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ABSTRACT 

Steel cross bracing system is a simple, economical and effective method of 

resisting lateral loadings for multi-story buildings. Vertical Shear Link (VSL), 

known as steel shear panel, is an efficient passive control system suitable for 

construction resistance against earthquakes. VSL has been installed between the 

joints of invert V-brace and reinforced concrete beams. VSL absorbs earthquake 

energy through the yielding of steel, while other structure’s members stay in an 

elastic condition. Limited numerical studies have been conducted on VSL applied to 

Reinforced Concrete (RC) building frames with eccentric steel bracing. Furthermore, 

studies seeking to identify performance level and the seismic response of RC 

structures using VSL and plastic hinge formations are also limited. A study of 

ductility and stiffness of RC frames with/without VSL is required. Therefore, a 

lateral load transfer mechanism, from RC frame to VSL, needs to be investigated. 

The aim of this research is to conduct a numerical study, verification and parametric 

investigation through time history and pushover analyses. The experimental intention 

is to study the stiffness, ductility and energy absorption of RC frame using VSL. This 

system has the ability to control the stiffness and ductility of a structure; while both 

are important structural seismic characteristics. The experimental study is conducted 

on a conventional RC frame in comparison with a VSL retrofitting system. The 

experimental findings are used to validate Finite Element Analysis (FEA) models 

using ABAQUS software. Further parametric studies are developed to evaluate the 

effect of VSL shear capacity. Two categories of RC frame i.e., low-level and mid-

level, are analysed using SAP 2000 structural analysis software. Two types of 

analysis are considered i.e., nonlinear static (pushover) and nonlinear time history. 

The parameters considered are invert V-brace and RC structure with VSL. FEA 

results show that the frame with the VSL system increased shear force capacity to 

170% compared to the conventional RC frame. Meanwhile, invert V-brace increased 

the shear force capacity of the frame to approximately 200%. The ductility of the RC 

frame reduced to 160% due to buckling of the invert V-brace, while the RC frame 

with VSL satisfied the ductility. Observations from the experimental test show that 

VSL worked correctly inside the RC frame. The VSL system could properly absorb 

the imported lateral force to the RC frame; where the shear yielding mechanism of 

the VSL could prevent buckling of the braces. The VSL system, as a proposed 

alternative method to construct ductile structures, is clarified with great lateral 

stiffness. Moreover, the axial forces developed in the braces can be controlled by the 

VSL system. 
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ABSTRAK 

Sistem perembat bersilang keluli adalah keadah yang mudah, ekonomi dan 

berkesan untuk menahan beban sisi bagi bangunan berbilang bertingkat. Perangkai 

ricih tegak (VSL) yang dikenali sebagai panel ricih keluli adalah satu sistem binaan 

kawalan pasif yang berkesan dan sesuai untuk memberi rintangan terhadap gempa 

bumi. VSL dipasang di antara sambungan perembat-V terbalik dangan rasuk konkrit 

bertetulang. VSL boleh menyerap tenaga gempa melalui alahan bahan keluli 

manakala anggota struktur lain masih kekal dalam keadaan elastik. Kajian ke atas 

VSL yang digunakan untuk pembinaan bangunan konkrit bertetulang (RC) dengan 

kesipian bagi perembat keluli adalah didapati sangat terhad. Tambahan pula, kajian 

tentang gerak balas seismik bagi struktur RC yang menggunakan VSL, dan 

pembentukan engsel plastik bagi mencari tahap prestasi sistem juga didapati masih 

terhad. Satu kajian tentang kemuluran dan kekukuhan kerangka RC dengan 

kehadiran dan tanpa kehadiran VSL adalah perlu. Mekanisme pemindahan beban sisi 

daripada kerangka RC kepada peranti VSL juga didapati perlu dikaji. Tujuan 

penyelidikan ini adalah untuk menjalankan kajian numerik dan kajian parametrik 

serta pengesahan dengan menggunakan analisis sejarah masa dan analisis tolak lebih. 

Satu ujikaji makmal dijalankan untuk mengkaji kekukuhan, kemuluran dan 

penyerapan tenaga bagi kerangka RC yang dilengkapi dengan VSL. Kajian ujikaji 

dijalankan terhadap kerangka RC konvensional dan dibandingkan dengan sistem 

yang dipasang dengan VSL. Data ujikaji digunakan untuk mengesahkan model unsur 

terhingga (FE) menggunakan perisian ABAQUS. Dimana kajian parametrik yang 

lebih terperinci telah dibangunkan bagi menilai kesan keupayaan ricih VSL. Dua 

kategori kerangka RC pada aras rendah dan aras sederhana bagi kerangka telah 

dianalisis menggunakan perisian SAP 2000. Dua jenis analisis telah dijalankan, iaitu 

analisis statik tak lelurus (tolak lebih) dan analisis sejarah masa tak lelurus. 

