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ABSTRACT 

 

 

 

 

This study was aimed to develop zirconium (Zr)-based metal organic 

framework (MOF) ceramic membrane that can be used for forward osmosis (FO) 

desalination. As the first step, ceramic substrate surface was first modified with 

zirconium dioxide (ZrO2) using sol-gel Pechini’s method to provide active seeds that 

can favour MOF nucleation. Using this modified substrate, a series of solvothermal 

synthesis conditions were tested to build the FO applicable membrane. In the 

unmodulated procedure, only sample synthesized at 220°C with 0.3 M and 16 h gave 

positive water flux. Field emission scanning electron microscopy (FESEM) and 

themogravimetric analysis (TGA) results have shown that the non-uniform coverage 

and defect frameworks of MIL-140B (Materials of Institute Lavoisier –MIL) on the 

substrate layer was the cause to this problem. Hence, to tune the defect, modulated 

synthesis was introduced. Increment in modulator amount by increasing precursor 

concentration from 0.58 M to 2.32 M had successfully lowered the percentage of 

defect framework from 26.03% to 16.87%. Despite this framework enhancement, FO 

test result of this sample still displayed worse performance than the previous synthesis 

due to its high tendency of agglomeration. Loosely joint particles that formed during 

agglomeration at high temperature synthesis were easily brushed off during FO test. 

Therefore, lower synthesis temperature of 120°C and longer synthesis time of 24 h 

was employed in the next procedure to allow slow nucleation process that can form 

better connected crystals. Instead of MIL-140B, UiO-66-NDC (University of Oslo – 

UiO) framework was found at 2θ = 10.36° and the crystal shape appeared in 

octahedron. Even with this reformatted crystal shape, the FO performance result still 

could not be in positive value. Therefore, the UiO-66-NDC membrane active layer was 

polymerised with fluorinated polymer as the last resort. Integration between this 

polymer and UiO-66-NDC had successfully treated the membrane defects by building 

new bonds inside the framework as proven by FESEM, atomic force microscopy, x-

ray diffraction, Fourier-transform infrared spectroscopy and TGA results. With better 

connected crystals, smoother deposition layer and perfect frameworks, FO 

performance of all UiO-66-NDC samples finally gave positive water flux results and 

the highest value was 16.189 L/m2.h. Its lowest reverse solute flux achieved was 0.003 

L/m2.h with sodium chloride rejection of up to 80 % which is definitely better than the 

previous study. Therefore, polymer-synthesized UiO-66-NDC on ceramic hollow fibre 

can definitely serve as an excellent FO membrane option that can be used in the 

desalination process. 
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ABSTRAK 

 

 

 

 

Kajian ini bertujuan untuk membangunkan membran seramik berkerangka 

metal-organik (MOF) berasaskan logam zirconium (Zr) yang boleh digunakan untuk 

osmosis proses penyahgaraman ke hadapan (FO). Langkah pertama, permukaan 

gentian berongga seramik telah diubah suai dengan zirkonium dioksida menggunakan 

kaedah sol-gel Pechini untuk menghasilkan benih aktif yang membantu proses 

nukleasi MOF. Dengan menggunakan substrat yang telah dimodifikasi ini, pelbagai 

keadaan sintesis solvothermal telah diuji untuk menghasilkan membran yang mampu 

berfungsi untuk FO. Melalui prosedur tanpa modulasi, hanya sampel yang disintesis 

pada suhu 220°C dengan 0.3 M dan 16 jam sahaja dapat memberikan nilai positif fluks 

air. Keputusan mikroskop imbasan elektron pancaran medan (FESEM) dan analisis 

thermogravimetri (TGA) menunjukkan bahawa perlindungan yang tidak seragam dan 

kecacatan kerangka MIL-140B (bahan dari Institut Lavoisier - MIL) di atas lapisan 

