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ABSTRACT  

Enzymatic cellulose hydrolysis from lignocellulose biomass has been 

extensively studied as the product from the hydrolysis can be used to convert into 

renewable biochemical such as bioethanol. Cellulose hydrolysis were traditionally 

carried out in a batch reactor. However, cellulose hydrolysis in batch reactor leads to 

product inhibition which results in low yield of glucose. Kinetic study of cellulose 

hydrolysis in batch reactor was performed, and showed that cellulase was inhibited by 

glucose and cellobiose in a competitive manner, with Ki of 2.58 g/L and 2.24 g/L 

respectively. Therefore, it is necessary to separate glucose from the hydrolysis reactor 

in order to minimize product inhibition. In this study, enzymatic membrane reactor 

(EMR) was used to reduce the amount of enzyme used and to prevent product 

inhibition. The filtration technique used was ultrafiltration (UF) in a crossflow mode. 

Before performing cellulose hydrolysis in an EMR, a membrane screening was done 

to select a suitable membrane to be used in the EMR.  Results had shown that HFK-

131 membrane is the most suitable membrane as it has the lowest contact angle and 

the highest permeability. Cellulose hydrolysis was then carried out in an EMR with 

different substrate concentrations (5 g/L to 20 g/L) and different product removal 

strategies in order to study their effect on the product yield, membrane performance, 

and fouling mechanisms. The PES membrane showed almost 95% and above rejection 

of cellulase as the cellulase molecular weight (MW) was larger than molecular weight 

cut off (MWCO) of the membrane. Hermia’s pore blocking model was applied to 

determine the predominant fouling mechanism of the membrane filtration. From the 

results, intermittent product removal at 24 hours interval was better as the cellulose 

conversion could achieve more than 80% and the membrane flux decline is less severe 

than the product removal at 4 hours interval. For the effect of substrate concentrations, 

the cellulose conversion decreased from 88.48% to 61.43% with increasing substrate 

concentration. The flux also declined from 23.92 L/m2.h to 15.15 L/m2.h as the 

substrate concentrations were increased resulting in more cellulose to be deposited on 

the membrane surface, and leads to a more severe membrane fouling.  It was also 

observed that the cake layer model was the predominant fouling mechanisms at 5 g/L 

and 10 g/L of substrate concentration, whereas 20 g/L has a combination of complete 

pore blocking and cake layer model. This result was further proved by SEM images, 

where the fouled membrane at 20 g/L appeared to have the most fouling layer on the 

membrane surface. Besides that, the membrane surface roughness increased with 

increasing substrate concentration, with the highest at 38.50 nm at 20 g/L. Results 

demonstrate the potential of using EMR for the production of reducing sugars and 

enzyme recovery in cellulose hydrolysis. With known fouling mechanism of cellulose 

hydrolysis in EMR, further improvement of the EMR operation at high substrate 

concentration could be done to minimize fouling.   
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ABSTRAK  

Hidrolisis selulosa enzimatik dari biomas lignoselulosa telah dikaji secara mendalam 

kerana produk dari hidrolisis boleh digunakan untuk menukar kepada biokimia yang 

boleh diperbaharui seperti bioethanol. Hidrolisis selulosa secara tradisinya dijalankan 

dalam reaktor kelompok. Namun, hidrolisis selulosa dalam reaktor kelompok 

mengakibatkan pelumpuhan produk dan mengurangkan hasil glukosa. Kajian kinetik 

hidrolisis selulosa dalam reaktor kelompok telah dijalankan, dan keputusan 

menunjukkan activiti enzim selulase telah dilumpuh oleh glukosa dan selobiosa dalam 

keadaan berdaya saing, dengan Ki 2.58 g/L and 2.24 g/L masing-masing. Oleh itu, 

glukosa perlu diasingkan dari reaktor hidrolisis supaya pelumpuhan produk boleh 

diminimakan. Dalam kajian ini, enzim membran reaktor (EMR) digunakan untuk 

mengurangkan kegunaan enzim dan mencegah pelumpuhan produk.  Teknik 

penapisan yang digunakan ialah penapisan ultra dalam keadaan aliran silang. Sebelum 

