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ABSTRACT 

 

 Energy and water are two valuable resources that are mainly utilized in all 

sectors, from residential consumption to industrial processes. As conservation of 

resources are crucial, optimisation of energy and water system is becoming 

important. Pinch technology is an outstanding methodology and well known for its 

simplicity among the various targeting techniques. Previous targeting problems 

which are solved using the pinch analysis only focused on optimisation of single 

resource which may lead to under-sizing of system, as systems may rely on one 

another to operate. The water-energy nexus cascade analysis is introduced with the 

purpose to concurrently target both water and energy system. A case study involving 

a residential community comprising of 50,000 household unit with daily electricity 

demand of 343,750 kWh and water demand of 150,000 m3 is adapted. An integrated 

gasifier fuel cell is used to meet electricity demand while a water treatment plant is 

used to meet clean water demand. The results show the highest difference of 9.1% of 

the system capacities compared to methodology using single resource targeting 

method such as electric system cascade analysis. Sensitivity analysis is also 

performed to study the significance of capacity differences if higher water or energy 

conversion rate is imposed. Nevertheless, water-energy nexus cascade analysis, 

similar with other pinch and cascade analysis, it lacks the capability to consider other 

variables such as cost in its analysis. As such, a mathematical model is developed to 

provide a more holistic approach to the targeting problem. It‘s revealed that using the 

mathematical modelling, the capacity of the system is larger. The resulting cost of 

the system is MYR 516.65 million. Apart from identifying the optimal capacity of 

the system, the study concluded that the higher the interdependency of resources, the 

differences becomes more significant. Therefore, when analysing system that shows 

an inter-dependent nature, it is important to consider both resources and target them 

simultaneously to prevent the system from being under-designed. 
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ABSTRAK 

Tenaga dan air adalah dua sumber berharga yang digunakan secara besar-

besaran di semua sektor, dari penggunaan kediaman ke proses perindustrian. Oleh 

kerana keabadian sumber menjadi keutamaan, pengoptimuman sistem tenaga dan 

sistem air menjadi penting. Teknologi jepit adalah kaedah yang terbaik dan dikenali 

kerana ianya mudah diguna berbanding pelbagai teknik sasaran yang lain. Masalah 

sasaran sebelumnya yang diselesaikan menggunakan analisis jepit hanya memberi 

tumpuan kepada sasaran sumber tunggal yang mungkin akan menjadikan sistem 

mungkin terkurang saiz, kerana sistem mungkin bergantung kepada satu sama lain 

untuk beroperasi. Analisis lata air-tenaga diperkenalkan dengan tujuan untuk sasar 

kedua-dua sistem air dan tenaga secara serentak. Satu kajian kes melibatkan 

komuniti kediaman yang terdiri daripada 50,000 unit rumah dengan bekalan elektrik 

harian 343,750 kWJ dan permintaan air sebanyak 150,000 m3 adalah digunakan. 

Suatu sel bahan api gas bersepadu digunakan untuk memenuhi permintaan elektrik 

manakala loji rawatan air digunakan untuk memenuhi permintaan air bersih. 

Hasilnya menunjukkan perbezaan tertinggi 9.1% daripada kapasiti sistem berbanding 

metodologi menggunakan kaedah sasaran sumber tunggal seperti analisis lata sistem 

elektrik. Analisis sensitiviti juga dilakukan untuk mengkaji kepentingan perbezaan 

kapasiti jika kadar penukaran air atau tenaga yang lebih tinggi dikenakan. Walau 

bagaimanapun, analisis lata air-tenaga adalah sama dengan analisis jepit dan lata 

yang lain, ia tidak mempunyai keupayaan untuk mempertimbangkan pembolehubah 

lain seperti kos dalam analisisnya. Oleh itu, model matematik dibangunkan untuk 

menyediakan pendekatan yang lebih holistik kepada masalah sasaran. Penggunaan 

permodalan matematik mendedahkan bahawa kapasiti sistem adalah besar. Kos yang 

terhasil adalah sebanyak MYR 516.65 juta. Selain daripada mengenal pasti 

keupayaan optimum sistem, kajian menyimpulkan bahawa semakin tinggi saling 

kebergantungan sumber, perbezaan menjadi lebih penting. Oleh itu, apabila 

menganalisis sistem yang menunjukkan sifat saling bergantung, adalah penting untuk 

mempertimbang kedua-dua sumber dan mensasarkan mereka secara serentak untuk 

mengelakkan daripada sistem tersasar daripada yang direkabentuk.. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Energy and water are essential for physical, social and economic wellbeing. In 

recent times, changes to the energy and water industries; have brought into sharp focus 

the link between the two - termed energy-water nexus. The recent emergence of the 

phenomenon as a critical issue is significant for the understanding of nexus nature.  