substrat merupakan penyebab kepada permasalahan tersebut. Oleh itu, untuk 

membaiki kecacatan ini, sintesis bermodulasi diperkenalkan. Penambahan jumlah 

modulator melalui kenaikan kepekatan bahan dari 0.58 M kepada 2.32 M berjaya 

menurunkan kecacatan kerangka dari 26.03% kepada 16.87%. Walaupun 

penambahbaikan telah dibuat ke atas kecacatan kerangka, keputusan ujian FO masih 

memaparkan prestasi yang negatif malahan lebih teruk daripada sampel sebelum ini 

disebabkan oleh kecenderungan terhadap penggumpalan. Partikel longgar yang 

terbentuk pada sintesis suhu tinggi lebih mudah terhapus semasa ujian FO. Maka, suhu 

sintesis yang lebih rendah dan masa sintesis yang lebih lama iaitu 120 °C dan 24 jam 

diperkenalkan dalam prosedur seterusnya bagi membolehkan proses nukleasi perlahan 

berlaku seterusnya membentuk gabungan kristal yang lebih baik. Selain MIL-140B, 

pada 2θ = 10.36°, formasi kerangka UiO-66-NDC (Universiti Oslo - UiO) dapat 

diperoleh dan kristal terpapar dalam bentuk bongkah bersegi lapan. Walaupun bentuk 

kristal telah berubah, keputusan ujian FO masih belum dapat diperoleh dalam nilai 

positif. Oleh itu, lapisan aktif membran UiO-66-NDC dipolimerkan dengan polimer 

florin sebagai langkah terakhir. Integrasi antara polimer ini dengan UiO-66-NDC 

berjaya merawat kecacatan kerangka dengan membina ikatan-ikatan baru yang 

dibuktikan melalui keputusan FESEM, mikroskop daya atom, pembelaun sinar-X, 

spektroskopi infra merah transformasi Fourier dan TGA. Melalui gabungan kristal 

yang lebih baik, permukaan lapisan bersepadu yang lebih licin dan kerangka yang 

sempurna, keputusan ujian FO bagi semua sampel UiO-66-NDC akhirnya 

memberikan nilai fluks air yang positif dan nilai tertinggi yang diperoleh adalah 

16.189 L/m2.h. Nilai terendah bahan larut fluks balikan adalah 0.003 L/m2.h dengan 

prestasi penolakan garam natrium klorida sehingga 80% berbanding dengan membran 

sebelumnya. Selaras dengan keputusan ini, polimer-disintesis UiO-66-NDC di atas 

permukaan serat berongga seramik adalah antara pilihan membran FO yang terbaik 

untuk digunakan dalam proses penyahgaraman..
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

Although this world is mostly covered by water in its portion, fresh water 

supply is still shortening everywhere. Worsening water pollution, risen of industrial 

activities and rapid growing of human population are some causes of it. Back then, 

desalination was one of the ways to convert the cheapest and largest water source 

(seawater) into fresh water. This seawater desalination is still believed nowadays to 

offer a steady supply of high-quality water without damaging the natural freshwater 

ecosystems [1]. Many desalination technologies had been developed since then such 

as electrodialysis (ED) and multistage flash distillation (MFD). However, those 

technologies still could not meet the demand and quality acquired for a truly-called 

fresh water, besides having high operational cost as part of its disadvantages. Hence, 

another option called membrane-based technology is introduced to encounter previous 

ineffectiveness. Membrane had exposed its reliability and efficiency in water treatment 

process throughout the years. The fact that it works without additional chemicals with 

low energy utilization and by physical process only make it easy to conduct the process 

and at the same time, producing high quality recycled water [2].  

 

 

One of the available membrane processes is forward osmosis (FO). It brings 

numerous benefits such as high water recovery, low membrane fouling and low energy 

consumption when compared to the others. Its system works based on natural-build 

osmotic pressure created by two different solutions used. FO membrane which is 

placed in between the solutions induced the separation process when it allows only 

water molecules to pass through and retaining the unwanted solutes. Common FO 

membranes which can be found nowadays were polymeric or composite polymeric 

membranes. They undoubtedly had shown exceptional water flux performance in FO 
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process but at the same time, they continue to face problems in sustaining their 

rejection properties. Also, these type of membrane especially polymeric has significant 

disadvantages of abrasion, mineral scaling and short life span [1–3]. Therefore, to 

alleviate the problems, MOF ceramic membrane has been introduced. 