menjalankan hidrolisis selulosa dalam EMR, pemilihan membran telah dilakukan 

supaya membran yang sesuai boleh dipilih untuk digunakan dalam EMR. Keputusan 

telah menunjukkan polietersulfon (PES) 10 kDa adalah membran yang paling sesuai 

kerana ia mempunyai sudut sentuhan yang paling rendah dan  ketelapan air yang paling 

tinggi. Hidrolisis selulosa dijalankan dalam EMR dengan mengunakan pemekatan 

substrat (5 g/L to 20 g/L) dan strategi pemisahan produk yang berbeza untuk mengkaji 

kesan-kesan terhadap hasil produk, prestasi membran, dan mekanisme kotoran 

membran. Membran PES menunjukkan hampir 95% dan ke atas penolakan selulase 

kerana selulase berat molekul (MW) lebih berat dari nilai potongan berat molekul 

(MWCO) membran. Model menyekat pori Hermia telah digunakan untuk menentukan 

mekanisme kotoran yang utama dalam membran penapisan. Separasi produk terputus-

putus dalam 24 jam jarak waktu adalah lebih baik kerana konversi selulosa telah 

mencapai lebih dari 80% dan  keturunan fluks membran adalah kurang serius apabila 

dibandingkan dengan separasi produk dalam 4 jam jarak waktu. Konversi selulosa 

telah menurun dari 88.48% kepada 61.43% dengan pemekatan substrat yang 

meningkat. Fluks membran juga telah menurun dari 23.92 L/m2.h ke 15.15 L/m2.h 

apabila pemekatan substrat meningkat. Hal ini telah mengakibatkan pengumpulan 

selulosa yang banyak atas permukaan membran dan kotoran membran yang serius.  

Mekanisme kotoran yang utama ialah model lapisan kek dalam pemekatan substrat 5 

g/L dan 10 g/L, manakala 20 g/L mempunyai kombinasi model penyekatan pori 

lengkap dan model lapisan kek. Keputusan ini telah dibuktikan dengan gambar SEM, 

di mana membran yang kotor mempunyai lapisan kotoran yang paling banyak atas 

permukaan membran.  Selain itu, kekasaran permukaan membran bertambah dengan 

pemekatan substrat yang meningkat. 38.50 nm merupakan kekasaran permukaan yang 

paling tinggi di 20g/L. Keputusan menunjukkan potensi kegunaan EMR untuk 

penhasilan gula penurun dan pemulihan enzim dalam hidrolisis selulosa. Dengan 

mengetahui mekanisme kotoran hidrolisis selulosa dalam EMR, penambahbaikan 

EMR yang selanjutnya boleh dijalankan untuk meminimakan kotoran membran dalam 

operasi EMR yang menggunakan pemekatan substrat yang tinggi.   
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INTRODUCTION 

 Background of Study 

Cellulose hydrolysis from lignocellulosic biomass has been extensively studied 

as the product from the hydrolysis can be used to produce renewable energy, which is 

carbon neutral and environmentally friendly. Cellulose can be found abundantly in 

natural residual lignocellulosic material such as wheat/rice straw, palm empty fruit 

bunches or sugar bagasse and it has been widely used in lignocelluloses biorefinery 

(Lynd et al., 2008; Zhang, 2009; Rashid et al., 2013). These low-cost lignocellulosic 

materials can be converted into fermentable sugars, which reduces the waste disposal 

costs and concomitantly meets the growing demand for energy (Lynd et al., 2002; 

Walker and Wilson, 1991; Gan et al., 2003). The sugars can further be converted to 

fuels and chemicals like ethanol, organic acids and biodegradable plastics (Walker and 

Wilson, 1991; Lynd and Zhang, 2004). The conversion of waste cellulosic residues to 

bio-ethanol involves delignification of cellulose, depolymerization of carbohydrate 

polymers to free sugars via enzymes and fermentation of these sugars to produce 

ethanol (Cheung and Anderson, 1997)  

