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ABSTRACT 

Heavy metal contamination which has threatened human health is a critical 

environmental issue that caused by the uncontrolled discharge of heavy metal. 

Membrane technology has been justified as one of the favourable options in 

wastewater treatment for contaminants removal due to its high rejection to produce 

high quality of treated water. Recently, forward osmosis (FO) has emerged as an 

attractive alternative of conventional approaches such as adsorption and reverse 

osmosis (RO) for heavy metal removal. The advantages of FO process include lower 

energy consumption and less fouling tendency. During the separation processes, FO 

membrane ensures the water pass through the membrane while all the dissolved metal 

ions could be separated and filtered by the TFN FO membrane. Despite the advantages 

of FO, the major issue of FO membrane is to confront with interfacial concentration 

polarization (ICP) which causes the deterioration of flux over time. The reduction of 

critical ICP issue and increased water flux through the modification of TFC membrane 

by incorporating functional nanomaterials into the substrate layer of the FO TFC 

membrane has been proven as a feasible strategy to heighten the performance of FO 

membrane. In this study, thin film nanocomposite (TFN) FO membranes incorporated 

with titania nanotubes and magnetite oxide (TNT–Fe3O4) hybrid has been successfully 

fabricated. The TNT–Fe3O4 hybrid nanoparticles was synthesized through 

hydrothermal and coprecipitation method. In the first stage of this study, different 

types of nanoparticles i.e. TNT, Fe3O4, TNT–Fe3O4 were embedded into polysulfone 

(PSf) substrate. The performance of the TFN FO membranes were evaluated for heavy 

metal removal using the FO system at active layer facing feed solution (AL–FS) mode. 

Using the membrane incorporated 0.5 wt% of TNT–Fe3O4 hybrid nanoparticles, the 

FO water flux of 2.84 L/m2.h and 2.54 L/m2.h and the rejection of 98.06% and 88.37% 

were achieved for Cd2+ and Pb2+ removal, respectively. In the second stage, the effect 

of different loading of TNT–Fe3O4 embedded into PSf substrate was investigated. The 

loading of TNT–Fe3O4 hybrid plays a role in improving the FO water flux and 

rejection, particularly with the increasing loading of the nanofiller. The TFN 0.5 

membrane exhibited good water permeability (A) with 3.60 L/m2.h.bar, salt 

permeability (B) with 2.33 x10-8 m/s and 95.94% of salt rejection. TFN 0.5 achieved 

the small structural parameters with 1.45 mm and 1.60 mm in Cd2+ and Pb2+ removal, 

respectively. In addition, the optimized membrane exhibited high flux recovery and 

rejection which indicated a good quality of the TFN FO membrane. As a conclusion, 

modification of TFN FO membrane by incorporating TNT–Fe3O4 hybrid as nanofillers 

in the substrate layer is a promising approach to improve membrane permeability and 

selectivity. 
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ABSTRAK 

Pencemaran logam berat yang mengancam kesihatan manusisa adalah isu 

kritikal dalam alam sekitar yang disebabkan oleh pelepasan logam berat yang tidak 

terkawal. Teknologi membran telah diiktirafkan sebagai salah satu pilihan yang 

menggalakkan dalam rawatan air sisa untuk penyingkiran bahan pencemaran akibat 

penolakannya yang tinggi untuk menghasilkan air terawat yang berkualiti tinggi. 

Dalam dekad kebelakangan ini, osmosis hadapan (FO) telah muncul sebagai 

pendekatan konvesional yang menarik seperti penjerapan dan osmosis berbalik (RO) 

untuk penyingkiran logam berat. Kelebihan proses FO termasuk penggunaan tenaga 

yang lebih rendah dan kekurangan kecenderungan terhadap kotoran membran. Semasa 

proses pemisahan, membran FO memastikan air melalui membran sementara semua 

ion logam yang terlarut boleh dipisahkan dan ditapis oleh membran TFN FO. Selain 

daripada kelebihan FO, kepekatan polarisasi dalaman (ICP) adalah isu utama untuk 

membran FO yang menyebabkan kemerosotan aliran air dari semasa ke semasa. 