 

 

Ceramic membrane is a class of inorganic membrane which consists of 

materials such as carbon, silica, oxides (alumina, titania, zirconia) and metals. In terms 

of better properties compared to polymeric, ceramic membrane possess superior 

thermal and mechanical stability, high resistance towards solvents and well-defined 

stable pore structure [4], [5]. However, despite of this benefits, ceramic membrane has 

certain shortcomings that need to be solved such as formation of cracks in its synthesis 

process and inter-crystalline defects which later on could affect the membranes’ 

performances [3], [6]. A solution to this problem was exposed by incorporating 

nanoporous material such as metal-organic framework (MOF) on the ceramic 

membrane active layer. MOF has an outstanding features which consists of metal ions 

and organic linkers in its framework. Effectiveness of this material can be found in 

broad applications such as water separation, gas storage, and catalytic reaction 

previously [7], [8]. Incorporation of such interesting material on ceramic membrane 

during dope preparation or coating process was believed to give an enhance properties 

to the pristine membrane [9]. Furthermore, crack issue in the ceramic membrane also 

expected to be solved since MOF membrane synthesis does not require thermal 

burning of organic templates such in the synthesis of zeolite MFI membrane [3].  

 

 

Among the available MOF materials, zirconium-based MOF, especially MIL 

series (MIL: Materials from Institute Lavoisier) and UiO series (UiO: University of 

Oslo) had shown their high stability in water and acidic condition [10]. Their strong 

ionic bonding between Zr4+ and carboxylate oxygen atoms in these MOF was what 

cause it to possess strong chemical and mechanical stability [11]. Moreover, their 

unique feature which none other MOF could offer was their pore. It can be tuned 

readily only by changing its organic linker to fit for selected separation application 

[12], [13]. This tuneable framework characteristic enables efficient combination of Zr-

based MOF with other materials that will result to synergistic effect between them [7].  
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Hence, this kind of materials were definitely suitable for FO process due to their 

amazing characteristics. There are various methods available on producing MOF 

membranes including solvothermal/hydrothermal method, interfacial 

(contradiffusion) method and liquid phase epitaxy method [14]. Compared to others, 

solvothermal synthesis emerged as a facile and competitive method besides showing 

the most applicability in synthesizing existing MOF membranes [3], [6], [15], [16]. 

 

 

 

 

1.2 Problem Statement 

 

 

Despite the solvothermal capability, this method of in situ and seeded growth 

has some difficulty in controlling the heterogeneous nucleation sites on the membrane 

substrates. Without any resolution, it would further results to non-uniform deposition, 

big inter-crystal gaps, and cracks on the membrane surface. Structure defects like these 

are undesirable as they would affect the membrane performance since gaps existed 

would allow solutes to pass through instead of water molecules. According to Fang et 

al., recent fabricated FO membrane with double skin (RO-like and NF-like) layers also 

could not prevent the reverse solute flux from happened during FO process although 

it did improved the water flux performance. Besides that, some studies indeed 

increased its water flux performance to a better level but at the same time, the reverse 

solute flux still increased rapidly. Other than that, fabrication of MOF membrane 

without any delamination issue was still remained as a challenge since it is difficult to 

obtain MOF crystals that can form strong coordination bonds with the mother 

substrates. Therefore, it remains a challenge to fabricate a competitive FO membrane 

that possess incredible structure which can perform high FO water flux with high 

rejection and low or none occurrence of reverse solute flux. Formation of a continuous 

MOF ceramic membrane might be a great option to build another potential FO 

membrane with high performance since excellent properties from both materials will 

be combined together. This research will discover the possibility of fabricating such 

membrane by varying the solvothermal synthesis conditions and polymerised the 

active layer with fluorinated polymer. 
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1.3 Research Objectives 

 

 

To achieve the aim of this research, the following objectives were fulfilled 

respectively: 

 

a) To study the effects of varying synthesis conditions on physicochemical 

properties and FO performance of MIL-140B and UiO-66-NDC hollow fibre 

produced through solvothermal method. 