There are two usually used methods to transform cellulose into reducing sugar, 

which are acid hydrolysis and enzymatic hydrolysis. Acid hydrolysis uses dilute acid 

or concentrated acid to reduce cellulose into reducing sugar. Although it is one of the 

most commonly used approaches, the yield from acid hydrolysis is low and there is a 

higher chance of producing inhibited product such as hydroxymethylfurfural from acid 

hydrolysis (Carvalho et al., 2013). Therefore, enzymatic hydrolysis is often preferable 

as it is carried out in a milder condition and has less impact on the environment. The 

enzymatic hydrolysis is carried out using an enzyme known as cellulase, where it 

consists of a mixture of endoglucanases, exoglucanases as well as β-glucosidases 

(Ghazali et al., 2017). These three enzymes work synergistically to convert cellulose 
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into glucose (Sofia and Rodrigues, 2014). The endoglucanases and exoglucanases 

reduce cellulose into cellobiose, then the cellobiose will be hydrolyzed into glucose by 

β-glucosidases.  

Cellulose hydrolysis is traditionally carried out in a classical batch reactor at a 

maintained temperature and pH, where the substrate, enzyme, and the product stay in 

the same reactor and the product will be collected at the end of the process 

(Nguyenhuynh et al., 2017a). Batch hydrolysis only allows the enzyme to be used once 

and needs new enzymes for a new batch of hydrolysis. Therefore, there are some 

disadvantages of using the batch reactor, which are low productivity, high operating 

costs (due to the addition of enzyme for each batch), and loss of catalytic activity due 

to enzyme inactivation (Rios et al., 2004). Product inhibition is also one of the major 

problems in batch hydrolysis, where the rate of reducing sugar is affected by inhibitors 

such as glucose and cellobiose. Other than product inhibition, another drawback of 

batch cellulose hydrolysis is the enzyme wastage, as the enzyme will be replaced for 

each hydrolysis process, despite the enzyme still possess some catalytic activity.  

The alternative approach to replace the batch reactor is the enzymatic 

membrane reactor (EMR). In recent years, EMR has caught researchers’ interest for 

its potential ability to prevent product inhibition and to increase the product yield 

(Ghazali et al., 2017; Andrić et al., 2010; Zain et al., 2017). Some studies concluded 

that higher conversion of cellulose into glucose can be achieved by removing glucose 

using membrane reactors (Gavlighi et al., 2013; Gan et al., 2002). For cellulose 

hydrolysis, the membrane reactor consists of a reactor for enzymatic reaction and a 

membrane separation unit (Nguyenhuynh et al., 2017a). After the hydrolysis is 

completed, the enzyme will be retained in the membrane while the reducing sugar will 

permeate through the membrane. The main purpose in enzymatic membrane reactor is 

to make sure that more than 90% of the enzymes are being rejected while carrying out 

separation process, and at the same time, maintaining full enzymatic activity inside the 

hydrolysis reactor.  

For the cellulose hydrolysis in an EMR, ultrafiltration (UF) is used as the 

separation process to retain cellulase as well as removing the reducing sugar produced 
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from the enzymatic reaction. The membrane used in UF is chosen based on the enzyme 

molecular weight. UF membranes can retain large molecules with a molecular weight 

ranging from 10 to 100 kDa (Nguyenhuynh et al., 2017a), and it is being widely 

applied in biological products separation, in particular protein. The following studies 

also used UF membrane to separate cellulase from the reducing sugars (Rad et al., 

2017; Amirilargani et al., 2012). The cellulase (macromolecules) in the liquid phase 

can be retained by UF. Reducing sugar such as glucose and cellobiose are smaller than 

the pore size of UF membrane, therefore they can pass through the UF membrane 

easily and enters permeate.  

 Problem Statement 

One of the main drawbacks of cellulose hydrolysis in the batch reactor is product 

inhibition that lowers the product yield. Glucose and cellobiose, the reducing sugars 

produced from cellulose hydrolysis, has been reported to be the inhibitors of the 

hydrolysis process and reduce the rate of cellulose hydrolysis. This is because of the 

presence of glucose and cellobiose inhibit the enzyme β-glucosidase in the cellulase 

complex system. Therefore, it is crucial to separate these two reducing sugar from 

these products to prevent inhibition. Besides product inhibition, enzyme wastage is 

also another problem which makes the batch process expensive due to high enzyme 

cost. A significant amount of the cellulase remains active in the batch reactor. The 

cellulase used after hydrolysis process will not be reused and will be treated as waste 

although the enzyme still possesses some enzymatic activity after hydrolysis. To 

overcome this problem, recovery of cellulase is one of the best strategies to reduce 

enzyme cost as the cellulase can be reused and not wasted (Gomes et al., 2015; Tian 

et al., 2015; Haven et al., 2015). Cellulase recycling can be done in a membrane reactor. 