Pengurangan isu kritikal ICP dan peningkatan aliran air (Jv) melalui pengubahsuaian 

membran TFC dengan menggabungkan bahan nanopartikel ke dalam lapisan substrat 

membran TFC FO telah terbukti sebagai strategi yang boleh dilaksanakan untuk 

meningkatkan prestasi membran FO. Dalam kajian ini, membran osmosis hadapan 

nanokomposit saput tipis (TFN) yang ditubuhkan dengan titania tiub nano dan 

magnetit oksida (TNT–Fe3O4) telah berjaya dihasilkan. Nanopartikel hibrid TNT–

Fe3O4 disintesis melalui kaedah hidrotermal dan gabung pemendakan. Pada peringkat 

pertama kajian ini, pelbagai jenis nanopartikel iaitu TNT, Fe3O4, TNT–Fe3O4 telah 

dimasukkan ke dalam substrat polisulfona (PSf). Prestasi membran TFN FO sedang 

mengkaji penyingkiran logam berat menggunakan sistem FO pada mod AL–FS. Jv FO 

telah mencapai pada 2.84 L/m2.h dan 2.54 L/m2.h dan penolakannya mencapai 98.06% 

dan 88.37% dalam penyingkiran Cd2+ dan Pb2+ masing-masing apabila membran 

mengandungi 0.5% hibrid TNT–Fe3O4. Pada peringkat kedua, kesan pemuatan 

berbeza TNT–Fe3O4 yang dimasukkan ke dalam substrat PSf telah diselidiki. 

Pemuatan hibrid TNT–Fe3O4 memainkan peningkatan yang ketara dalam Jv FO dan 

penolakan ketika kandungan meningkat. Pada peringkat akhir, semua membran TFN 

FO disediakan telah menguji dalam sistem RO. Membran TFN 0.5 berbanding dengan 

membran kawalan menunjukkan kebolehtelapan air yang baik (A) dengan  

3.60 L/m2.h.bar, ketelapan garam (B) dengan 2.33 x10-8 m/s dan 95.94% penolakan 

garam. TFN 0.5 mengekalkan parameter struktur kecil dengan 1.45 mm dan 1.60 mm 

dalam penyingkiran Cd2+ dan Pb2+. Di samping itu, membran yang dioptimumkan 

menunjukkan pemulihan aliran air dan penolakan yang tinggi yang menunjukkan 

kualiti membran TFN FO yang baik. Kesimpulannya, pengubahsuaian membran TFN 

FO dengan menggabungkan hibrid TNT–Fe3O4 sebagai nanofiller dalam lapisan 

substrat merupakan pendekatan yang menjanjikan untuk peningkatkan kebolehtelapan 

dan pemilihan membran.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Heavy metal contamination is a critical environmental issue that caused by the 

uncontrolled discharge of heavy metal which has threatened human health. The 

electronics, electroplating, machinery manufacturing, and metallurgy industries have 

produced an extensive amount of wastewater containing heavy metal which are 

eventually discharged into water bodies. Metal ions tend to penetrate inside human 

body through accumulation pathway and cause severe health effects and body 

dysfunction because its unable to be metabolized by human body or decompose easily 

(Cui et al., 2014). Compared to other toxic substances, heavy metals are stable and 

cannot be degraded naturally over long period of time. Therefore, the metal ions tend 

to accumulate in living organisms and bring tremendous ecological and physiological 

exposure. Thus, heavy metal removal from wastewater becomes a progressively 

important global issue (Zhu et al., 2015). Salam et al. (2019) reported that the 

geostatistical distribution and contamination status of heavy metals in the sediment of 

Perak river. Their study showed the range of heavy metals concentration in 

downstream areas were Pb (27.6–60.76 μg/g), Zn (49.04–160.5 μg/g), Cd (2.77–4.02 

μg/g) and Cu (9.82–59.99 μg/g).  

Various strategies for efficient heavy metal removal from water have been 

widely studied to reduce the negative impacts of heavy metal contaminations  (Zhao 

& Liu, 2018). Increasing demand of pure water with low concentration of heavy metals 

makes it obligatory to effectively eliminate toxic heavy metals from industrial runoffs 

prior to their release into the ecosystem. Different conventional techniques are 

accessible for the decontamination of wastewater such as adsorption, ion exchange, 

chemical precipitation and solvent extraction (Wadhawan et al., 2020). Adsorption 

using suitable adsorbents is one of the most efficient, effective, fast, simple and 
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economical method for the remove of metal ions from water and wastewater sources 

(Vojoudi et al., 2017). Chemical precipitation is one of the most widely used 

techniques for heavy metal removal from inorganic effluent in industry due to its 

simple operation (Gunatilake, 2015). Ion exchange process is another widely used 

approach in removing heavy metal from wastewater with ion exchange resin which 

has the specific uptake ability to exchange its cations with metals in wastewater, either 

synthetic or natural solid resin (Zhao et al., 2016a). Solvent extraction has been used 

for wastewater purification with using ionic liquids have shown good performance as 

an extractant phase in the separation of heavy metal ions (Platzer et al., 2017).   

