VSL, dan pembentukan engsel plastik bagi mencari tahap prestasi sistem juga didapati masih terhad. Satu kajian tentang kemuluran dan kekukuhan kerangka RC dengan kehadiran dan tanpa kehadiran VSL adalah perlu. Mekanisme pemindahan beban sisi daripada kerangka RC kepada peranti VSL juga didapati perlu dikaji. Tujuan penyelidikan ini adalah untuk menjalankan kajian numerik dan kajian parametrik serta pengesahan dengan menggunakan analisis sejarah masa dan analisis tolak lebih. Satu ujikaji makmal dijalankan untuk mengkaji kekukuhan, kemuluran dan penyerapan tenaga bagi kerangka RC yang dilengkapi dengan VSL. Kajian ujikaji dijalankan terhadap kerangka RC konvensional dan dibandingkan dengan sistem yang dipasang dengan VSL. Data ujikaji digunakan untuk mengesahkan model unsur terhingga (FE) menggunakan perisian ABAQUS. Dimana kajian parametrik yang lebih terperinci telah dibangunkan bagi menilai kesan keupayaan ricih VSL. Dua kategori kerangka RC pada aras rendah dan aras sederhana bagi kerangka telah dianalisis menggunakan perisian SAP 2000. Dua jenis analisis telah dijalankan, iaitu analisis statik tak lelurus (tolak lebih) dan analisis sejarah masa tak lelurus. Parameter yang dipertimbangkan ialah perembat-V terbalik dan struktur RC dengan VSL. Keputusan analisis FE menunjukkan kerangka dengan sistem VSL boleh meningkatkan keupayaan daya ricih sehingga 170% berbanding dengan kerangka RC konvensional. Sementara bagi perembat-V terbalik, ia boleh meningkatkan keupayaan daya ricih kerangka sehingga kira-kira 200%. Kemuluran kerangka RC didapati berkurang sehingga 160% disebabkan oleh lengkokan pada perembat-V terbalik manakala kerangka RC dengan VSL didapati memenuhi kemuluran. Pemerhatian daripada ujian ujikaji menunjukkan bahawa VSL berfungsi dengan baik di dalam kerangka RC. Sistem VSL dapat menyerap tenaga dengan baik bagi daya sisi yang dipindahkan kepada kerangka RC dengan pencapaian mekanisme alahan ricih VSL dan dapat menghalang lengkokan seterusnya bagi perembat. Sistem VSL yang dicadangkan ini boleh dijadikan sistem alternative untuk menghasilkan pembinaan struktur yang mulur dengan kekukuhan sisi yang tinggi. Selain itu, daya paksi dalam perembat juga boleh dikawal oleh sistem VSL.

TABLE OF CONTENTS

TITLE

DEC	CLARATION	ii
DED	DICATION	iii
ACK	NOWLEDGEMENT	iv
ABS	TRACT	v
ABS	TRAK	vi
TAB	LE OF CONTENTS	vii
LIST	Γ OF TABLES	xii
LIST	Γ OF FIGURES	xiv
LIST	Γ OF ABBREVIATIONS	xxiii
LIST	Γ OF SYMBOLS	xxiv
CHAPTER 1	INTRODUCTION	1
1.1	General	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of the Study	4
1.5	Significance of the Research	5
1.6	Thesis Outline	5
CHAPTER 2	LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Friction, Solid Visco-Elastic and Fluid Viscous Dampers	7
	2.2.1 Visco-Elastic Dampers	7
	2.2.2 Fluid Viscous Dampers	9
	2.2.3 Friction Dampers	10
2.3	Steel Hysteretic Dampers	11
	2.3.1 U-Shaped Mild Steel Strip Dampers	11

	2.3.2 Off-Centre Bracing System and the Toggle Brace Damper System	13
	2.3.3 Added Damping and Added Stiffness (ADAS)	13
	2.3.4 Triangular-Plate ADAS	14
2.4	Concrete Moment Frames	15
2.5	Concentrically Braced Frames and an Invert V- Bracing	18
2.6	Eccentricity Braced Frames	19
	2.6.1 Characteristics of the Shear Links	21
	2.6.1.1 A Length Horizontal Shear Link Beam	21
	2.6.1.2 Length of the Vertical Shear Link Beam	23
	2.6.2 Static Behaviour of the EBF	24
	2.6.3 Plastic Mechanism of a Ductile EBF System	26
	2.6.4 A Cyclic Inelastic Shear Link Numerical Model	29
	2.6.5 Link over Strength	30
	2.6.6 Effect of the Concrete Slab	31
	2.6.7 Previous Experimental Investigations about the Vertical Shear Links	32
	2.6.8 Final Numerical Study of the Vertical Shear Links	35
	2.6.9 Earlier Investigations Regarding the Retrofit RC Frames Using the Steel Bracing System	37
	2.6.10 Link End Connections	40
2.7	Nonlinear Time History Analysis	42
	2.7.1 NTA Methods	43
	2.7.2 The Hilber-Hughes-Taylor Methodology General Thoughts	46
2.8	P-delta	48
2.9	Summary	49
CHAPTER 3	RESEARCH METHODOLOGY	51
3.1	Introduction	51
3.2	Tested Specimens Description	52

		3.2.1	Geometry	52
		3.2.2	Design Specification	54
			3.2.2.1 VSL Design	55
	3.3	Mater	ials	56
		3.3.1	Steel Reinforcement Rebar	56
		3.3.2	Steel Sections	57
		3.3.3	Concrete	58
	3.4	Prepar	ration of the Specimens	59
	3.5	Test E	Equipment and Devices	64
		3.5.1	Test Setup	64
		3.5.2	Loading System	66
		3.5.3	Displacement Control Device	68
		3.5.4	Strain Gauge Installation	69
	3.6	Summ	nary	70
CHAPTE	R 4	EXPE	ERIMENTAL RESULTS AND DISCUSSION	73
	4.1	Gener	al	73
	4.2	Exper	imental Observations	74
		4.2.1	CRC Specimen	74
		4.2.2	RCVSL Specimen	80
	4.3	Energ	y Dissipation and Damping Ratio	86
	4.4	Ductil	ity	89
	4.5	Respo	nse Modification Factor	93
	4.6	Descri	iption of Stress and Forces	94
	4.7	Summ	ary	99
CHAPTE STRUCT	R 5 URE W	FINIT TH V	TE ELEMENT MODELLING OF THE RC	101
	5.1	Introd	uction	101
	5.2	The F	E Models and Component Description	101
		5.2.1	Type of parts in ABAQUS	102
		5.2.2	Element Meshing	105
		5.2.3	Material Properties	107
			*	

		5.2.3.1	Concrete Material Propertie	107
		5.2.3.2	Steel Material Properties	110
	5.2.4	Interacti	ons between Surfaces	111
5.3	Analy	sis Result	and Interpretation	111
	5.3.1	Verifica	tion of the FE Models	111
	5.3.2	Paramet	ric Study	119
		5.3.2.1	Behaviour of the Concrete Frame with Invert IV Brace	119
		5.3.2.2	Buckling Of the Braces	121
		5.3.2.3	Behaviour of the RC Frame	125
		5.3.2.4	Effect of the Concrete Compressive Strength	130
		5.3.2.5	Behaviour of the RC Frame with Different VSL Section	137
5.4	Sumn	nary		146
CHAPTER 6 RC STRUCTUE	MUL RE USII	TI STOR NG SAP 2	EY NONLINEAR ANALYSIS OF 2000	149
6.1	Introd	luction		149
6.2	Mode	ling		149
	6.2.1	Selected	of recorded ground motion	153
	6.2.2	Plastic H	linges in SAP2000 Software	156
6.3	Verifi	cation of	Sap 2000	158
6.4	Resul	t of NSA .	Analysis	160
	6.4.1	Four sto	rey specimens	160
		6.4.1.1	Distribution of Plastic Hinges	163
	6.4.2	Eight-St	orey Specimens	166
		6.4.2.1	Distribution of plastic hinges	167
6.5	Resul	ts of NTA	Analysis	170
	6.5.1	Four Sto	bry Specimens	170
	6.5.2	Four-Sto	prey Specimens	170
		6.5.2.1	Lateral Displacement and Storey Drift	170

