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ABSTRACT

Osmotic power generation through pressure retarded osmosis (PRO) has been 

recognized as an alternative source of energy. Membrane is one of the major elements 

to guarantee the successful application of PRO for power generation. However, the 

major current limitation in PRO lies in the design of a high-performance membrane 

which is endowed with desired properties in terms of flux and anti-fouling properties. 

Hence, the main objective of this study was to fabricate a hydrophilic and high flux 

PRO thin film nanocomposite (TFN) membrane with high flux and anti-fouling 

properties through the incorporation of zwitterionic polymers, poly (3- 

methacryloylethoxy carbonyl pyridinium sulfopropyl betaine) (PMAPS) in the 

substrate and titanium dioxide nanotube (TNT) into the polyamide (PA) layer. 

Different loadings of PMAPS were physically mixed with polysulfone (PSF) dope 

prior to the formation of the TFC substrate. Further optimization via etching treatment 

was performed to increase substrate porosity and the PA selective layer incorporated 

with TNT was formed on top of the substrate through interfacial polymerization 

technique. Membrane characterizations were carried out using scanning electron 

microscope, transmission electron microscopy, Fourier-transform infrared 

spectroscopy, x-ray diffractometer, energy dispersive x-ray, and contact angle 

goniometer. The water flux and power density performance of the zwitterion 

incorporated TFN membranes were evaluated using a custom-made PRO system. The 

power density exhibited by etched TFN membrane incorporated with 2.0% PMAPS 

(PSF/PMAPS-2.0 Etched TFN) was 2.12 W/m2 at 5 bar while unetched TFN 

membrane exhibited power density of 0.96 W/m2 at 7 bar. Addition of TNT resulted 

in the highest power density of 2.22 W/m2 at 5 bar. In terms of anti-fouling properties, 

PSF/PMAPS-2.0 Etched TFN achieved higher normalized water flux with 97% flux 

recovery compared to control substrate with 90% flux recovery. In conclusion, 

membrane modification using PMAPS zwitterions and TNT nanoparticles improved 

water flux, anti-fouling properties and power density.
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ABSTRAK

Penjanaan kuasa osmosis melalui tekanan osmosis terencat (PRO) telah 

dikenal pasti sebagai sumber alternatif tenaga. Membran merupakan satu elemen 

utama untuk menjamin kebolehlaksanaan aplikasi PRO dalam penjanaan kuasa. Walau 

bagaimanapun, antara halangan utama dalam aplikasi PRO ini ialah reka bentuk 

membran berkeupayaan tinggi yang dapat memenuhi kriteria yang ditetapkan dari segi 

sifat fluks dan anti kotoran membran. Oleh itu, objektif utama dalam kajian ini ialah 

menghasilkan membran lapisan saput nipis poliamida komposit nano (TFN) yang 

mempunyai sifat hidrofilik serta kadar fluks dan tahap anti kotoran yang tinggi dengan 

melalui penggabungan polimer zwitterion poli (3-metakriloiletoksi karbonil 

piridinium sulfopropil betaina) (PMAPS) di dalam substrat dan tiub nano titanium 

dioksida (TNT) ke dalam lapisan poliamida (PA). Muatan berbeza PMAPS 

dicampurkan secara fizikal dengan dop polisulfona (PSF) sebelum pembentukan 

substrat TFC. Pengoptimuman seterusnya melalui rawatan punar dilakukan untuk 

meningkatkan keliangan substrat dan lapisan memilih PA digabungkan dengan TNT 

telah dibentuk di atas substrat melalui teknik pempolimeran antara muka. Pencirian 

membran telah dilakukan dengan menggunakan mikroskop electron imbasan, 

mikroskop elektron transmisi, spektroskopi inframerah jelmaan Fourier, difraktometer 

sinar-x, sinar-x pelepasan tenaga, dan goiniometer sudut sentuhan. Prestasi fluks air 

dan ketumpatan kuasa TFN membran yang digabungkan dengan zwitterion dinilai 

menggunakan sistem PRO buatan sendiri. Ketumpatan kuasa yang dipamerkan oleh 

membran TFN punar yang digabungkan dengan 2.0% PMAPS (TFN PSF/PMAPS-2.0 

TFN punar) ialah 2.12 W/m2 pada 5 bar, manakala bagi membran TFN tanpa punar 

mempamerkan ketumpatan kuasa 0.96 W/m2 pada 7 bar. Penambahan TNT 

menghasilkan ketumpatan kuasa tertinggi dengan nilai 2.22 W/m2 pada 5 bar. Dari 

segi sifat anti kotoran, PSF/PMAPS-2.0 TFN punar telah mencapai fluks air ternormal 

