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ABSTRACT 

Functionalization of cellulose nanofibers with beta-cyclodextrin (CNF/ β-CD) 

were performed. β-CD functionalization onto CNF was achieved by polymerization 

between β-CD and citric acid as crosslinker. β-CD coating was permanently adhered 

onto the surface of CNF. Fabrication of CNF with 15% concentration of cellulose 

acetate had produced average fiber diameter of 312 nm and 177 nm for CNF and 

CNF/ β-CD, respectively when characterized by using SEM analysis and revealed 

that functionalization of CNF with β-CD did not deform the original nanofibrous 

structure of CNF mats. The Fourier Transfer Infrared (FTIR) spectrum that showed 

adsorption band of carbonyl group due to high intensity peak at 1740 cm−1 of CNF/ 

β-CD confirmed the chemical linkages between CNF and citric acid via ester bonds. 

Thermal decomposition of CNF/ β-CD was higher than CNF when characterized by 

using thermogravimetric analyser (TGA) and onset degradation temperature of CNF/ 

β-CD was 20 oC higher than CNF which suggested the successful functionalization 

of the CNF/ β-CD. The highest removal of palmitic acid by 33% at 60 minutes of 

contact time was recorded by CNF/ β-CD that were functionalized with 7% of β-CD 

concentration and 8% of citric acid concentration during crosslinking process. It was 

recorded that rate of absorption of CNF/ β-CD was 17% higher compared to CNF. 

Reusability of CNF and CNF/ β-CD were also investigated and CNF/ β-CD was 

found to have similar removal percentage (±30%) even after four attempts compared 

to CNF which can only reused for two times. The adsorption process of the modified 

CNF on the removal of palmitic acid concentration was best-explained by Langmuir 

isotherm model and the adsorption kinetics for the palmitic acid was found to follow 

pseudo second order kinetic model. These findings suggested that β-CD-

functionalized CNF can be a very good candidate as an adsorbent for removal of 

palmitic acid from wastewater or for wastewater treatment owing to their very large 

surface area as well as inclusion complexation capability of surface associated β-CD. 
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ABSTRAK 

Selulosa nanofibers (CNF) yang telah difungsikan dengan beta-cyclodextrin 

(CNF/ β-CD) telah dihasilkan. Pembentukan β-CD ke CNF dicapai melalui 

pempolimeran antara β-CD dan asid sitrik sebagai agen penghubung silang. Analisis 

menggunakan pengimbasan mikroskop elektron (SEM), fabrikasi CNF dengan 15% 

konsentrasi selulosa asetat telah menghasilkan CNF yang mempunyai 177 nm purata 

diameter serat manakala CNF/ β-CD yang terhasil selepas proses hubung silang 

mempunyai purata diameter serat yang lebih besar iaitu 312 nm. Seterusnya, analisis 

spektrum menggunakan transformasi fourier inframerah (FTIR) membuktikan 

bahawa wujud hubungan kimia antara CNF dan asid sitrik melalui ikatan ester 

kerana terdapat puncak intensiti yang tinggi pada 1740 cm-1 yang mewakili 

penjerapan ikatan kumpulan karboksil. Penguraian termal CNF / β-CD adalah lebih 

tinggi daripada CNF yang tidak diubah suai apabila dicirikan dengan menggunakan 

penganalisis termogravimetrik (TGA) dan suhu kemerosotan permulaan CNF / β-CD 

sebanyak 20 oC lebih tinggi daripada CNF mencadangkan CNF/ β-CD berjaya 

dihasilkan. Penyingkiran asid palmitik yang paling tinggi sebanyak 33% pada kadar 

masa 60 minit tindak balas telah direkodkan bagi CNF/ β-CD yang diubahsuai 

dengan kepekatan optimum β-CD sebanyak 7% dan kepekatan optimum asid sitrik 

sebanyak 8%. Proses penjerapan bagi CNF/ β-CD untuk mengurangkan kepekatan 

asid palmitik dapat dijelaskan oleh Langmuir isotherm model dan penjerapan kinetik 

untuk asid palmitik didapati mengikuti model kinetik urutan pseudo kedua. 

Penemuan dalam kajian ini turut mencadangkan bahawa CNF/ β-CD  boleh menjadi 

calon yang sangat baik sebagai merawat asid palmitik dari air kumbahan atau untuk 

rawatan air buangan berikutan kawasan permukaannya yang sangat besar serta 

keupayaan β-CD yang mampu membentuk komplek inklusif di permukaan CNF/ β-

CD. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Research Background 

Excessive releases of pollutants from industrial activities have created a 

global major concern. As the world now are undergoing rapid industrialization and 

development eras, it caught the attention of scientist, researchers and engineers all 

around the world to design an effective wastewater treatment technology in order to 

keep the environment healthy and to ensure all humankind are continuously feed 

with safe water. There are a lot of components contain in wastewater including 

chemical, biological and physical pollutants resulted from various sources such as 

from communities and industrial activities (Silva-Bedoya et al, 2016). A lot of 

studies are conducted today to ensure that the water pollution is still under control 

and researchers are intended to help the world to face this challenge by designing 

new technologies that can be implemented in treating the wastewater effluent before 

it is released to the natural water sources.  