In the last decades, the development of membrane technology has been 

justified as one of the favourable options in wastewater treatment for contaminants 

removal due to its excellent removal efficiency. Membrane technology has been 

justified as a practicable option in wastewater treatment owing to its low fabrication 

cost and high rejection to contaminants such as organic compounds (Cui et al., 2014). 

Abdullah et al. (2019b) reported ultrafiltration (UF), nanofiltration (NF), reverse 

osmosis (RO) and forward osmosis (FO) are the membrane technologies that 

commonly used for treating heavy metal contaminated water. In essence, membrane 

filtration is a pressure driven separation process for heavy metals while it can be 

enhanced by treating with the membrane (Zhao et al., 2016b). The comparison of the 

NF and RO performance for treating industrial wastewater containing metal effluents 

at different operating pressure was reported by Liu et al. (2008a). The results showed 

that although RO could achieve an excellent metal rejection rate, however its water 

flux remained very low compared to NF. Nevertheless, both membrane processes 

require high energy operation and has high fouling tendency, which resulted in reduced 

productivity and extra operational cost (Abdullah et al., 2019b). The advantages of 

membrane technology mentioned above are high separation efficiency and excellent 

heavy metals rejection. However, the limitations in terms of high energy consumption, 

low water permeability and membrane fouling also hinder the sustainable 

implementation of membrane technology. 
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In recent years, FO has attracted a very great interest among researchers for 

heavy metals removal as it requires a very low energy, low fouling rate, satisfactory 

pure water permeation and high solute rejection (Cui et al., 2014). Hence, this provides 

the FO technique a hidden prospect for heavy metal removal in water and wastewater 

treatment (Liu et al., 2017a). Principally, FO is a membrane process driven by natural 

osmotic pressure created when draw solution and feed solution with different 

concentrations separated by a semipermeable membrane (Coday et al., 2014). FO 

membranes is nearly similar to NF and RO which comprised of substrate and selective 

thin film layer except does not utilized hydraulic pressure, FO can be potentially for 

this particular application (Abdullah, Tajuddin, & Yusof, 2019a). Bao et al. (2019) 

fabricated polyamidoamine (PAMAM) dendrimer grafted TFC FO membrane to 

achieve high NH4
+ rejection and antifouling capacity in treating domestic wastewater. 

FO membranes are capable of rejecting most organics and phosphate ions by virtue of 

the size sieving effect (Chekli et al., 2016). On the other hand, Zhao et al. (2018) 

investigated the removal of Ni(II) from high salinity wastewater. The removal was 

carried out by comparing the performance of commercial cellulose triacetate (CTA) 

FO membrane and polyamide based TFC membrane. Nevertheless, internal 

concentration polarization (ICP) still remains as a major drawback for FO to be an 

applicable method for heavy metals removal. Currently, the ideal performance of FO 

membrane remains unachievable due to the inherent issues related to osmotically 

driven membranes such as high ICP which restricts the membrane from delivering 

optimum performance, particularly in terms of water flux and solutes rejection. 

The recent development of FO membranes are focused on TFC membrane 

fabrication and their modification. The substrate structure and morphology 

significantly influence the degree of ICP within the porous layer; whereas the active 

layer controls the extent of solute and water fluxes across the membrane (Akther et al., 

2019). Although PA-based TFC FO membranes have better performance compared to 

the cellulose-based membranes, the overall FO performance in terms of ICP, fouling 

resistance and chlorine tolerance is still an issue (Akther et al., 2015). On the other 

hand, substrate modification using inorganic nanofiller is one of the most common 

approaches to address ICP issue (Goh et al., 2019). The presence of nanomaterials 

within the substrate layer can alter the hydrophilicity and morphology, hence altering 

the water or solute transport behaviour during the FO process. 
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Since the first introduction of thin film nanocomposite (TFN), different 

nanomaterials such as titanium dioxide (TiO2), silica dioxide (SiO2), carbon nanotubes 

(CNTs) and graphene oxide (GO) have been incorporated into TFC FO membranes. 