tertinggi dengan 97% perolehan fluks berbanding dengan substrat kawalan dengan 

90% perolehan fluks. Kesimpulannya, pengubahsuaian membran dengan zwitterion 

PMAPS dan nanopartikel TNT telah meningkatkan fluks air, sifat anti kotor, dan 

ketumpatan kuasa.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Energy is a crucial aspect of every life on the earth including economic and 

technological development which is derived mostly from fossil fuel such as petroleum 

and coals (Chow et al., 2009). From simulation studies conducted on global energy 

consumption, the energy consumption will face large increase in the tropic region 

countries by 7% and 17% under moderate and warming weather temperature 

respectively by 2050 (De Cian and Sue Wing, 2019). It is expected that the global 

energy demand will increase by 56% in 2040, and the global energy consumption will 

spike up to 240 TWh. However, the current stock of oil and gas can only sustain until 

2042, while coals as another alternative of fossil fuel is expected to sustain until 2112 

(Han et al., 2014; Shafiee and Topal, 2009). Although the reserve of fossil fuel is not 

alarming in foreseeable future, the combustion of these fuel will lead to the increase 

of the greenhouse gasses such as carbon dioxide in the atmosphere. The carbon dioxide 

emission from fossil fuel and industry comprise 90 % of all CO2 emission from human 

activities and it is the main factor that contributes to global climate change (Jackson et 

al., 2017).

Reliability on natural resources energy surely one day will come to an end. 

New technology of energy generation must be developed as energy plays important 

role in the world evolution and advancement. The major challenge of the energy 

system is to ensure adequate supply of energy services at low cost, while not giving 

any bad impact to the environment locally and globally (Sagar and Holdren, 2002). 

Considering the current depletion of natural resources such as crude oil and coal, 

renewable energy is still relevant and needed to ensure the global energy supply is on 

its track. New type of renewable energy needs to be developed to eliminate or at least 

decrease our dependency on natural resources.



Green and renewable energy refers to the energy that is harvested from 

renewable resources in which they are replenished naturally through time, such as 

sunlight, rain, wind, tides, geothermal heat, and waves (Ellabban, Abu-rub and 

Blaabjerg, 2014). There are many advantages in renewable energy as its source will 

not run out, numerous benefits to health and environment with less carbon footprint, 

lower maintenance compared to natural energy resource, and many more. However, 

each type of them has their own limitations and disadvantages. Currently, solar energy 

has been utilized in many ways such as in the forms of photovoltaic system, solar hot 

water, solar electricity, passive solar heating and day lighting, and space heating & 

cooling. However, in order to commercialize solar energy, enormous space is needed 

to build the plant. Topaz Solar Farm located in California, United States takes almost 

25 km2 land space for their plant and this size is equivalent to 3500 standard football 

fields (Journal and Technologies, 2017). Such large area is not suitable for small 

country like Malaysia, Singapore, and many European countries and also there has no 

constant sun light throughout the year. As for wind energy, despite the zero-cost fuel 

and no production of harmful polluting gases, wind farms are noisy and may spoil the 

view for people living near them. Furthermore, the amount of electricity generated 

depends on the strength of the wind where if there is no wind, there is no electricity. 

On the other hand, geothermal energy is known to be the most expensive in terms of 

capital expenditure due to the cost of drilling wells to the geothermal reservoir as well 

as the cost of heating, and cooling system installation.

As an alternative of currently available renewable energy sources, salinity 

gradient energy (SGE) is one of the promising areas in which need to be developed as 

new energy source. Roughly, about 2 TW of SGE is available globally of which 

possibly 980 GW of energy can be harnessed if all river water discharging into the sea 

are systematically utilized and this equivalent to the supply of 80% of global electricity 

demand for 2018 (Guler and Nijmeijer, 2018)(Logan and Elimelech, 2012). By 

continuing research and development on SGE as an alternative for energy generation, 

it is believed that our dependency and reliability towards fossil fuel can be reduced. 

One of the technologies introduced in SGE is pressure retarded osmosis (PRO). PRO 

is a new form of renewable energy that converts the pressure difference between two 

water flows with different salinity gradient which are waters with high salinity to water
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with low salinity or no salinity into hydraulic pressure. The hydraulic pressure can be 

used to drive a turbine in order to produce electrical energy. PRO holds the potential 

to produce renewable energy from natural and anthropogenic salinity gradients (Yip 

et al., 2011) PRO has many advantages such as it can be operated 24 hours daily, not 

affected by wind and solar radiation, small foot-print, and easy to scale-up. A PRO 

prototype plant system was developed in Norway in the late 2009 (Achilli and 

Childress, 2010) by using combination of river water as feed solution and sea water as 

draw solution. In terms of energy production, the power density of PRO is known to 

directly proportional to the water flux. Hence, desired range of power density cannot 

be achieved because of low water flux through the membrane.