		6.5.2.2	Maximum Base Shear and Internal Force	177
		6.5.2.3	Performance of Four-Storey RC Frame with IVB and VSL Brace	182
	6.5.3	Eight-St	orey Specimens	184
		6.5.3.1	Lateral Displacement and Storey Drift	184
		6.5.3.2	Maximum Base Shear and Internal Force	188
		6.5.3.3	Performance of Eight-Storey RC Frame with IVB and VSL Braces	193
6.6	Concl	usion		197
CHAPTER 7	CON	CLUSIO	N AND RECOMMENDATIONS	199
7.1	Gener	al		199
7.2	Concl	usions		199
	7.2.1	Experim	ental Investigation	199
	7.2.2	the deve element	elopment and verification of the finite models	200
	7.2.3	the nonli	inear time history analysis	200
7.3	Recor	nmendatio	on	200
REFERENCES				202

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Specimen properties of Jack Bouwkamp experimental test	32
Table 5.1	Section properties of specimens	53
Table 5.1	Mechanical properties of steel rebar through tensile	57
Table 5.1	Compressive strength of concrete	58
Table 5.1	Tensile Test results for concrete	59
Table 4.2	Ductility for CRC and RCVSL specimen	92
Table 4.3	Response modification factors of specimens	94
Table 5.1	Default parameters of CDP model under compound stress	109
Table 5.2	Lateral load comparison – displacement result of CRC, RCIVB and RCVSL.	121
Table 5.3	Section properties of brace in RCVSL and RCIVB specimens	122
Table 5.4	Specimen with different concrete compressive strength	131
Table 5.5	Result of RCVSL specimens with different concrete compressive strength	132
Table 5.6	Response modification factor for different concrete strength	132
Table 5.7	Response modification factor for specimen with different VSL section	141
Table 5.8	Ratio of VSL shear capacity to concrete column shear	146
Table 6.1	Sections of four story specimens	152
Table 6.2	Sections of eight story specimens	152
Table 6.3	Shear capacity of VSL device for eight story specimen	152
Table 6.4	Ground motion records	154
Table 6.5	System ductility factors for all 4 storey specimens	162
Table 6.6	Response modification factor	162
Table 6.7	System ductility factors for all 8 story specimens	167
Table 6.8	Response modification factor for eight story specimens	167

Table 6.9	Maximum displacement for each earthquake	170
Table 6.10	Maximum drift for MFVSL4 and MFIVB4 specimens	173
Table 6.11	Maximum base shear for MFIVB4 and MFVSL4 specimens.	177
Table 6.12	Maximum displacement for each earthquake	185

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
Figure 1.1	Eccentricity brace with a horizontal and vertical link	2
Figure 1.2	Free body diagram of frame with vertical link a) Load direction; b) Moment diagram; c) Shear diagram	3
Figure 2.1	Visco-elastic damper	8
Figure 2.2	Hysteresis loops of a viscoelastic dampers	8
Figure 2.3	Beam column connection with energy dissipation device. a) Elastomeric pad b) viscoelastic materials Source :Xu and Zhang (2001)	9
Figure 2.4	Taylor FVD – 15 inch (Hanson and Soong 2001)	9
Figure 2.5	FVD for Cartridge Pacific Northwest Baseball Stadium (Christopoulos 2006)	10
Figure 2.6	Normal friction dampers (Ozbulut et al 2011)	11
Figure 2.7	U-Shape damper (Aguirre and Sanchez 1992)	12
Figure 2.8	Off-centre bracing system (Estekanchi et al 2004)	13
Figure 2.9	Geometric details of ADAS device (Sahoo ,2015)	14
Figure 2.10	Detail of TADAS device (Zahrai ; 1999)	15
Figure 2.11	TADAS device installed place ((Zahrai ; 1999)	15
Figure 2.12	Frame Dimensions (Vecchio and Emara 1992)	16
Figure 2.13	Beam and Column Cross-Sections (Vecchio and Emara 1992)	16
Figure 2.14	Invert V bracing (IVB) and X bracing (Zel et al., 2011)	18
Figure 2.15	Inelastic response of chevron braced frames (Zhang 2011)	19
Figure 2.16	Different type of EBF configurations (Azad, 2017)	20
Figure 2.17	Multi story building with EBF system (Boston,USA) (www.web.iku.edu)	20
Figure 2.18	İstanbul Bilgi University, Prep School Building	21
Figure 2.19	Free-body diagram of link segment	22

Figure 2.20	Bending distribution resulting from lateral force for V-EBF $\!$	24
Figure 2.21	Free body diagram EBF with horizontal link (Aniello, 2006)	25
Figure 2.22	Free body diagram EBF with vertical link (Bouwkamp,2016)	25
Figure 2.23	Plastic mechanisms MRF (Bouwkamp,2016)	26
Figure 2.24	Plastic rotation of horizontal EBF (Vetr., 2017)	27
Figure 2.25	Plastic rotation of vertical EBF (Ghobarah, 2001)	28
Figure 2.26	Inelastic link rotation capacities reported in different experimental studies (Azad, 2017)	29
Figure 2.27	Load (shear or moment) versus deflection (rotation or drift ratio) relationships (Amiri, 2008).	30
Figure 2.28	Schematic of the experimental model of Jack Bouwkamp	32
Figure 2.29	Test step of composite vertical shear links by (Shayanfar, Barkhordari, 2011)	33
Figure 2.30	Easy going steel stress-strain curve	36
Figure 2.31	Finite element modelling (easy going steel VSL)	36
Figure 2.32	Detail of the X-bracing system and its connection to the RC frame.	38
Figure 2.33	Finite element model with ANSYS by Massumi (2013)	39
Figure 2.34	Hooked anchor bolts connection	41
Figure 2.35	Connection type: anchored at the opposite face	41
Figure 2.36	Linear and nonlinear Analysis method	43
Figure 3.1	Experimental program flowchart	51
Figure 3.2	CRC specimen (dimension mm)	52
Figure 3.3	RCVSL specimen (dimension mm)	53
Figure 3.4	a) Concrete column section b) Concrete beam section	54
Figure 3.5	Cross section of concrete foundation	54
Figure 3.6	a) bracing section b) VSL section	55
Figure 3.7	Stress-strain relationships for steel rebar	56
Figure 3.8	Nominal stress-strain curves for steel	57

Figure 3.9	Concrete compressive strength tests	59
Figure 3.10	Installed steel bars for column and foundation	60
Figure 3.11	The specimens placing vertically after 30 days	61
Figure 3.12	Anchored at the opposite face of beam	62
Figure 3.13	Anchored at the opposite face of column	62
Figure 3.14	Brace connected to VSL device	63
Figure 3.15	Stiffener welded on gusset plate	63
Figure 3.16	TEST STUP	65
Figure 3.17	Fixed specimens to the reaction frame	65
Figure 3.18	Hydraulic jack and load cell assemblages	66
Figure 3.19	Direction of cycle load that applied to the both specimens	67
Figure 3.20	Cycle loading protocol FEMA 461	68
Figure 3.21	LVDT arranged, a) CRC specimen; b) RCVSL specimen.	69
Figure 3.22	Strain gauge locations for the CRC specimen	70
Figure 3.23	Strain gauge location for RCVSL specimen	70
Figure 4.1	Terminology of structureal RC frame used in this chapter	73
Figure 4.2	Cycle loading applied on CRC specimen	74
Figure 4.3	Hysteric lateral load- displacement curves of CRC specimen	75
Figure 4.4	Crack on left column	76
Figure 4.5	Cracks of CRC when lateral displacement was 6.9 mm	76
Figure 4.6	Crack in beam to column joint	78
Figure 4.7	Uplift of column in CRC specimen	79
Figure 4.8	Side Crack Profiles of CRC Specimen a) Front b) Rear	80
Figure 4.9	Hysteric lateral load- displacement curves of RCVSL specimen	80
Figure 4.10	Tenth cycle crack appeared on left column	82
Figure 4.11	Eleventh cycle crack appeared on a) column b) VSL – beam joint	83
Figure 4.12	New cracks in twelfth cycle	84
Figure 4.13	Displacement of VSL devices in twelfth cycle	84