The incorporation of GO into TFC substrate enhanced the membrane pore diameter, 

porosity and hydrophilicity which markedly increased the water permeability and 

antifouling properties (Sirinupong et al., 2018; Zinadini et al., 2014). The 

incorporation TiO2 nanoparticles in the PSf substrate of PA TFC membrane using 

direct blending to control ICP in the substrate during FO operation (Emadzadeh, Lau, 

& Ismail, 2013). Magnetite oxide (Fe3O4) nanoparticles is used as inorganic nanofiller 

additive in membrane fabrication due to its numerous advantages, such as low toxicity, 

good biocompatibility, high surface area and chemical stability. Next, Fe3O4 

nanoparticles also assisted for decreasing ICP of TFN FO membrane (Darabi et al., 

2017). Titania nanotubes (TNTs) has been explored as nanofillers for fabricating TFN 

FO membranes due to its tubular form provides additional channel for water transport 

across the membranes. The advantages of TNT owing to hydrophilic properties, good 

stability, large pore sizes and surface area (Akther et al., 2019).  

1.2 Problem Statement 

In recent years, the utilization of heavy metal compounds has exponentially 

increased in various industrial processes. As such, it has also become a critical 

environmental issue due to heavy metal contamination of water source. Although 

heavy metal ions could be eliminated from wastewater by several conventional 

methods including adsorption, chemical precipitation and ion exchange (Atkovska et 

al., 2018), the major issues with these technologies are their effectiveness, energy 

consumption and long term sustainability.  FO has gained interest as a membrane-

based water treatment alternative owing to its low membrane fouling tendency and 

energy consumption, compared to other membrane techniques (Shibuya et al., 2018). 

However, the common issue encountered by most TFC FO membranes is the ICP. The 

diffusion of reverse salt and the intrinsically porous structure of the substrate layer 

induce ICP. This results in the decrease in the effective driving force and eventually 

the water flux declines sharply. The most common and effective strategy is by 



 

5 

preparing TFN FO membrane which involves the incorporation of inorganic 

nanoparticles to alter the membrane substrates in order to reduce ICP phenomenon of 

TFC FO membranes (Zhang et al., 2018a). The nanoparticles provide their essential 

properties to address the ICP issues while maintaining the membrane performance 

(Lakhotia, Mukhopadhyay, & Kumari, 2019). 

Currently, the inorganic nanomaterials that have been most widely used for FO 

membrane modification include zeolite, GO, CNTs, silica and TiO2 (Akther et al., 

2019). These nanomaterials are introduced into polymeric membranes matrices to 

improve the membrane hydrophilicity and reduce the surface roughness (Daraei et al., 

2013). Nevertheless, most of the efforts in FO membrane modification were focused 

on using single nanomaterial to bring about the desired properties for desalination and 

wastewater treatment. For instance, TNT has been used to increase the hydrophilicity 

of the FO membranes in order to improve the flux and reduce fouling tendency. Darabi 

et al. (2017) were the first added Fe3O4 nanoparticles in polyehtersulfone (PES) 

substrate to mitigate ICP. The results revealed that the porosity and the hydrophilicity 

of the PES substrate were improved after addition of Fe3O4 leading to reducing in 

structural parameter (S) and water flux enhancement. As both hydrophilicity and ICP 

are equally important factors to be considered for a high-performance FO membrane, 

it is necessary to fabricate a membrane that can simultaneously address both issues. It 

is expected that the synergistic effect of TNT and Fe3O4 nanomaterials simultaneously 

address ICP and increase hydrophilicity. Hence, this study focused on the synthesis 

hybrid nanomaterials in order to mitigate ICP issue for water flux improvement as well 

as achieve high rejection of heavy metal removal in TFN FO membrane. 

Based on recent open literature, most of the TFN membranes were prepared 

for desalination in RO or FO process. The TFN FO membranes that are particularly 

designed for heavy metal removal is still limited. Despite some works that showed the 

potential of using FO for heavy metal removal, these works were largely based on 

commercial membranes and their modifications (Vital et al., 2018; Zhao et al., 2016c). 

As the properties of FO membrane is one of the most crucial factor in determining the 

efficiency of the process, most emphasis should also be placed on the design and 

modification of membrane to further enhance the heavy metal removal efficiency. 
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Hence, this study is aimed to fabricate a TFN FO membrane which is incorporated 

with bimetallic oxide hybrid nanoparticles. TNT–Fe3O4 hybrid nanoparticles were 

synthesized via hydrothermal and coprecipitation method. The physio-chemical 

properties of TNT–Fe3O4 hybrid nanoparticles were investigated. Then, the TNT–

Fe3O4 hybrid nanoparticles was embedded into polymer dope solution of polysulfone 

(PSf) substrate at different loading. The TNT–Fe3O4 incorporated PSf was formed by 

inversion phase and the polyamide selective layer was formed through interfacial 

polymerization. The physio-chemical properties of the fabricated membrane were 

evaluated in terms of surface roughness, water permeability and hydrophilicity. 