An efficient and low-cost materials for the removal of highly toxic organic 

compounds from wastewater had given a highlight to the effort of all the scientist in 

finding the best wastewater treatment. Cost of raw materials in developing the 

method of new invention will always become a debatable issue and it is one of the 

critical factors need to be considered. Nowadays, the utilization of all such potential 

materials as low-cost adsorbents for the treatment of wastewater make the study 

toward this issue more interesting (Gupta et al., 2009). Besides of searching for the 

potential low-cost method that can be implemented in designing a better wastewater 

treatment, effective techniques for removal of the pollutants have also drawn 

significant interest. There are a lot of techniques can be used for wastewater 

treatment including coagulation, filtration, precipitation, ozonation, adsorption, ion 
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exchange, reverse osmosis and advanced oxidation processes. However, adsorption 

technique by solid adsorbents draws possible potential as one of the most efficient 

method due to its advantages over the other methods as it has simple design and 

involves low investment in term of both initial cost and land required (Nageeb, 

2013). In Malaysia, a strong development of oleochemical industry was supported by 

a continuous supply of palm oil as the feedstock. However, it has had contributed to 

the effluent discharged that may contain high amount of fatty acids and glycerol. 

Recently, as the number of oleochemical industry keep increasing, finding the best 

method to treat the contaminants from wastewater always become a global challenge.  

Cellulose is inexpensive and comes as the most abundant natural bio polymer 

could be considered in developing a cost-effective wastewater treatment technology. 

Cellulose offers a lot of promising advantages to be used as wastetwater treatment 

agent due to its biodegradability, renewability, recyclability, high stiffness with low 

density, safe (non-toxic) and cheaper ( Kabsch et al., 2010). In adition to the 

expanding of nanotechnology for fabricating polymer-based materials, cellulose 

nanofiber (CNF) manufactured by electrospinning technique seem to have promising 

method to be used in wastewater treatment. As reported by Wang et al., (2016) 

nanofibrous materials hold excellent potential for various environmental applications 

including in the treatment of wastewater such as the separation of oily wastewater 

due to it has high porosity, bigger surface area, better connectivity and various types 

of materials can be used like polymer, ceramic and carbon thus make the scalable 

synthesis of it much easier. The key success of nanofibrous materials was due to it 

voids among fibers which led to a better selectivity. Nanofibrous materials were said 

to have higher sorption capacity compared to non-nanofibrous or non-porous 

materials. Zhu et al., (2011) had proved that the sorption capacities of electrospun 

polyvinyl chloride (PVC)/ polystyrene (PS) fibers worked 5- 9 times greater 

compared to commercial polypropylene (PP) sorbent (non- nanofibrous) for oil spill 

cleanup. Other than that, Lin et al., (2012) had synthesized the nanofibrous sorbents 

for oily subtances by using nanoporous polystyrene (PS) fibers and it showed that the 

sorbent exihibit a relatively high sorption capacity for edible oils (bean and 

sunflower seed oil) approximately 3- 4 times greater than nonporous materials. 
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On the other hand, CNF usually have a main drawback where it have high 

hydrophilicity in nature due to a high concentration of hydroxyl group which may 

lead to unsatisfactory performance. In order to enhance or expand its properties, it is 

essential to modified CNF by increasing its surface roughness (Ravi et al., 2018). 

Beta-cyclodextrin (β-CD) functionalized electrospun polyacrylic acid (PAA) 

nanofiber had been synthesized by Zhao et al., (2015) and it had drawn a positive 

result in improving the adsorption and separation of contaminated methylene blue 

dye in wastewater. Besides that, surface modification of cellulose acetate (CA) 

nanofiber with β-CD as reported by Celebioglu et al., (2014) had recorded that 64% 

of removal efficiency was achieved in treating phenanthrene from aqueous solution. 

Another remarkable example of surface modification with β-CD was also proved by 

Kayaci et al., (2013) where cyclodextrins functionalized electropsun polyethylene 

terepthalate (PET) could successfully removed 83% of penanthrene from aqueous 

solution. However, study on β-CD functionalized CNF for removal of fatty acids has 

not been performed before.  