Figure 4.14	Failure on top welding	85
Figure 4.15	Failure on top welding and flange deformation	86
Figure 4.16	Crack Profiles of RCVSL Specimen a) Front side b) Rear Side	86
Figure 4.17	Cumulative Energy Dissipation Curves of CRC	87
Figure 4.18	Force displacements for equivalent viscous damping	88
Figure 4.19	Equivalent viscous damping	88
Figure 4.20	Bilinear Representation of force-displacement curve	90
Figure 4.21	Force-displacement curve of CRC specimen	91
Figure 4.22	Force-displacement curve of RCVSL specimen	91
Figure 4.23	Compare force-displacement CRC and RCVSL specimen	92
Figure 4.24	Compare compressive stress of concrete column in CRC and RCVSL	95
Figure 4.25	Compare stresses of column rebar for CRC and RCVSL specimens	96
Figure 4.26	Compare stresses of beam rebar for CRC and RCVSL specimens	96
Figure 4.27	Tensile stresses of Rebar in the middle of beam	97
Figure 4.28	Tensile axial force of brace RCVSL specimen	98
Figure 4.29	Compressive axial force of brace RCVSL specimen	98
Figure 4.30	Stress of VSL for each cycle	99
Figure 4.31	Stress-strain of VSL device	99
Figure 5.1	Different parts of specimens that modelled by ABAQUS	103
Figure 5.2	The various parts of the specimens modelled by the ABAQUS software a) solid shape for modeling RC frame b) wire shape for modeling steel rebar	103
Figure 5.3	Assemble of longitude and shear steel rebar	104
Figure 5.4	Braces, gusset plates and VSL device assembled to the concrete frame	104
Figure 5.5	10-node tetrahedral elements	105
Figure 5.6	Element meshing of concrete frame	106
Figure 5.7	Meshing VSL device, braces and concrete frame	106

Figure 5.8	Deviatoric cross section of failure surface in CDP model	108
Figure 5.9	Stress-strain relationships of concrete in the FE model	110
Figure 5.10	Stress-strain relationship assigned to steel material in FE models	110
Figure 5.11	Lateral load displacement curve for a) CRC specimen b) RCVSL specimen	112
Figure 5.12	Compare stresses of CRC specimen from ABAQUS with experimental a) stress of steel rebar inside concrete beam b)concrete compressive stress of beam c) stress of steel rebar inside concrete column d) concrete compressive stress of column (continue)	114
Figure 5.13	Distributed stresses for CRC specimen a) compresive stress of concrete	115
Figure 5.14	Compare experimental and FE cracks for CRC specimen	116
Figure 5.15	Concrete compressive stress of column for RCVSL specimen	117
Figure 5.16	Stress of column steel bar for RCVSL specimen	117
Figure 5.17	Brace force and shear stress of VSL a) brace force b) VSL stress (continue)	118
Figure 5.18	Specimen without VSL device	119
Figure 5.19	Compare lateral loads – displacement curve of RCIVB, RCVSL and CRC	120
Figure 5.20	Lateral cycle load – displacement for RCIVB specimen	120
Figure 5.21	Lateral cycle load – displacement for RCVSL specimen	121
Figure 5.22	Compressive stress of brace for RCVSL and RCIVB specimens	123
Figure 5.23	Braces deflection for a) RCVSL specimen, b) RCIVB specimen	124
Figure 5.24	Stress of braces for a) RCIVB specimen b) RCVSL specimen	125
Figure 5.25	Compressive stress of concrete in yielding point	126
Figure 5.26	Concrete compressive stress of a) RCVSL b) RCIVB c) CRC	127
Figure 5.27	Stress -displacement curve for column steel bars	128
Figure 5.28	Tensile stress top beam bar for CRC, RCVSL and RCIVB specimens	128

Figure 5.29	Stress of beam bar for CRC specimen			
Figure 5.30	Steel bar stress in middle of concrete beam			
Figure 5.31	Stress of steel rebar for RCIVB specimen			
Figure 5.32	Stress of steel rebar for RCVSL specimen			
Figure 5.33	Lateral load-displacement curves for specimens with different concrete compressive			
Figure 5.34	Web shear stress of VSL device for specimen with different concrete compressive strength			
Figure 5.35	Concrete compressive stress of column			
Figure 5.36	Tensile stress of column rebar			
Figure 5.37	a) Tensile stress of rebar for RCVSL40, b) Compressive stress of concrete for RCVSl40			
Figure 5.38	a) tensile stress of rebar for RCVSL45, b) compressive stress of concrete for RCVSl45			
Figure 5.39	Tensile stress of top rebar in middle of concrete beam	136		
Figure 5.40	VON MISES stress for a) RCVSl45, b) RCVSL25 c) RCIVB (continues)			
Figure 5.41	Specimens of RCVSL with different VSL device	138		
Figure 5.42	Mathematical model of specimen with VSL device			
Figure 5.43	Lateral load – Displacement for specimens with different VSL section			
Figure 5.44	Tensile stress of steel rebar in middle of concrete beam			
Figure 5.45	Tensile stress of steel rebar in concrete beam			
Figure 5.46	Tensile stress of rebar in beam to column connection			
Figure 5.47	Tensile stress of steel rebar for RCVSL200 specimen			
Figure 5.48	5.48 Elastic buckling stress of braces for all specimens with different VSL section			
Figure 5.49	Parametric shape of VSL rotation			
Figure 5.50	5.50 Rotation – shear stress of the VSL device for specimen with different shear kink section			
Figure 6.1	Four level specimen a) MF4 b) MFIVB4 c) MFVSL4	150		
Figure 6.2	gure 6.2 Eight level specimen a) MF8 b)MFIVB8 c) MFVSL8			
Figure 6.3	igure 6.3 Earthquake acceleration waves (continues)			

Figure 6.4	CRC and RCVSL specimens modelled with SAP2000	
Figure 6.5	Plastic Hinges assigned to RCVSL model	
Figure 6.6	.6 Compare SAP 2000 lateral load- displacement curve with experimental curve	
Figure 6.7 Compare axial load of brace in SAP2000 and experimental result		160
Figure 6.8	Plastic hinges appeared on VSL device	
Figure 6.9	Push-Over curves for specimens with four stories	
Figure 6.10	e 6.10 First plastic hinges a) MF4 b) MFVSL4 c) MFIVB4 (continues)	
Figure 6.11	Distributed plastic hinges for MF4 specimen	165
Figure 6.12	MFVSL4 specimen plastic hinges distributed	
Figure 6.13	Distributed plastic hinges for the MFIVB4 specimen	166
Figure 6.14	Push-over curve for specimens with four stories	167
Figure 6.15	IO range when displacement is 210 mm	
Figure 6.16	Plastic hinges distributed on all VSL devices	168
Figure 6.17	Life Safety range for MFVSL8 specimen	169
Figure 6.18	Life Safety range for MFIVB8 specimen	
Figure 6.19	Displacement – time for CHICHI earthquake	
Figure 6.20	Displacement – time curve for LANDERS earthquake	171
Figure 6.21	Displacement – time curve for KOBE earthquake	171
Figure 6.22	Displacement – time curve for NORTHRIDGE earthquake	172
Figure 6.23	Displacement – time curve for TABAS earthquake	172
Figure 6.24	Displacement – time curve for KOCAELI earthquake	172
Figure 6.25	Displacement – time curve for IMPERIAL earthquake	173
Figure 6.26	gure 6.26 Effective of VSL device on drift of fourth story structure in LANDERS earthquake	
Figure 6.27	Effective of VSL device on drift of fourth story structure in KOBE earthquake	174
Figure 6.28	Effective of VSL device on drift of fourth story structure in CHICHI earthquake	175