Chapter 1 gives an overview introduction on the water-energy nexus nature. The next 

sub-chapter 1.2 present the research background about Water-Energy Nexus as well 

as the problem statement. Next, section 1.3 and section 1.4 revealed the objectives and 

scope of this study. Finally, the significance of this research is presented in section 1.5. 

 

 

 

 

1.2 Research Background  

 

  

Water and energy are fundamental to human existence. Both resources have 

shaped the development of societies during the history of mankind: water resources 

have influenced human settlement patterns; and energy has been an important enabler 

to perform routines. Both resources have been ineradicably utilized since decades ago; 

from the early use of animal and waterpower, to more technically advanced forms such 

as steam power and later revolution of electricity generation. In a modern society, 

water and electricity are interdependent. Water is critical for electricity generation, and 

electricity is critical for water treatment and transportation. For example, over 41% of 

world electricity generation relies on water-intensive coal-fired power stations and 

water transportation consume approximately 7% of the energy produced worldwide  
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(Meldrum, et al., 2013). The fundamental role of both infrastructure industries 

for general economic development and social wellbeing further strengthens the 

importance of the interdependency between the two. 

 

 

Energy is widely recognized to be a critical enabler of modern society. Yet, 

energy drives a nation’s development. From basic living requirement to the operations 

in industrial and commercial activities, energy plays a vital role. In 2014, world 

primary energy supply amounted to 155,481 terawatt-hour (TWh) or 13,541 million 

tonnes oil equivalent (Mtoe) [IEA, 2016]. This demand was met from a variety of 

primary sources including approximately 31.5% from oil, 28.8% from coal, 21.3% 

from natural gas, 10.0% from biomass, 5.1% from nuclear fission, 2.3% from 

hydroelectric, and 1.0% from all other miscellaneous sources including wind, solar 

photovoltaic, solar thermal and geothermal. Important questions include how will this 

demand will likely change going forward, how the demand will likely be met, and 

what might be some of the challenges and consequences in meeting that demand. In 

this subtopic, the world energy outlook is overviewed and later the discussion is scoped 

down to national (Malaysia) level.  

 

 

Figure 1.1 explains the trend of global primary energy consumption from 1965 

to 2013 according to its resources. As analyzed, the global energy demand has 

continued to grow, mainly from fossil fuels. While within fossil fuels, coal shows a 

tremendous increase compared to others. Fossil fuel supply was up 183 Mtoe in 2013 

while new renewable supply was up 42 Mtoe from 2012. In 2003, new renewables 

(wind, solar, geothermal, biofuels etc) accounted for 0.82% of total primary energy 

and by 2013 this had grown to 2.69%. In 2003, nuclear power accounted for 6.01% 

and this fell to 4.40% in 2013. The 1.87% growth in share of new renewables almost 

matches the 1.61% fall in the share of nuclear power.  
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Figure 1.1 Global primary energy consumption (IEA, 2016) 

 

 

 

 Besides, fresh water is a critical resource for humanity and the ecosystem. In 

general, water resources can be partitioned into two major categories: blue water and 

green water (Falkenmark and Rockström 2006). Precipitation that runs off or 

percolates into the deep aquifer is defined as blue water, and precipitation that filtrates 

into soil, which eventually returns to the atmosphere as evaporation, is called green 

water (Hoekstra et al. 2011). For human purposes, green water is almost exclusively 

used for agricultural production, but blue water can be used for multiple competing 

sectors, such as irrigation and municipal water. 

 

 

 Since population distribution, climatic and hydrologic conditions vary 

significantly around the world (Kummu et al. 2014), there is often a mismatch between 

water demand and water supply. In fact, most populated regions are also water-scarce 

areas (Kummu and Varis 2011). In order to quantify to what extent water supply may 

fall short of human and environmental needs, a diverse set of water availability 
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indicators has been developed over the past 30 years. Major categories of indexes 

include water crowding indexes and various demand- to-supply ratios.  