Finally, the separation and filtration performance of the TFN FO membranes were 

evaluated for heavy metals removal in terms of water permeability and separation 

behaviour. 

1.3 Objectives of Study 

The main aims of this research to fabricate a TFN FO membrane which consist 

of bimetallic oxide nanoparticles incorporated into the PSf substrate in order to form 

a TFN FO membrane for heavy metal removal. In order to solve the above-mentioned 

problems, the following objectives of have been outlined: 

i. To investigate the physicochemical properties of TNT–Fe3O4 hybrid 

nanoparticle synthesized through hydrothermal and co-precipitation 

method.  

ii. To investigate the physicochemical properties of TFN FO membranes 

incorporated with the TNT, Fe3O4 and different loading of TNT–Fe3O4 

hybrid nanoparticle into substrate. 

iii. To study the separation performance of TFN FO membrane for heavy 

metals removal in terms of flux, rejection and regeneration behaviour. 
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1.4 Scope of Study 

In order to achieve the main objectives of this study, the scopes of the study 

are identified as below: 

i. Synthesizing the hybrid bimetallic oxide nanoparticles by hydrothermal 

and coprecipitation method using titanium dioxide (TiO2) and ferrous 

sulphate (FeCl2·4H2O) and ferric chloride (FeCl3·6H2O) at molar ratio 1:2. 

The hybrid bimetallic oxide nanoparticles TNT and Fe3O4 was fixed at 

weight ratio of 1:1. 

ii. Conducting the morphological and physicochemical characterization of 

TNT–Fe3O4 hybrid nanoparticles using high resolution transmission 

electron microscope (HRTEM), field scanning electron microscope 

(FESEM), X-ray diffraction (XRD) and zeta potential. 

iii. Embedding TNT–Fe3O4 hybrid nanoparticles into the PSf substrate dope.  

The loading of TNT–Fe3O4 hybrid nanoparticles was varied from 0.1 wt% 

– 0.7 wt%. The dope formulation was maintained constant at 16.5 wt% 

polysulfone (PSf), 0.5 wt% polyvinylpyrrolidone (PVP) and 83 wt%  

n-methyl-pyrrolidone (NMP). 

iv. Fabricating PSf substrate via phase inversion and polyamide layer via 

interfacial polymerization using 2.0 wt% m-phenylenediamine (MPD) and 

0.1 wt% of trimesoyl chloride (TMC) as monomers 

v. Conducting the morphological, surface roughness, hydrophilicity and 

surface charge characterization of the TFN FO membrane by scanning 

microscope (SEM), atomic force microscope (AFM), water contact angle, 

porosity and zeta potential, respectively. 

vi. Conducting the cross-flow RO experiment at 1 bar hydraulic pressure.  

vii. Evaluating the intrinsic properties of TFN FO membrane in terms of water 

permeability, salt permeability and salt rejection in RO system. 

viii. Preparing a 10 mg/L heavy metal feed solution from each Cd(NO3)2 and 

Pb(NO3)2 powder.  
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ix. Conducting the FO experiment in active layer facing feed solution (AL-FS) 

orientation with 10 mg/L of Cd(NO3)2 as feed solution and 1 M of NaCl as 

draw solution. 

x. Evaluating the filtration performance of TFN FO membrane in terms of 

water flux, reverse solute flux and structure parameter in FO system.  

1.5 Significance of Study 

The development of a TFN FO membrane has offered significant contribution 

in water treatment for heavy metals removal due to their multifunctional properties of 

separation and filtration simultaneously with low energy consumption. Due to the 

variety of heavy metal pollutants present in wastewater from industry, the suitable 

nanoparticles must be selected for more efficient heavy metals separation and 

filtration. Thus, the fabricated membrane incorporated with bifunctional nanomaterials 

which is TNT–Fe3O4 hybrid nanoparticles that that can simultaneously address issues 

related to ICP and increase water flux. As this is the first attempt of modifying FO 

membrane for heavy metal removal through FO process, the findings from the 

correlation studies between the membrane properties and heavy metal removal 

performance will serve as the guideline for future related studies. With the promising 

features shown, the TFN FO membrane will be a promising heavy metals separation 

for water treatment.  
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