Figure 6.29	Effective of VSL device on drift of fourth story structure in NORTHRIDGE earthquake	
Figure 6.30	Effective of VSL device on drift of fourth story structure in KOCAELI earthquake	
Figure 6.31	Effective of VSL device on drift of 4 story structure in TABAS earthquake	176
Figure 6.32	Effective of VSL device on drift of 4 story structure in IMPERIAL earthquake	177
Figure 6.33	Base shear force versus time for KOBE earthquake	178
Figure 6.34	Base shear force versus time for NORTHRIDGE earthquake	178
Figure 6.35	Brace in first floor	179
Figure 6.36	Brace compressive axial load in first floor for both specimens	179
Figure 6.37	Compressive Axial load of brace in first floor for KOBE earthquake	
Figure 6.38	Compressive Axial load of brace in first floor for CHICHI earthquake	180
Figure 6.39	Axial load of concrete column during seven earthquakes for MFIVB4 and MFVSL4 specimens	181
Figure 6.40	Axial force of concrete column during CHICHI earthquake	181
Figure 6.41	Axial force of concrete column during KOBE earthquake	182
Figure 6.42	First plastic hinges for MFIVB4 in CHICHI earthquake	183
Figure 6.43	Plastic hinges for MFIVB4 in CHICHI earthquake	183
Figure 6.44	Plastic hinges for MFIVB4 in KOBE earthquake	183
Figure 6.45	First plastic hinges on VSL for MFVSL4 in KOBE earthquake	184
Figure 6.46	All plastic hinges on VSL for MFVSL4 in KOBE earthquake	184
Figure 6.47	Drift of each story in CHICHI earthquake	186
Figure 6.48	Drift of each story in IMPERIAL earthquake	186
Figure 6.49	Drift of each story in KOBE earthquake	187
Figure 6.50	Drift of each story in KOCAELI earthquake	187

Figure 6.51	Drift of each story in LANDERS earthquake	
Figure 6.52	Drift of each story in NORTHRIDGE earthquake	
Figure 6.53	Drift of each story in TABAS earthquake	188
Figure 6.54	Maximum Base Shear for eighth stories specimens	
Figure 6.55	Base shear force versus time in NORTHIDGE earthquake	
Figure 6.56	Base shear force versus time in NORTHIDGE earthquake	
Figure 6.57	Brace member in second floor	
Figure 6.58	Brace compressive axial force in second floor eighth stories specimens	
Figure 6.59	Brace compressive axial force in TABAS earthquake	191
Figure 6.60	Brace compressive axial force in NORTHRIDGE earthquake	191
Figure 6.61	Maximum compressive axial force of concrete column	192
Figure 6.62	Axial force of concrete column in CHICHI earthquake	192
Figure 6.63	Axial force of concrete column in KOBE earthquake	193
Figure 6.64	Plastic hinges during CHICHI earthquake a) MFIVB8 b) MFVSL8	
Figure 6.65	Plastic hinges during IMPERIAL earthquake a) MFIVB8 b) MFVSL8	194
Figure 6.66	Plastic hinges during LANDERS earthquake a) MFIVB8 b)MFVSL8	195
Figure 6.67	Plastic hinges during KOBE earthquake a)MFIVB8 b)MFVSL8	196
Figure 6.68	Plastic hinges during TABAS earthquake a) MFIVB8 b)MFVSL8	196

LIST OF ABBREVIATIONS

ACI	American Concrete Institute
AISC	American Institute of Steel Construction
ATC	Applied Technology Council
СР	Collapse Prevention
FEA	Finite Element Analysis
FEM	Finite Element Model
FEMA	Federal Emergency Management Agency
ННТ	Hilber-Hughes-Taylor
ΙΟ	Immediately Occupancy
IVB	Invert Brace
LS	Life safety
MF	Moment Frame
MRF	Moment Resistant Frame
NSA	Nonlinear Static Analysis
NTA	Nonlinear Time History Analysis
RC	Reinforced Concrete
VSL	Vertical Shear Link
CRC	conventional reinforcement concrete
RCVSL	Reinforcment concrete with vertical shear link

LIST OF SYMBOLS

μ	ductility
C_v	velocity-dependent seismic coefficient
d	beam depth
e	Link segment
Fy	yield strength
Ι	Building importance factor
$M_{ m p}$	plastic moment capacity
R	response modification factor for lateral force resisting system
Т	elastic fundamental period of vibration
tf	flange thickness
V	total design lateral force or shear at the base
$V_{ m p}$	plastic shear capacity
Z	Seismic Zone factor
Ζ	plastic module
γ	link rotation angle
ζeq	equivalent viscous damping factor
μ_Δ	Displacement ductility ratio
Δy	Yield displacement taken from bilinear representation of
	the response envelope
Δ_{u}	Ultimate displacement taken from bilinear representation of the
	response envelope
Ω	lateral strength of a structure against
R_{μ}	ductility factor

CHAPTER 1

INTRODUCTION

1.1 General

The structural properties of strength, ductility and stiffness are three principle concepts in designing structures. Accordingly, structural members should have adequate strength to resist internal stress such as shear stress, flexure stress and have sufficient stiffness to limit lateral displacement. Furthermore, the structure should have the ability to undergo inelastic deformation under lateral load during earthquake event. Notably, ductility is a measure of the structure's ability to transform. Recently, many building codes suggest designing ductile structures instead of building high-strength structures, especially in seismic activity zones.

For example, the American Code separates reinforced concrete (RC) structures into special moment frames, normal moment frames, and moment frames. where, special moment frames have a higher ductility than normal moment frames and moment frames. Whereas, moment frames are capable of energy dissipation especially during seismic earthquake events through the creation of plastic hinges located at the end of the beams. Furthermore, to control drift for structures with moment frames, lateral displacement control is vital in some cases, to increase column and beam size. However, this increases the construction costs and self-weight of the building. An alternate method to control drift is using a shear wall in the concrete moment frame in front of the lateral load. This system increases the lateral stiffness of the structure but is less ductile.

Moreover, the steel cross bracing system is a simple, economical and efficient method to resist against lateral loading in multi-storey buildings. Over the last few decades, several studies have highlighted the efficient use of steel bracing in RC frames. Steel bracing of RC buildings was initially used as a starting measure to strengthen earthquake-damaged buildings or to increase the load resisting capacity of existing buildings. Bracing systems are of two types: concentricity and eccentricity braces. Typically, structures with concentricity braces have higher strength and stiffness although; energy depreciation is minimal given buckling in the compressive brace member being small. Eccentrically braced frames (EB) are known for their distinctive elements of structural typology, deemed suitable for satisfying distinctive design objectives of modern performance-based seismic engineering in medium or high-rise steel buildings.

Notably, EB frames are frequently proposed as being less expensive and are a valid alternative to more common moment resisting frames (MR) and concentrically braced frames (CB). As such, they incorporate the good qualities of the above mentioned structures. Furthermore, EB systems are seismic lateral load resisting systems that comprise a ductile, energy dissipating portion of the beam's elements, known as the link beam (AISC 2005). The link beam can be installed horizontally or vertically in the frame (see Figure 1.1). Also, the characteristics of this system can provide both high lateral stiffness and high energy dissipation capacity which are the required parameters for the seismic design of structures.

Figure 1.1 Eccentricity brace with a horizontal and vertical link

The concept surrounding the design of the link beam centres on the inelastic behaviour of the member during an earthquake event. Furthermore, when the link beam is installed horizontally, this member then becomes a segment of the main beam. Therefore, maintenance (i.e. repair) and replacement of the horizontal link is complicated and expensive. Furthermore, the inelastic behaviour of this member can cause a concrete roof to collapse. Conversely, the vertical steel link (VSL) is separate from the main beam and therefore, the repair and replacement of this device are easy and can be used for retrofitting an old building.