 

 

 At global level, the withdrawal ratios are 69 percent agricultural, 12 percent 

municipal and 19 percent industrial. These numbers, however, are biased strongly by 

the few countries, which have very high water withdrawals. Averaging the ratios of 

each individual country, its suitable to describe "for any given country" these ratios 

are 59, 23 and 18 percent respectively (Kummu et al. 2014). At global level, amount 

of water consumption had increased tremendously over the decades. The described 

trend according to sectors is further illustrated in Figure 1.2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Contribution of different product categories to the global virtual water 

flows (Meknonnen and Hoekstra, 2011) 

 

 

 The largest share of the international virtual water flows relates to trade in oil 

crops (including cotton, soybean, oil palm, sunflower, rapeseed and others) and 

derived products. This category accounts for 43% of the total sum of international 

virtual water flows. More than half of this amount relates to trade in cotton products; 

about one fifth relates to trade in soybean. The other products with a large share in the 

global virtual water flows are cereals (17%), industrial products (12.2%), stimulants 

(7.9%) and beef cattle products (6.7%) (Meknonnen and Hoekstra, 2011). 
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  With the statistics of increasing demand mentioned above, it is becoming a 

challenge to continuously meet these demand due to environmental impact as well 

resource scarcity or depletion. Sustainable technologies which may solve both 

environmental and resource scarcity is not as competitive compared to conventional 

technologies in the aspect of economics and efficiency. Hence, optimisation study is 

essential to ensure the system built can run in optimum parameters without shortfall. 

This is further studied in process systems engineering and will be explained in the next 

subchapter. 

 

 

 With the growing concern for water and energy security globally, research and 

understanding on interdependency between water and energy is receiving incredible 

attention as an effort to conserve both resources. Countries across the globe had 

developed policies to ensure the sustainability of water and energy, and is calling for 

more detailed studies on water-energy nexus to be done to improve the policies that 

existed today (Healy et al., 2015). The links between water and energy are many and 

varied, connecting different functions to cater the supply-demand process. Generally, 

energy is required to extract, purify, deliver, heat or cool, treat and discharge of water 

or wastewater. Energy generation consumes water either to process the raw materials 

used in the facility or to generate the electricity itself. Conserving energy can lower 

the demand on water resources; and increasing water treatment efficiency can also 

reduce the amount of energy consumed to transport, heat and treat water (Dai et al., 

2018).  

 

 

Whereas, the interdependency between water and energy, sometimes called the 

water-energy nexus, is growing in importance as demand for both water and energy 

increases. Figure 1.3 shows the water-energy nexus, it can be seen that water is 

required in fuel production, power generation (as hydropower), extraction and refining 

process as well as for thermos-electric cooling. Energy on the other hand is also 

required for fuel production, extraction and transmission, wastewater treatment and 

drinking water treatment (Cabezas & Huang, 2015). This nature shows that especially 

in the context of targeting and designing of a water-energy system, both resources must 

be considered simultaneously.  
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Figure 1.3  The relationship between water and energy using nexus theory 

 

 

 What appears to be lacking is an informed understanding of the nature of the 

nexus and policy tools to assist decision makers develop more integrated energy and 

water policies. On the other hand, the establishment of the nexus understanding is also 

still at surface. Understanding the challenges and developing solutions will necessitate 

early engagement with proper stakeholders, including federal agencies, state and local 

governments and international partners. Advances throughout the technology 

advancement from research and development, demonstration and deployment can 

address key challenges.  Potential applications of interest for technology solutions 

cover several broad areas, including water efficiency in energy systems, energy 

efficiency in water systems, and productive use of non-traditional waters such as 

reused water (NETL, 2018).   

 

 

The next step is to conduct a technology research portfolio analysis, addressing 

risk, performance targets, potential impacts, R&D pathways, and learning curves. A 

strong analysis will highlight potential synergies for technologies that span multiple 

programs. Hence, this research is conducted to further identify the relationship 

between water-energy nexus relationship in an Integrated Gasification Fuel Cell 

(IGFC) to supply electricity for residential demand coupled with water treatment plant 

to supply water. The study will focus on developing methodology to identify 

preliminary design capacities or sizing of water and energy system.  
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1.3 Problem Statement 

 

 

Renewable technologies that can ensure resource sustainability is often 

expensive and lower in efficiency compared to conventional systems. In order to 

improve the efficiency of the system, researchers has suggested resource integration 

and targeting of such system to achieve optimality in resource management and 

consumption. Among the techniques, mathematical modelling often used to provide 

holistic and optimal solution to the design and operation of an integrated system. 