 

b) To investigate the effects of adding polymer on physicochemical properties of 

UiO-66-NDC hollow fibre.  

 

c) To evaluate performance of the polymer-integrated UiO-66-NDC ceramic 

hollow fibre in term of water flux, reverse solute flux and salt rejection. 
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1.4 Research Scopes 

 

 

 As stated below are the steps needed to accomplish the aforementioned 

objectives: 

 

Scope objective 1:  

 

a) Preparation of Al2O3/YSZ substrate using phase inversion and sintering  

            technique. 

 

b) Modified the Al2O3/YSZ substrate surface with ZrO2 layer using sol-gel  

            Pechini’s method. 

 

c) Synthesize MIL-X and MIL-D at same solvothermal condition of 0.3 M and 

16 h at 220 ºC. 

 

d) Varying synthesis time (6 h and 16 h) and synthesis concentration of (0.15 M 

and 0.30 M) for MIL (A to D) at temperature of 220 ºC. 

 

e) Regulating modulator equivalent condition (0, 2.8 and 10) and synthesis 

concentration of (0.58 M, 1.16 M, 1.74 M and 2.32 M) for MIL (2.8-A, 10-A,     

10-B, 10-C and 10-D) at temperature of 220 ºC. 

 

f)  Lowering synthesis temperature to 120 ºC for sample UiO (2.8-A2, 10-A2, 

10-B2, 10-C2 and 10-D2). 

 

g) Regulating modulator equivalent (0, 2.8 and 10), synthesis concentration of 

(0.58 M, 1.16 M, 1.74 M and 2.32 M) for UiO (2.8-A2, 10-A2, 10-B2, 10-C2 

and 10-D2) at temperature of 120 ºC. 
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h) Characterize all samples using Field Emission Scanning Electron Microscopic 

(FESEM), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and 

Brunauer-Emmett-Teller (BET) tests. 

 

i) Evaluate the performance of all samples in term of water flux and reverse 

solute flux using forward osmosis test: feed solution (deionized water) and 

draw solution (100,000 ppm NaCl). 

 

Scope objective 2:  

 

a) Deposit sample UiO (2.8-A2, 10-A2, 10-B2, 10-C2 and 10-D2) hollow fibre 

active layer with fluorinated polymer (DEFENSA OP-4003) using dip-coating 

method and activated it with UV curing process.  

 

b) Characterized the polymer-integrated UiO-66-NDC hollow fibre using Field 

Emission Scanning Electron Microscopic (FESEM), Atomic Force 

Microscopy (AFM), contact angle, X-ray Diffraction (XRD), 

Thermogravimetric Analysis (TGA), Fourier-Transform Infrared 

Spectroscopy (FTIR) and Brunauer-Emmett-Teller (BET) tests. 

 

c) Evaluate the performance of polymer-integrated UiO-66-NDC hollow fibre in 

terms of water flux and reverse solute flux using forward osmosis test (active 

layer facing feed solution, AL-FS): feed solution (deionized water) and draw 

solution (100,000 ppm NaCl). 

 

Scope objective 3: 

 

a) Evaluate the monovalent salts rejection performance of the best polymer-

integrated UiO-66-NDC hollow fibre produced in this study using active layer 

facing draw solution (AL-DS) configuration system: feed solution (deionized 

water) and draw solution (40,000 ppm KCl and NaCl). 
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1.5 Significance of Study 

  

 

This research was the first to provide an insight on depositing MIL-140B and 

UiO-66-NDC on ceramic substrate for FO desalination process. Besides that, new 

reaction ability of Zr-based MOF especially UiO-66-NDC towards fluoride ion (F-) 

has been discovered which helps gaining deeper knowledge on the materials 

properties. Also, throughout this research, the negative performance of FO membrane 

has been made possible to give positive value when synthesis temperature of 120°C 

and membrane active layer is polymerized with polymer resin using UV-curing 

method. Therefore, it is noteworthy to acknowledge that this study is important based 

on the stated significances. The final product of this research definitely fulfill the 

research aim by fabricating FO ceramic membrane that has high water flux, low 

reverse solute flux and at the same time has higher rejection that the existing FO 

membrane in literature. 
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