Figure 1.2 shows the free body diagram of a one-story and one-bay frame with the VSL, while the lateral load is applied on top of the frame and the beam to column connection is fixed.

Figure 1.2 Free body diagram of frame with vertical link a) Load direction; b) Moment diagram; c) Shear diagram

1.2 Problem Statement

Steel cross bracing is one of the simplest, economical and efficient systems used for multi-story buildings to resist lateral loads. Additionally, this system has been successfully used to retrofit old concrete buildings that have only been designed to cater for gravity loading. Moreover, a review of the literature has confirmed that the installation of the steel cross bracing system in reinforced concrete frames needs further investigation given the dynamic behaviour that the combined system exhibits during ground motions (Wang Da-peng, Yu An-lin and Xue Li-ming, 2012). Notably, at this stage, limited numerical studies have been carried out on the application of the Vertical Steel Link (VSL) damper to RC frames equipped with eccentric steel bracing (Azad and Topkaya, 2017). Also, there are limited studies that adequately address the plastic hinge formation mechanism and the seismic performance level of RC structures equipped with a VSL damper. Therefore, further studies need to be undertaken to investigate the changes in the ductility and stiffness of the RC frame with, and without a VSL damper. Also, the lateral load transfer

mechanism from the RC frame to the VSL device is another key area that requiring a study.

1.3 Objectives

The primary objectives of this study are:

- (a) To investigate the seismic performance of RC frames such as ductility, energy dissipation and damping while equipped with vertical shear links through experimental works.
- (b) To examine numerically the shear capacity effects of shear link and concrete compressive strength on the seismic behaviour of RC frames equipped with vertical shear links.
- (c) To determine the seismic response modification factor of RC frames equipped with vertical shear links.
- (d) To investigate numerically the efficiency of the vertical shear link for enhancing seismic performance of low and mid-rise RC frames.

1.4 Scope of the Study

The scope of this study is to investigate seismic behaviour of reinforced concrete (RC) structures with a vertical shear link (VSL) device under lateral load. However, the experimental programme is conducted at University Technology Malaysia (UTM) as presented in Chapter 3. The test results are used to verify the finite element (FE) model analysis using ABAQUS and SAP2000 softwares.

Five groups of RC structures are considered in this study. Group 1: two specimens one conventional RC frame (CRC) and the other one RC frame with a VSL device for the experimental tests. The concrete compressive strength is 30 MPa for both. Group 2: consists of a RC structure with invert V braces (RCIVB) to compare the behaviour of the RC structure with the IVB and VSL device. The dimensions and material properties are identical to those in group 1. Group 3: four RC frames with a VSL and with different concrete compressive strength are considered. In group 4: five RC frames with various sections of VSL are examined where the concrete compressive strength for all RC frames is 30 MPa and dimensions matching to those in the group 1. Group 5: consists of two multi-story structures with four and eight stories with each braced with an IVB and a VSL. The height of each story, span and material properties are the same.

The specimens in the first group were tested experimentally for failure under lateral load to observe RC structural behaviour with the VSL and to verify the FE results. The FE analysis was performed for the second, third and fourth group specimens applying lateral load. Moreover, nonlinear time history analysis (NTH) was undertaken for the specimens in group 5. The test results and additional findings were achieved via FE and NTH analysis thereby aiding the research in developing the behaviour of the RC structure with the VSL device in front of the seismic loads.

1.5 Significance of the Research

As presented before, the EB system can provide both high lateral stiffness and high ductility; however the study about the behaviour of RC structures with EB system is very limited. And also, most of the studies were about the effects of the link beam lengths on the behaviour of structures. While the study about the concrete strength and the seismic parameters of RC structures with EB system was very limited. Therefore it is important to obtain an easy and cheaper method for seismic retrofitting of RC structures under gravity loads. Furthermore, there is a need to study the seismic behaviour of RC structure with VSL devices to obtain the response modification factors for design and construction of new buildings in the seismic areas.

1.6 Thesis Outline

The research in this study consists of seven chapters, as outlined below:

Chapter 1 presents the background to the study, the research performed specifically on the RC structure with braces and describing many of the challenges identified in the literature. The scope, objectives and significance of the study are lastly presented.

Chapter 2 presents a comprehensive literature review of the dampers, brace system and nonlinear analysis, including details regarding the experimental, numerical, and analytical findings.

Chapter 3 discusses the experimental program and testing procedures applied to the specimens. The chapter also describes the specimens in detail, along with presenting the experimental setup for the tests.

Chapter 4 details the findings of the experimental tests including the failure modes, lateral load versus displacement, and the load-strain responses of strain gauges.

Chapter 5 presents the nonlinear FE method applied for all elements and the FE models used to verify the behaviour in the CRC frame, and RCVSL achieved experimentally. Useful parameters such as the concrete strength and VSL section on the RC structure are also examined and discussed along with the results.

Chapter 6 describes the results of the NTH analysis for seven earthquakes ground motions. Also, the amount of drift and base shear for a multi-story RC structure with a VSL and IVB are presented and examined.

Chapter 7 presents the conclusions based on the results from performing the study along with proposed recommendations for future investigation and research

REFERENCES

- D. R., Singhal, T., Taraithia, S. S., & Saini, A. (2015). Cyclic behavior of shear-andflexural yielding metallic dampers. Journal of Constructional Steel Research, 114, 247-257.
- ABAQUS. Documentation Version 6.9, 2009 Edition: Karlson and Sorensen, Inc.
- Aguirre, M., & Roberto Sánchez, A. (1992). Structural seismic damper. Journal of Structural Engineering, 118(5), 1158-1171.
- Akbari, R., & Maheri, M. R. (2013). Analytical investigation of response modification (behaviour) factor, R, for reinforced concrete frames rehabilitated by steel chevron bracing. Structure and Infrastructure Engineering, 9(6), 507-515.
- American Institute of Steel Construction. (2002). Seismic provisions for structural steel buildings. American Institute of Steel Construction.
- Amiri, G. G., & Gholamrezatabar, A. (2008). Energy dissipation capacity of shear link in rehabilitated reinforced concrete frame using eccentric steel bracing. In The 14th World Conference on Earthquake Engineering.
- Anlin, Y., Baocheng, Z., & Renda, L. I. (2010). Experimental study on hysteretic behavior of K and Y-eccentrically braced steel frames. Building Structure, 40(4), 9-12.
- Ashraf. E. Morshed (2015). Seismic Performance Assessment of RCS Building By Pushover Analysis. Journal of Mechanical and Civil Engineering. 12:67-73
- ATC, A. (1996). 40, Seismic evaluation and retrofit of concrete buildings. Applied Technology Council, report ATC-40. Redwood City.
- Azad, S. K., & Topkaya, C. (2017). A review of research on steel eccentrically braced frames. Journal of constructional steel research, 128, 53-73.
- Bagheri, S., Barghian, M., Saieri, F., & Farzinfar, A. (2015, August). U-shaped metallic-yielding damper in building structures: Seismic behavior and comparison with a friction damper. In Structures (Vol. 3, pp. 163-171). Elsevier.
- Bahrampoor, H., & SABOURI, G. S. (2010). Effect of easy-going steel concept on the behavior of diagonal eccentrically braced Frames.