The retained cellulase in the membrane is recycled back to the reactor to perform the 

hydrolysis reaction continuously. Recovery and reuse of enzyme can also achieve the 

zero-release of water in the enzyme treatment stage (Wang et al., 2016). Therefore, 

product inhibition and cellulase waste can be minimized by having an ideal EMR 

system.  
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However, membrane fouling remains a major obstacle hindering the practical 

application of EMR. Membrane fouling causes permeate flux decline, as well as 

deposition of fouling layer (Jiang, 2007). Membrane fouling limits the use of 

membrane separation, leads to membrane resistance, decrease the efficiency of the 

product separation process, and increase the operation and energy cost of EMR. 

Although membrane fouling has been well reported, the underlying mechanism 

remains incompletely understood due to the diversity of operational conditions, 

membrane materials, and configurations used in different studies in EMR (Ozgun et 

al., 2013). Therefore, it is important to study the membrane fouling mechanisms and 

fouling layer formation in EMR (Meng et al., 2007; Herrera-Robledo et al., 2010). It 

is crucial to identify the pore-blocking mechanisms that occur during membrane 

filtration of cellulose hydrolysate to select a proper cleaning strategy (Choi et al., 

2005).  

 Objectives 

(a) To determine the kinetics of enzymatic cellulose hydrolysis in a batch reactor.  

(b) To evaluate the effect of product removal strategy on the reducing sugar yield 

in an EMR.  

(c) To determine the membrane fouling mechanism of cellulose hydrolysis in a 

membrane reactor. 

 Research Scope 

This research is done to perform cellulose hydrolysis in an EMR by using 

crossflow ultrafiltration with a UF membrane. Before performing cellulose hydrolysis 

in an EMR, the batch hydrolysis was performed to study the kinetics of the process. 

The hydrolysis process used cellulase as an enzyme and microcrystalline cellulose as 

a substrate. Inhibitors such as glucose and cellobiose with a concentration of 5 g/L and 

10 g/L was added into the batch reactor and react together with substrate and enzyme. 

Type of inhibition and kinetic parameters of cellulose hydrolysis was studied.  



 

5 

 

The UF membranes from different companies were used to screen for its pure 

water permeability and contact angle. The membrane was chosen based on the highest 

pure water permeability and the lowest contact angle. Two product removal time was 

used in this research, which are product removal time at 4 hours interval and 24 hours 

interval. Cellulose conversion and flux were analyzed for these two product removal 

time. The effect of substrate concentration used in EMR on the product yield, flux, and 

fouling mechanism was also been evaluated. The substrate concentration varies from 

5 g/L to 20 g/L for cellulose hydrolysis in an EMR. Besides that, the rejection of 

reducing sugar and cellulase enzyme was studied throughout the research.   

Fouling mechanism of the hydrolysis process was analyzed using Hermia’s 

model and the flux data recorded was used to fit the model. Reducing sugar 

concentration obtained in the permeate flow was measured using dinitrosalicylicacid 

(DNS) method. Bradford assay was used to determine the percentage of cellulase 

enzyme rejected back into the reactor. 

 Significance of the Study   

This study was significant to reduce enzyme cost by reusing enzyme during 

cellulose hydrolysis in an EMR. Moreover, this research provided a platform to 

understand better in cellulose hydrolysis kinetics of cellulase from Trichoderma reesei 

to increase the understanding of the enzymatic reaction. Furthermore, cellulose 

hydrolysis in an EMR has not been investigated for its effect on different product 

removal time and substrate concentration on fouling mechanism and product yield. 

Therefore, it is important to study the membrane fouling mechanism so that a suitable 

cleaning approach could be selected with known fouling mechanism. 
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