Parameter yang dipertimbangkan ialah perembat-V terbalik dan struktur RC dengan 

VSL. Keputusan analisis FE menunjukkan kerangka dengan sistem VSL boleh 

meningkatkan keupayaan daya ricih sehingga 170% berbanding dengan kerangka RC 

konvensional. Sementara bagi perembat-V terbalik, ia boleh meningkatkan 

keupayaan daya ricih kerangka sehingga kira-kira 200%. Kemuluran kerangka RC 

didapati berkurang sehingga 160% disebabkan oleh lengkokan pada perembat-V 

terbalik manakala kerangka RC dengan VSL didapati memenuhi kemuluran. 

Pemerhatian daripada ujian ujikaji menunjukkan bahawa VSL berfungsi dengan baik 

di dalam kerangka RC. Sistem VSL dapat menyerap tenaga dengan baik bagi daya 

sisi yang dipindahkan kepada kerangka RC dengan pencapaian mekanisme alahan 

ricih VSL dan dapat menghalang lengkokan seterusnya bagi perembat. Sistem VSL 

yang dicadangkan ini boleh dijadikan sistem alternative untuk menghasilkan 

pembinaan struktur yang mulur dengan kekukuhan sisi yang tinggi. Selain itu, daya 

paksi dalam perembat juga boleh dikawal oleh sistem VSL. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 General 

The structural properties of strength, ductility and stiffness are three principle 

concepts in designing structures. Accordingly, structural members should have 

adequate strength to resist internal stress such as shear stress, flexure stress and have 

sufficient stiffness to limit lateral displacement. Furthermore, the structure should 

have the ability to undergo inelastic deformation under lateral load during earthquake 

event. Notably, ductility is a measure of the structure’s ability to transform. Recently, 

many building codes suggest designing ductile structures instead of building high-

strength structures, especially in seismic activity zones. 

 For example, the American Code separates reinforced concrete (RC) 

structures into special moment frames, normal moment frames, and moment frames. 

where, special moment frames have a higher ductility than normal moment frames 

and moment frames. Whereas, moment frames are capable of energy dissipation 

especially during seismic earthquake events through the creation of plastic hinges 

located at the end of the beams. Furthermore, to control drift for structures with 

moment frames, lateral displacement control is vital in some cases, to increase 

column and beam size. However, this increases the construction costs and self-

weight of the building. An alternate method to control drift is using a shear wall in 

the concrete moment frame in front of the lateral load. This system increases the 

lateral stiffness of the structure but is less ductile.  

Moreover, the steel cross bracing system is a simple, economical and efficient 

method to resist against lateral loading in multi-storey buildings. Over the last few 

decades, several studies have highlighted the efficient use of steel bracing in RC 

frames. Steel bracing of RC buildings was initially used as a starting measure to 
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strengthen earthquake-damaged buildings or to increase the load resisting capacity of 

existing buildings. Bracing systems are of two types: concentricity and eccentricity 

braces. Typically, structures with concentricity braces have higher strength and 

stiffness although; energy depreciation is minimal given buckling in the compressive 

brace member being small. Eccentrically braced frames (EB) are known for their 

distinctive elements of structural typology, deemed suitable for satisfying distinctive 

design objectives of modern performance-based seismic engineering in medium or 

high-rise steel buildings.  

Notably, EB frames are frequently proposed as being less expensive and are a 

valid alternative to more common moment resisting frames (MR) and concentrically 

braced frames (CB). As such, they incorporate the good qualities of the above 

mentioned structures. Furthermore, EB systems are seismic lateral load resisting 

systems that comprise a ductile, energy dissipating portion of the beam’s elements, 

known as the link beam (AISC 2005). The link beam can be installed horizontally or 

vertically in the frame (see Figure 1.1). Also, the characteristics of this system can 

provide both high lateral stiffness and high energy dissipation capacity which are the 

required parameters for the seismic design of structures.  

 

Figure 1.1 Eccentricity brace with a horizontal and vertical link 

The concept surrounding the design of the link beam centres on the inelastic 

behaviour of the member during an earthquake event. Furthermore, when the link 

beam is installed horizontally, this member then becomes a segment of the main 

beam. Therefore, maintenance (i.e. repair) and replacement of the horizontal link is 

complicated and expensive. Furthermore, the inelastic behaviour of this member can 

cause a concrete roof to collapse. Conversely, the vertical steel link (VSL) is separate 
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from the main beam and therefore, the repair and replacement of this device are easy 

and can be used for retrofitting an old building.  

Figure 1.2 shows the free body diagram of a one-story and one-bay frame 

with the VSL, while the lateral load is applied on top of the frame and the beam to 

column connection is fixed. 

 

Figure 1.2 Free body diagram of frame with vertical link a) Load direction; b) 

Moment diagram; c) Shear diagram 

 

1.2 Problem Statement 

Steel cross bracing is one of the simplest, economical and efficient systems 

used for multi-story buildings to resist lateral loads. Additionally, this system has 

been successfully used to retrofit old concrete buildings that have only been designed 

to cater for gravity loading. Moreover, a review of the literature has confirmed that 

the installation of the steel cross bracing system in reinforced concrete frames needs 

further investigation given the dynamic behaviour that the combined system exhibits 

during ground motions (Wang Da-peng, Yu An-lin and Xue Li-ming, 2012). 