- Berman, J. W., Okazaki, T., & Hauksdottir, H. O. (2009). Reduced link sections for improving the ductility of eccentrically braced frame link-to-column connections. Journal of structural engineering, 136(5), 543-553.
- Bosco, M., & Rossi, P. P. (2009). Seismic behaviour of eccentrically braced frames. Engineering Structures, 31(3), 664-674.
- Bosco, M., & Rossi, P. P. (2013). A design procedure for dual eccentrically braced systems: Numerical investigation. Journal of Constructional Steel Research, 80, 453-464.
- Bosco, M., & Rossi, P. P. (2013). A design procedure for dual eccentrically braced systems: Analytical formulation. Journal of Constructional Steel Research, 80, 440-452.
- Bosco, M., Marino, E. M., & Rossi, P. P. (2015). Modelling of steel link beams of short, intermediate or long length. Engineering structures, 84, 406-418.
- Bouwkamp, J., Gomez, S., Pinto, A., Varum, H., & Molina, J. (2001). Cyclic Tests on R/C Frame Retrofitted with K-Bracing and Shear Link Dissipator. European Laboratory for Structural Assessment (ELSA). Report no. EUR, 20136.
- Bouwkamp, J., Vetr, M. G., & Ghamari, A. (2016). An analytical model for inelastic cyclic response of eccentrically braced frame with vertical shear link (V-EBF). Case Studies in Structural Engineering, 6, 31-44.
- Bouwkamp, J., Vetr, M. G., & Ghamari, A. (2016). An analytical model for inelastic cyclic response of eccentrically braced frame with vertical shear link (V-EBF). Case Studies in Structural Engineering, 6, 31-44.
- Bouwkamp, J., Vetr, M. G., & Ghamari, A. (2016). An analytical model for inelastic cyclic response of eccentrically braced frame with vertical shear link (V-EBF). Case Studies in Structural Engineering, 6, 31-44.
- Bulic, M., Causevic, M., & Androic, B. (2013). Reliability of short seismic links in shear. Bulletin of earthquake engineering, 11(4), 1083-1098.
- Byfield, M. P., Davies, J. M., & Dhanalakshmi, M. (2005). Calculation of the strain hardening behaviour of steel structures based on mill tests. Journal of Constructional Steel Research, 61(2), 133-150.
- Canadian Standards Association. (2004). Design of concrete structures. Mississauga, Ont.: Canadian Standards Association.

- Chen, G., & Chen, C. (2004). Semiactive control of the 20-story benchmark building with piezoelectric friction dampers. Journal of Engineering Mechanics, 130(4), 393-400.
- Chopra, A. K. (2001). Dynamics of structures: Theory and applications.
- Christopoulos, C., Filiatrault, A., & Bertero, V. V. (2006). Principles of passive supplemental damping and seismic isolation. Iuss press.
- Council, B. S. S. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. Report FEMA-356, Washington, DC.
- D'Aniello, M., Della Corte, G., & Mazzolani, F. M. (2006, August). Seismic upgrading of RC buildings by buckling restrained braces: experimental results vs numerical modeling. In Proceedings of the fourth international specialty conference on behaviour of steel structures in seismic areas (STESSA 2006), Yokohama, Japan (pp. 14-17).
- D'Aniello, M., Della Corte, G., & Mazzolani, F. M. (2006, August). Seismic upgrading of RC buildings by buckling restrained braces: experimental results vs. numerical modeling. In Proceedings of the fourth international specialty conference on behaviour of steel structures in seismic areas (STESSA 2006), Yokohama, Japan (pp. 14-17).
- D'Aniello, M. (2006). Seismic upgrading of RC structure by steel Eccentric Bracing: an experimental and numerical study. Pollack Periodica, 1(2), 17-32.
- Daryan, A. S., Bahrampoor, H., Ziaei, M., Golafshar, A., & Assareh, M. A. (2008). Seismic behavior of vertical shear links made of easy-going steel. American Journal of Engineering and Applied Sciences, 1(4).
- Della Corte, G., D'Aniello, M., & Landolfo, R. (2013). Analytical and numerical study of plastic overstrength of shear links. Journal of Constructional Steel Research, 82, 19-32.
- Della Corte, G., D'Aniello, M., & Landolfo, R. (2013). Analytical and numerical study of plastic overstrength of shear links. Journal of Constructional Steel Research, 82, 19-32.
- Devi, G. N. (2013). Behaviour of Reinforced Concrete Dual Structural System: Strength, Deformation Characteristics, and Failure Mechanism. International Journal of Engineering and Technology, 5(1), 14.
- Dhawale, P. J., Narule, G. N., & Engineer, M. S. ANALYSIS OF P-DELTA EFFECT ON HIGH RISE BUILDINGS.

- Dicleli, M., & Mehta, A. (2008). Seismic performance of a special type of singlestory eccentrically braced steel frame. Advances in Structural Engineering, 11(1), 35-51.
- DiSarno, L., Elnashai, A. S., & Nethercot, D. A. (2008). Seismic response of stainless steel braced frames. Journal of Constructional Steel Research, 64(7-8), 914-925.
- Dubina, D., Stratan, A., & Dinu, F. (2008). Dual high-strength steel eccentrically braced frames with removable links. Earthquake Engineering & Structural Dynamics, 37(15), 1703-1720.
- Engelhardt, M. D., & Popov, E. P. (1989). Behavior of long links in eccentrically braced frames (Vol. 1). Berkeley, CA, USA: Earthquake Engineering Research Center, University of California.
- Engineers, A. S. (2010). Minimum design loads for buildings and other structures. Reston, Virginia: ASCE.
- Eskandari, R., & Vafaei, D. (2015). Effects of near-fault records characteristics on seismic performance of eccentrically braced frames. Structural Engineering and Mechanics, 56(5), 855-870.
- Estekanchi, H., Soltani, A., & Vafai, A. (2004, August). Seismic behavior of steel frames with off center bracing system. In 13th World Conference on Earthquake Engineering.
- Fahnestock, L. A., Ricles, J. M., & Sause, R. (2007). Experimental evaluation of a large-scale buckling-restrained braced frame. Journal of structural engineering, 133(9), 1205-1214.
- Foutch, D. A., & Yun, S. Y. (2002). Modeling of steel moment frames for seismic loads. Journal of Constructional Steel Research, 58(5-8), 529-564.
- Ghobarah, A., & Elfath, H. A. (2001). Rehabilitation of a reinforced concrete frame using eccentric steel bracing. Engineering structures, 23(7), 745-755.
- Hairer, E., & Wanner, G. (1996). Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems.
- Hanson, R. D., & Soong, T. T. (2001). Seismic design with supplemental energy dissipation devices. Earthquake Engineering Research Institute.
- Hanson, R. D., & Soong, T. T. (2001). Seismic design with supplemental energy dissipation devices. Earthquake Engineering Research Institute.

- Hesameddin, P. K., Irfanoglu, A., & Hacker, T. J. (2015). Effective Viscous Damping Ratio in Seismic Response of Reinforced Concrete Structures. In 6th international conference on advances in experimental structural engineering. United States.
- Karavasilis, T. L., Kerawala, S., & Hale, E. (2012). Hysteretic model for steel energy dissipation devices and evaluation of a minimal-damage seismic design approach for steel buildings. Journal of Constructional Steel Research, 70, 358-367.
- Kasai, K., & Popov, E. P. (1986). General behavior of WF steel shear link beams. Journal of Structural Engineering, 112(2), 362-382.
- Kazemi, M. T., & Asl, M. H. (2011). Modeling of inelastic mixed hinge and its application in analysis of the frames with reduced beam section. International Journal of Steel Structures, 11(1), 51.
- Kuşyılmaz, A., & Topkaya, C. (2015). Fundamental periods of steel eccentrically braced frames. The Structural Design of Tall and Special Buildings, 24(2), 123-140.
- Lee, H. S., & Woo, S. W. (2002). Effect of masonry infills on seismic performance of a 3-storey R/C frame with non-seismic detailing. Earthquake engineering & structural dynamics, 31(2), 353-378.
- Lian, M., & Su, M. (2017). Seismic performance of high-strength steel fabricated eccentrically braced frame with vertical shear link. Journal of Constructional Steel Research, 137, 262-285.
- Lian, M., & Su, M. (2018). Seismic testing and numerical analysis of Y-shaped eccentrically braced frame made of high-strength steel. The Structural Design of Tall and Special Buildings.
- Lian, M., Su, M., & Guo, Y. (2015). Seismic performance of eccentrically braced frames with high strength steel combination. Steel and Composite Structures, 18(6), 1517-1539.
- Lin, K. C., Lin, C. C. J., Chen, J. Y., & Chang, H. Y. (2010). Seismic reliability of steel framed buildings. Structural safety, 32(3), 174-182.
- MaheriMR,Sahebi1997.Useofsteelbracinginreinforcedconcreteframes.EngStruct.19(1 2):1018–24.