Therefore in this study, CNF from cellulose acetate fabricated by 

electrospinnning process was functionalized with β-CD to enhance its adsorption 

properties. The effect of functionalization of CNF were studied by analyzing its 

morphological characteristics and investigating the removal efficiency of the CNF on 

the uptake of palmitic acid that act as a model of fatty acids from the industrial 

oleochemical wastewater that were using palm oil as their feedstock.  

1.2 Problem Statement 

Safe and healthy water is very essential to mankind. Therefore, water sources 

must be free from any form of environmental pollutions including the contaminated 

wastewater discharged from industries. Oleochemicals industry is one of the largest 

sector in Malaysia due to constant supply of palm oil and palm kernel oil. 

Wastewater from oleochemical effluent which may contained fatty acids and 

glycerol can be considered as a current challenge for environmentally acceptable 

disposal because improper  treatment could  eventually  contributes  serious  and  
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long lasting consequences to human and life. The treatment for oleochemicals 

wastewater are including physical, chemical and biological treatment which reported 

to consume high hydraulic retention time and requires huge space. Furthermore, 

activated sludge and activated carbon system are the conventional oleochemical 

wastewater treatment methods for oleochemicals wastewater. However, activated 

sludge system in conventional oleochemical wastewater treatment plant has higher 

operating costs while the  activated carbon method method seem to be time 

consuming as it cannot attract contaminant particles efficiently and it was also said to 

require high intensity heat treatment to reactivate its water cleaning properties. 

Among the other possible treatment process, adsorption by solid adsorbents shows as 

one of the most efficient methods for the treatment and removal of organic 

contaminants in wastewater treatment. An improvement towards adsorption method 

in treating the wastewater discharged from the oleochemical industry had become an 

interesting topic to be discovered and explored.  

Due to the expanding usage of nanotechnoly-based materrial such as 

electrospun nanofiber, it seem to have a better and promising adsorption performance 

as its porous or fibrous structure may offers large surface area for adsorption process. 

Moreover, combining the nanotechnology technique with low-cost adsorbent 

material such as cellulose-based polymer could definitely makes this approach more 

interesting. Cellulose nanofibers has been used for wastewater treatment including 

removal of dyes, heavy metals, organic compounds and others but there was still no 

study performed for its application on removal of fatty acid from oily wastewater. 

However, CNF was reported to have high hydrophilicity that contributes to low 

adsorption performance for oily pollutants. Thus, to improve its adsorption, CNF 

needs to undergo surface modification. In response to this concern, this study was 

carried out to synthesize β-CD functionalized cellulose CNF  for treatment of 

palmitic acid as model of fatty acids wastewater. The effectiveness of using β-CD 

functionalized CNF in reducing the concentration of palmitic acid was the problem 

considered in this study. 
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1.3 Research Objectives 

a) To synthesize and characterize the synthesized CNF with and without 

functionalization with β-CD. 

b) To optimize the factors affecting functionalization of β- cyclodextrin (β-CD) 

with cellulose nanofiber (CNF) for treatment of fatty acids. 

c) To evaluate the adsorption performance of β-CD functionalized CNF for 

removal of fatty acids compounds from industrial oleochemical wastewater. 

1.4 Research Scopes 

a) Synthesis of CNF by using cellulose acetate as polymer via electrospinning 

technique. Citric acid act as the crosslinking agent and sodium 

hydrophosphite hydrate as catalyst to produce β-CD functionalized CNF 

(CNF/ β-CD). 

b) Optimize on the functionalization of β-CD with CNF by manipulating the 

concentration of β-CD and citric acid during crosslinking process. 

c) Characterization of the CNF and CNF/ β-CD by using scanning electron 

microscope (SEM) and thermogravimetric analysis (TGA). Fourier- 

transform infrared spectroscopy (FTIR) is also used to analyse the functional 

group of CNF and CNF/ β-CD. 

d) Adsorption of palmitic acid as the model of fatty acids by using CNF and 

CNF/ β-CD were carried out at different contact time. The reduction of 

palmitic acid content in the aqueous solution was measured by using high 

performance liquid chromatography (HPLC) at 210 nm. The reusability of the 

modified and unmodified CNF were also investigated.   
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1.5 Significance of Study 

 This study offers an alternative treatment for removal of fatty acids from 

industrial oleochemical wastewater especially in Malaysia. By tailoring the cellulose 

nanofiber via electrospinning process and  functionalized with β- CD, it is believed 

that the modified adsorbent could suit to the target adsorbate. Hence, the study would 

provide a low-cost and environmental friendly solution as well as high adsorption 

performance of fatty acids for the treatment of oleochemical wastewater. In addition, 

the adsorption isotherms and kinetics deduced from this study will provide an 

important knowledge on nature of the adsorption reaction phenomenon. Last but not 

least, the analysis of this study will serve as future reference for researchers on using 

β-cyclodextrin to take up fatty acids compounds. 
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