Notably, at this stage, limited numerical studies have been carried out on the 

application of the Vertical Steel Link (VSL) damper to RC frames equipped with 

eccentric steel bracing (Azad and Topkaya, 2017). Also, there are limited studies that 

adequately address the plastic hinge formation mechanism and the seismic 

performance level of RC structures equipped with a VSL damper. Therefore, further 

studies need to be undertaken to investigate the changes in the ductility and stiffness 

of the RC frame with, and without a VSL damper. Also, the lateral load transfer 
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mechanism from the RC frame to the VSL device is another key area that requiring a 

study. 

1.3 Objectives 

The primary objectives of this study are: 

(a) To investigate the seismic performance of RC frames such as ductility, 

energy dissipation and damping while equipped with vertical shear links 

through experimental works. 

(b) To examine numerically the shear capacity effects of shear link and concrete 

compressive strength on the seismic behaviour of RC frames equipped with 

vertical shear links. 

(c) To determine the seismic response modification factor of RC frames 

equipped with vertical shear links.  

(d) To investigate numerically the efficiency of the vertical shear link for 

enhancing seismic performance of low and mid-rise RC frames. 

1.4 Scope of the Study  

The scope of this study is to investigate seismic behaviour of reinforced 

concrete (RC) structures with a vertical shear link (VSL) device under lateral 

load.However, the experimental programme is conducted at University Technology 

Malaysia (UTM) as presented in Chapter 3. The test results are used to verify the 

finite element (FE) model analysis using ABAQUS and SAP2000 softwares.  

Five groups of RC structures are considered in this study. Group 1: two 

specimens one conventional RC frame (CRC) and the other one RC frame with a 

VSL device for the experimental tests. The concrete compressive strength is 30 MPa 

for both. Group 2: consists of a RC structure with invert V braces (RCIVB) to 

compare the behaviour of the RC structure with the IVB and VSL device. The 

dimensions and material properties are identical to those in group 1. Group 3: four 
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RC frames with a VSL and with different concrete compressive strength are 

considered. In group 4: five RC frames with various sections of VSL are examined 

where the concrete compressive strength for all RC frames is 30 MPa and 

dimensions matching to those in the group 1. Group 5: consists of two multi-story 

structures with four and eight stories with each braced with an IVB and a VSL. The 

height of each story, span and material properties are the same.  

The specimens in the first group were tested experimentally for failure under 

lateral load to observe RC structural behaviour with the VSL and to verify the FE 

results. The FE analysis was performed for the second, third and fourth group 

specimens applying lateral load. Moreover, nonlinear time history analysis (NTH) 

was undertaken for the specimens in group 5. The test results and additional findings 

were achieved via FE and NTH analysis thereby aiding the research in developing 

the behaviour of the RC structure with the VSL device in front of the seismic loads.  

1.5 Significance of the Research  

As presented before, the EB system can provide both high lateral stiffness 

and high ductility; however the study about the behaviour of RC structures with EB 

system is very limited. And also, most of the  studies were about the effects of the 

link beam lengths on the behaviour of structures. While the study about the concrete 

strength and the seismic parameters of RC structures with EB system was very 

limited. Therefore it is important to obtain an easy and cheaper method for seismic 

retrofitting of RC structures under gravity loads. Furthermore, there is a need to 

study the seismic behaviour of RC structure with VSL devices to obtain the response 

modification factors for design and construction of new buildings in the seismic 

areas.  

1.6 Thesis Outline 

The research in this study consists of seven chapters, as outlined below: 
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Chapter 1 presents the background to the study, the research performed 

specifically on the RC structure with braces and describing many of the challenges 

identified in the literature. The scope, objectives and significance of the study are 

lastly presented. 

Chapter 2 presents a comprehensive literature review of the dampers, brace 

system and nonlinear analysis, including details regarding the experimental, 

numerical, and analytical findings.  

Chapter 3 discusses the experimental program and testing procedures applied 

to the specimens. The chapter also describes the specimens in detail, along with 

presenting the experimental setup for the tests.  

Chapter 4 details the findings of the experimental tests including the failure 

modes, lateral load versus displacement, and the load-strain responses of strain 

gauges. 

Chapter 5 presents the nonlinear FE method applied for all elements and the 

FE models used to verify the behaviour in the CRC frame, and RCVSL achieved 

experimentally. Useful parameters such as the concrete strength and VSL section on 

the RC structure are also examined and discussed along with the results.  

Chapter 6 describes the results of the NTH analysis for seven earthquakes 

ground motions. Also, the amount of drift and base shear for a multi-story RC 

structure with a VSL and IVB are presented and examined.  

Chapter 7 presents the conclusions based on the results from performing the 

study along with proposed recommendations for future investigation and research 
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