- Malakoutian, M., Berman, J. W., & Dusicka, P. (2013). Seismic response evaluation of the linked column frame system. Earthquake Engineering & Structural Dynamics, 42(6), 795-814.
- Manasa, C. K. (2016). P-Delta effect in Tall RC Buildings. International Online Multidisciplinary Journal.
- Mansour, N., Christopoulos, C., & Tremblay, R. (2011). Experimental validation of replaceable shear links for eccentrically braced steel frames. Journal of Structural Engineering, 137(10), 1141-1152.
- Marriott, D. (2017). A direct displacement-based seismic design procedure for moment frames with non-linear viscous dampers-part 2: Validation of the design procedure. SESOC Journal, 30(2), 45.
- Mastrandrea, L., & Piluso, V. (2009). Plastic design of eccentrically braced frames, I: Moment–shear interaction. Journal of Constructional Steel Research, 65(5), 1007-1014.
- Mazzolani, F. M., Corte, G. D., & D'Aniello, M. (2009). Experimental analysis of steel dissipative bracing systems for seismic upgrading. Journal of Civil Engineering and Management, 15(1), 7-19.
- Mehrabi, A. B., Benson Shing, P., Schuller, M. P., & Noland, J. L. (1996). Experimental evaluation of masonry-infilled RC frames. Journal of Structural engineering, 122(3), 228-237.
- Mohsenali Shayanfar . Alireza Rezaeian . Sina Taherkhani (2008). Assessment of the seismic behavior of eccentrically braced frame with double vertical link (DV-EBF). Chaina: world confrerence on earthquake engineering
- Montuori, R., Nastri, E., & Piluso, V. (2014). Theory of plastic mechanism control for eccentrically braced frames with inverted Y-scheme. Journal of Constructional Steel Research, 92, 122-135.
- Okazaki, T., & Engelhardt, M. D. (2007). Cyclic loading behavior of EBF links constructed of ASTM A992 steel. Journal of constructional steel Research, 63(6), 751-765.
- Okazaki, T., Arce, G., Ryu, H. C., & Engelhardt, M. D. (2005). Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames. Journal of Structural Engineering, 131(10), 1526-1535.

- Okazaki, T., Engelhardt, M. D., Nakashima, M., & Suita, K. (2006). Experimental performance of link-to-column connections in eccentrically braced frames. Journal of Structural Engineering, 132(8), 1201-1211.
- Ozbulut, O. E., Bitaraf, M., & Hurlebaus, S. (2011). Adaptive control of baseisolated structures against near-field earthquakes using variable friction dampers. Engineering Structures, 33(12), 3143-3154.
- Özel, A. E., & Güneyisi, E. M. (2011). Effects of eccentric steel bracing systems on seismic fragility curves of mid-rise R/C buildings: A case study. Structural Safety, 33(1), 82-95.
- Özhendekci, D., & Özhendekci, N. (2008). Effects of the frame geometry on the weight and inelastic behaviour of eccentrically braced chevron steel frames. Journal of Constructional Steel Research, 64(3), 326-343.
- Perera, R., Gómez, S., & Alarcón, E. (2004). Experimental and analytical study of masonry infill reinforced concrete frames retrofitted with steel braces. Journal of structural engineering, 130(12), 2032-2039.
- Pong, W. S., Tsai, C. S., Tsai, K. C., & Lee, G. C. (1994). Parametric study of TPEA devices for high-rise buildings. In Proceedings of the First World Conference on Structural Control (Vol. 3, pp. 33-42). National Center for Earthquake Engineering Research, SUNY at Buffalo.
- Popov, E. P., & Bertero, V. V. (1980). Seismic analysis of some steel building frames. Journal of the Engineering Mechanics Division, 106(1), 75-92.
- Popov, E. P., & Malley, J. O. (1983). Design of links and beam-to-column connections for eccentrically braced steel frames. Berkeley: Earthquake Engineering Research Center, University of California.
- Prinz, G. S. (2010). Using buckling-restrained braces in eccentric configurations. Brigham Young University.
- Prinz, G. S., Richards, P. W., & Fremming, S. (2008). Seismic response of bucklingrestrained braced frames with beam splices. In Proceedings of the 14th World Conference on Earthquake Engineering.
- R. Montuori, E. Nastri, V. Piluso (2014), Rigid-plastic analysis and moment –shear interaction for hierarchy criteria of inverted Y EB-Frames. J. Constr. Steel Res. 95 :71–80
- Ramadan, T., & Ghobarah, A. (1995). Analytical model for shear-link behavior. Journal of structural engineering, 121(11), 1574-1580.

- Rasol, M. A. (2014). Seismic Performance Assessment and Strengthening of a Multi-Story RC Building through a Case Study of "Seaside Hotel" (Doctoral dissertation, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ)).
- Richards, P. W. (2009). Seismic column demands in ductile braced frames. Journal of Structural Engineering, 135(1), 33-41.
- Richards, P., & Uang, C. M. (2003). Development of testing protocol for short links in eccentrically braced frames. Department of Structural Engineering, University of California, San Diego.
- Ricles, J. M., & Popov, E. P. (1987). Dynamic analysis of seismically resistant eccentrically braced frames. Rep. No. UCB/EERC-87/07, Earthquake Engineering Research Center, University of California, Berkeley.
- Ricles, J., & Popov, E. P. (1987). Experiments on Eccentrically Braced Steel Structures. Univ. of Calif. EERC Report, 814-831.
- Roeder, C. W., & Popov, E. P. (1977). Inelastic behavior of eccentrically braced steel frames under cyclic loadings. NASA STI/Recon Technical Report N, 78.
- Roeder, C. W., & Popov, E. P. (1978). Eccentrically braced steel frames for earthquakes. Journal of the Structural Division, 104(3), 391-412.
- Roeder, C. W., Lumpkin, E. J., & Lehman, D. E. (2011). A balanced design procedure for special concentrically braced frame connections. Journal of Constructional Steel Research, 67(11), 1760-1772.

Sahoo

- Sahoo, D. R., & Rai, D. C. (2010). Seismic strengthening of non-ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices. Engineering Structures, 32(11), 3548-3557.
- Sahoo, D. R., Singhal, T., Taraithia, S. S., & Saini, A. (2015). Cyclic behavior of shear-and-flexural yielding metallic dampers. Journal of Constructional Steel Research, 114, 247-257.
- SAP 2000: Integrated software for structural analysis and design, version 14, Computer and Structures, Inc. Berkeley, CA.
- Shariati, M., Sulong, N. R., Shariati, A., & Khanouki, M. A. (2016). Behavior of Vshaped angle shear connectors: experimental and parametric study. Materials and Structures, 49(9), 3909-3926.