Normally, ideal PRO requires high water flux, high salt rejection, high 

mechanical strength, and low fouling tendency (Cai et al., 2016). Two major factors 

that affect PRO productivity are PRO membrane and the feed pair which are feed and 

draw solutions. Feed and draw solutions must be two different solutions with different 

salinity. The greater the salinity difference, the higher the osmotic pressure, and this 

leads to high water flux and results in higher power density. The foulant molecules 

from feed and draw solutions during separation process tends to clog the membranes 

by depositing the retained inorganic materials, or organic compound and 

microorganism on the membrane pores. This problem is known as membrane fouling 

and it affects the productivity of the membrane over the operation time. This problem 

not only causes inconvenience for practical operation, but also increase the operating 

cost due to membrane cleaning and replacement process and also increase the energy 

input for PRO operation (Shahkaramipour et al., 2017). This fouling problem leads to 

the significant decrease in power density of PRO system, and hence the energy is 

produced below the expectation for practical application. Concerns on anti-fouling 

performance have raised among membrane researchers as fouling effect can reduce 

water flux with time. To address this problem, various methods can be adopted such 

as pretreatment of feed solution, periodic cleaning, or surface modification of 

membrane. In terms of feasibility, surface modification of PRO membrane via 

molecular design is a preferred method to deal with fouling problem without affecting 

the membrane bulk properties (Cai et al., 2016).
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In recent years, researchers have shown interest in developing polymeric 

membrane with the incorporation of zwitterionic polymer (Bengani-Lutz et al., 2017; 

Wang, Y. lei Su, et al., 2009; Zhu et al., 2017). The key components that make 

zwitterionic polymer as a new material to be incorporated in separation membranes 

are the ability to improve hydrophilicity of the membrane itself and to exhibit excellent 

anti-fouling properties. It has been reported that zwitterionic poly(arylene ether 

sulfone) incorporated with poly(vinylidene fluoride) (PVDF) resulted in excellent anti- 

fouling properties and good thermostability (Rong et al., 2018). Zwitterion, which also 

known as dipolar ion, is a molecule that has two or more functional groups, in which 

one has a positive electrical charge and the another one has the negative electrical 

charge, ang hence the net electrical charge of the entire molecule is zero (Mi et al.,

2017). The incorporation of zwitterion and membrane can be achieved via phase 

inversion, interfacial polymerization (IP) or spray grafting method. Zhu et, al. blended 

zwitterion with PVDF to create a membrane via phase inversion method for oil in 

water emulsion separation (Zhu et al., 2017). It was reported that the zwitterion cross­

linked membrane reached nearly 91% of permeate recovery. On the other hand, TFC 

was formed via IP of 3, 3'-diamino-N-methyldipropylamine (DNMA) zwitterion and 

trimesoyl chloride (TMC) (Mi et al., 2017).

Apart from zwitterion polymer, titanium dioxide nanotubes (TNT) has also 

been widely used in various applications such as in fuel cell technology, photocatalytic 

system, sensors, energy storage, and environmental analysis (Abdullah and 

Kamarudin, 2017). Researchers incorporated TNT into the membrane substrate and 

polyamide (PA) active layer as nanofiller to enhance the properties of the membranes. 

This inorganic photocatalytic nanomaterial attract the interest of researchers due to 

their unique properties such as self-cleaning, and anti-fouling, anti-microbial (Geng et 

al., 2019). Subramaniam et al., (2016) incorporated TNT with polyether sulfone (PES) 

via physical blending method. The incorporation of TNT into PES showed 

improvement of 20% membrane flux and the rejection was improved from 79% to 

96%.
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1.2 Problem Statement

Salinity gradient energy created by PRO commonly falls between 0.70-0.75 

kWh (2.5-2.7 MJ) when 1 m3 of river water mixes with 1 m3 of sea water (Yip and 

Elimelech, 2012). But in current situation, the practicability of PRO is low due to the 

poor performance of PRO membranes. The two major limitations related to PRO 

membranes are their low flux and fouling issues. Currently, no commercial PRO 

membrane is available, and the early studies of PRO were based on the use of 

commercial RO membranes. The thick layer support has resulted in unfavorable low 

permeate flux. While sufficiently thick membrane support is required to render high 

mechanical strength in order to withstand the hydraulic pressure of PRO system, the 

water flux can be improved by increasing the membrane hydrophilicity. Currently, one 

of the most feasibly used methods to achieve this purpose is through the incorporation 

of hydrophilic nanoparticles into the TFC membranes. However, one concern with this 

strategy is the incompatibility of the inorganic nanofiller and polymeric phases where 

the dispersion of the nanofillers is difficult to be achieved. This has in turn caused the 

formation of defective membranes.

Like other membrane processes, PRO suffers from membrane fouling which is 

caused by the contaminants present in feed water. Zwitterionic materials have been 

extensively studied as hydrophilic and fouling-resistant modifiers for membrane 

surface due to their absorption resistance towards organic compounds. One of the most 

common approaches to introduce zwitterion is through membrane surface coating. 

However, this method has several limitations such as lack of surface functionalities for 

surface coating, leaching of coating layer and increased surface roughness which may 

result in more severe fouling. In this study, the blending of PMAPS zwitterion polymer 

into the substrate layer was proposed to overcome the abovementioned issues. 

Meanwhile, TNT has been used to address the fouling issue. The incorporation of TNT 

in membranes can be achieved by various method such as physical blending 

(Subramaniam et al., 2016), physical deposition (Vereb et al., 2019), and PA thin film 

nanocomposite modification (Azelee et al., 2017).
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The aim of this research was to develop highly hydrophilic and high-flux PRO 

membranes that also have an excellent anti-fouling performance to offer high power 

density. In this study, zwitterionic polymer, a highly hydrophilic material, was used 

in modifying the substrate of the PRO membrane to increase the water flux and render 

good anti-fouling properties. TNTs were also incorporated within the PA (PA) layer 

for better water flux in order to increase the power density of PRO system. Physical 

blending approach between zwitterionic polymer and common polymer was used to 

create the substrate dope solution. Phase inversion casting was performed to form the 

substrate of the membrane and followed by IP to form the thin film selective layer. 

Characterizations tests were performed to investigate the effects of zwitterionic 

polymer modification on the properties of the resultant modified TFC membrane. Lab 

scale PRO system was used to determine the flux, power density and anti-fouling 

properties of the membranes.

1.3 Objectives of Study

In order to address the abovementioned problems, the objectives of this study are set 

as below:-

1. To characterize PRO TFC membrane with substrate incorporated with PMAPS 

zwitterionic polymer.

2. To optimize and characterize TFC membrane incorporated with TNT in PA 

active layer.

3. To evaluate the performance of the PRO membranes in terms of flux, power 

density and anti-fouling performance through PRO system.
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1.4 Scope of Study

To achieve the objectives of this study, the following scopes have been derived:

1. Characterization of PMAPS using Fourier-transform infrared spectroscopy 

(FTIR) for chemical functional group studies.

2. Preparation of membrane substrate dope based on 15% of polysulfone (PSF), 

84% of n-methyl-2-pyrrolidone (NMP) solvent and 1% of 

polyvinylpyrrolidone (PVP) pore former.

3. Mixing of 0.5-2.0 wt% of zwitterionic polymer into the PSF dope through 

physical blending method.

4. Fabrication of membrane substrate through phase inversion technique. 

Substrate etched using 500 ppm of sodium hypochlorite (NaOCl) (4-4.99%) 

aqueous solution for 1 hour.

5. Fabrication of TNTs nanoparticles using hydrothermal synthesis method and 

titanium dioxide (TiO2) powder and 10 M of sodium hydroxide were used 

during the process.

6. Characterization of TNTs nanoparticles using transmission electron 

microscopy (TEM), x-ray diffraction (XRD) and FTIR for morphology and 

chemical functional group studies.

7. Fabrication of PA thin film using 2% (w/v) m-Phenylenediamine MPD 

aqueous solution, 0.1% (w/v) trimesoyl chloride (TMC) solution in n-hexane, 

and 0.5% (w/v) of TNTs via IP

8. Characterizations of fabricated TFC membrane using scanning electronic 

microscope (SEM), Fourier-transform infrared spectroscopy (FTIR) and
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contact angle meter goniometer for morphology, chemical functional group, 

and hydrophilicity, respectively.

9. Evaluation of neat TFC, zwitterion incorporated TFC, and TFN membrane 

using lab scale PRO module for water flux and power density. 3, 5, 7, and 10 

bars of operating pressure used. RO water used as feed solution while 2 M of 

NaCl used as draw solution.

10. Calculation of water flux, reverse salt flux, power density, and normalized 

water flux to compare the performance of neat TFC and zwitterion incorporated 

TFC membrane with and without TNT.

1.5 Significance of Study

High water flux and salt rejection are great concerns for membrane properties 

and have attracted many researcher attentions’ in their studies. The application of 

zwitterionic polymer has been proven to render more hydrophilic properties to the 

membrane and improve the anti-fouling performance of the membranes. This study 

was the first attempt of applying novel PMAPS zwitterionic polymer in flat sheet 

membrane substrate and addition of TNTs nanoparticles for PRO application. It did 

give higher power density than current PRO membrane available in industry.

8
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