- Shukla, A. K., & Datta, T. K. (1999). Optimal use of viscoelastic dampers in building frames for seismic force. Journal of Structural Engineering, 125(4), 401-409.
- Subash, L., & Chandran, S. K. (2017). INFLUENCE OF P-DELTA EFFECT ON REINFORCED CONCRETE BUILDINGS WITH VERTICAL IRREGULARITY-A REVIEW. International Research Journal of Engineering and Technology, 4(2).
- Tremblay, R. (2005). Fundamental periods of vibration of braced steel frames for seismic design. Earthquake Spectra, 21(3), 833-860.
- Vaiana, N., & Serino, G. (2017). Speeding up nonlinear time history analysis of base-isolated structures using a nonlinear exponential model. World Academy of Science, Engineering and Technology, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 11(2), 218-224.
- Varum, H., Teixeira-Dias, F., Marques, P., Pinto, A. V., & Bhatti, A. Q. (2013). Performance evaluation of retrofitting strategies for non-seismically designed RC buildings using steel braces. Bulletin of Earthquake Engineering, 11(4), 1129-1156.
- Vecchio, F. J., & Emara, M. B. (1992). Shear deformations in reinforced concrete frames. ACI Structural Journal, 89(1), 46-56.
- Version, A.B.A.Q.U.S.6.10 (2010)Dassault Systèmes Simulia Corp. Providence, Rhode Island.
- Vetr, M. G., Ghamari, A., & Bouwkamp, J. (2017). Investigating the nonlinear behavior of Eccentrically Braced Frame with vertical shear links (V-EBF). Journal of Building Engineering, 10, 47-59.
- Vetr, M. G., Ghamari, A., & Bouwkamp, J. (2017). Investigating the nonlinear behavior of Eccentrically Braced Frame with vertical shear links (V-EBF). Journal of Building Engineering, 10, 47-59.
- Vetr, M. G., Ghamari, A., & Bouwkamp, J. (2017). Investigating the nonlinear behavior of Eccentrically Braced Frame with vertical shear links (V-EBF). Journal of Building Engineering, 10, 47-59.
- WANG Da-peng. YU An-lin . XUE Li-ming (2012). Seismic performance testing of reinforcement concrete frames strengthened with Y-eccentrically brace. Journal of Chongqing University (English Edition), 4, 002.

- Wang, D. P., & Yu, A. L. (2013). Shear Failure Behavior of Y-Eccentrically Brace in RC Frame Structures under Earthquake Action. In Advanced Materials Research (Vol. 639, pp. 866-869). Trans Tech Publications.
- Wang, D. P., & Yu, A. L. (2013). Shear Failure Behavior of Y-Eccentrically Brace in RC Frame Structures under Earthquake Action. In Advanced Materials Research (Vol. 639, pp. 866-869). Trans Tech Publications.
- William, K. J., & Warnke, E. P. (1975). Constitutive model for the triaxial behavior of concrete.
- Wilson, E. L., Farhoomand, I., & Bathe, K. J. (1972). Nonlinear dynamic analysis of complex structures. Earthquake Engineering & Structural Dynamics, 1(3), 241-252.
- Xu, C., & Sugiura, K. (2013). FEM analysis on failure development of group studs shear connector under effects of concrete strength and stud dimension. Engineering Failure Analysis, 35, 343-354.
- Xu, Y. L., & Ng, C. L. (2008). Seismic protection of a building complex using variable friction damper: experimental investigation. Journal of engineering mechanics, 134(8), 637-649.
- Xu, Y. L., & Zhang, W. S. (2001). Modal analysis and seismic response of steel frames with connection dampers. Engineering Structures, 23(4), 385-396.
- Zahrai, S. M., & Bruneau, M. (1999). Cyclic testing of ductile end diaphragms for slab-on-girder steel bridges. Journal of structural engineering, 125(9), 987-996.
- Zhang, W., Huang, M., Zhang, Y., & Sun, Y. (2011). Cyclic behavior studies on Isection inverted V-braces and their gusset plate connections. Journal of Constructional Steel Research, 67(3), 407-420.
- Zhang, Y. (2013). Seismic analysis of diagrid structural frames with shear-link fuse devices. Earthquake Engineering and Engineering Vibration, 12(3), 463-472.
- Zhao, D., & Li, Y. (2015). Fuzzy control for seismic protection of semiactive baseisolated structures subjected to near-fault earthquakes. Mathematical Problems in Engineering, 2015.
- Zimbru, M., D'Aniello, M., Stratan, A., Landolfo, R., & Dubină, D. (2018). Finite Element Analysis of Composite Replaceable Short Links. In Key Engineering Materials (Vol. 763, pp. 576-583). Trans Tech Publications

- Clerc, M. and Kennedy, J. (2002) 'The particle swarm explosion, stability, and convergence in a multidimensional complex space', *IEEE Transactions on Evolutionary Computation*, 6(1), pp. 58–73.
- Gosnell, M., Woodley, R., Hicks, J. and Cudney, E. (2014) 'Exploring the Mahalanobis-Taguchi Approach to Extract Vehicle Prognostics and Diagnostics', in *Computational Intelligence in Vehicles and Transportation Systems (CIVTS), 2014 IEEE Symposium on*, pp. 84–91.
- Gupta, A. (2015) 'Classification of Complex UCI Datasets Using Machine Learning Algorithms Using Hadoop', *International Journal of Scetific & Techology Research*, 4(5), pp. 85–94.
- Hu, J., Zhang, L., Liang, W. and Wang, Z. (2009) 'Incipient mechanical fault detection based on multifractal and MTS methods', *Petroleum Science*, 6(2), pp. 208–216.
- Huang, C.-L., Chen, Y. H. and Wan, T.-L. J. (2012) 'The mahalanobis taguchi system—adaptive resonance theory neural network algorithm for dynamic product designs', *Journal of Information and Optimization Sciences*, 33(6), pp. 623–635.
- Jain, A. K. A. K., Duin, R. P. W. and Mao, J. (2000) 'Statistical pattern recognition: a review', *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 22(1), pp. 4–37.
- Khalid, S., Khalil, T. and Nasreen, S. (2014) 'A survey of feature selection and feature extraction techniques in machine learning', 2014 Science and Information Conference, pp. 372–378.
- Li, C., Yuan, J. and Qi, Z. (2015) 'Risky group decision-making method for distribution grid planning', *International Journal of Emerging Electric Power Systems*, 16(6), pp. 591–602.
- Lv, Y. and Gao, J. (2011) 'Condition prediction of chemical complex systems based on Multifractal and Mahalanobis-Taguchi system', in *ICQR2MSE 2011 -Proceedings of 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering*, pp. 536–539.
- der Maaten, L. J. P., Postma, E. O., den Herik, H. J., van der Maaten, L., Postma, E. O., van den Herik, J., der Maaten, L. J. P., Postma, E. O. and den Herik, H. J. (2009) 'Dimensionality Reduction: A Comparative Review', *Technical Report TiCC TR 2009-005*, 10(January), pp. 1–41.

- Motwani, R. and Raghavan, P. (1996) 'Randomized algorithms', ACM Computing Surveys, 28(1), pp. 33–37.
- Qinbao Song, Jingjie Ni and Guangtao Wang (2013) 'A Fast Clustering-Based Feature Subset Selection Algorithm for High-Dimensional Data', *IEEE Transactions on Knowledge and Data Engineering*, 25(1), pp. 1–14.
- Rao, V. M. and Singh, Y. P. (2013) 'Decision Tree Induction for Financial Fraud Detection', in *Proceeding of the International Conference on Artificial Intelligence in Computer Science and ICT (AICS 2013)*, pp. 321–328.
- Shi, Y. and Eberhart, R. (1998) 'A modified particle swarm optimizer', 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), pp. 69– 73.
- Soylemezoglu, A., Jagannathan, S. and Saygin, C. (2011) 'Mahalanobis-Taguchi system as a multi-sensor based decision making prognostics tool for centrifugal pump failures', *IEEE Transactions on Reliability*, 60(4), pp. 864–878.
- Theodoridis, S., Koutroumbas, K., Holmstrom, L. and Koistinen, P. (2009) *Pattern Recognition, Wiley Interdisciplinary Reviews Computational Statistics.*
- Zaki, M. J., Wong, L., Berry, M. J. A., Linoff, G. S., Hegland, M., Zaki, M. J. and Wong, L. (2003) 'Data Mining Techniques', WSPC/Lecture Notes Series: 9in x 6in, 10(1–2), p. 545.