However mathematical modelling lack of illustration in term of its approach in 

determining the optimal result. Pinch Analysis on the other hand, although lack the 

capability to consider multiple variables in its analysis, are still widely utilized as a go-

to targeting method and option as it provides users with full illustration on how the 

optimal result is determined. 

 

 

Previous study on water and energy system using Pinch Analysis has been 

designed as a separate system. Conventionally, given a specific energy demand, 

Electricity System Cascade Analysis (ESCA) can be used to determine the required 

capacity of the power plant and the energy storage in order to ensure smooth operation 

of the plant (Ho et al., 2012). On the contrary, if given a specific water demand, similar 

cascade table can be applied to determine the water treatment and water storage tank 

capacity. Individual assessment of both resources in the design stage might leads to 

both systems being undersized. When a system is undersized, this will affect the 

system as overall and in worst case scenario, the system need to be re-designed as there 

will complicated issues during operation. This will then affect the economic value of 

the production making it infeasible for profit. Under-designed systems that fall short 

of the required design specification can put personnel or workers at risk. Consequently, 

this will further generate big expenses from loss of production time, lost time injuries, 

worker-compensation costs and fines. 

 

 

In order to improve the result provided by Pinch Analysis, this work presents 

a new targeting and designing method to enhance Pinch Analysis approach in 

designing an energy and water system. The technique can be used to simultaneously 

target and determine the optimal capacity of both water and energy system to meet a 
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specific water and energy demand. The new technique is known as Water-Energy 

Nexus Cascade Analysis (WENCA). 

 

 

In addition to that, in order to provide a more holistic investigation of the 

system, a mathematical model is also developed and programmed using General 

Algebraic Modeling System (GAMS) to identify the optimal capacity of both systems 

as well the total cost of the system. 

 

 

 

 

1.4 Objectives of The Study 

 

 

Based on the problem statements, the main purpose of this work is to develop 

a novel technique to design water system and energy system in an integrated 

methodology using water-energy nexus principles. The objectives and the sub-

objectives covered in this research are as follows: 

 

1. To develop a new numerical Pinch Analysis method for an integrated application 

of water-energy nexus known as Water-Energy Nexus Cascade Analysis 

(WENCA). 

 

2. To develop a mathematical model to target energy and water network system. The 

sub-objectives of the mathematical model are as below:  

a) To design and identify the capacity of power plant, water treatment plant, 

energy storage system, and water storage system 

b) To optimally schedule the supply-demand of the energy and water network 
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1.5 Scopes of The Study 

 

 

To achieve the intended research objectives, the scope of work has been drawn 

as follows: 

 

1. Studying the state-of-art analysis for numerical optimisation of water-energy nexus 

including its feature, gaps, and potential improvement.  

 

2. Developing a targeting technique which allow users to target two inter-related 

resources such as water and energy using a simple tool based on Pinch Analysis. 

Specific scope includes: 

a) Developing a new numerical method based on Pinch Analysis by using 

Microsoft Excel 

b) Apply the introduced method to a case study comprising of an integrated water 

and energy system 

c) Determining optimal sizing of the system capacities 

d) Comparing the results obtained with the existing methodology such as 

Electricity Storage Cascade Analysis and Water Supply Cascade Analysis 

e) Perform scenario analysis such as introducing different demand load during 

seasonal changes and compare the results with original scenario 

 

3. Developing a mathematical model for designing a resource-integrated system 

(water system and energy system). Specific scope includes:  

a) Developing a Mixed Integer Linear Programming (MILP) model for the similar 

case study in second objective 

b) Programming the MILP model in General Algebraic Modelling System 

(GAMS) 

c) Revealing the optimal capacity of water system and energy system using GAMS 

d) Determining the total annual cost of the system that includes amortized 

investment cost and annual operation cost. 
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1.6 Significance of The Study 

 

 

This study will be significant endeavor in promoting an effective and easy way 

to identify resource capacity at a preliminary stage. The newly introduced numerical 

pinch method as well as the mathematical model developed for energy and water 

system can provide an optimal solution for resource use with the aim towards 

achieving strategic resource management. Through this research work, several key 

contributions can be drawn as follows: 

 

1. Contribution towards the Water-Energy Nexus studies. 

 

The idea of nexus was first conceived by the World Economic Forum (2011) 

to promote the inseparable links between the use of resources to provide basic 

and universal rights to basic needs of life such as food, water and energy 

security. The idea of nexus is based on systems thinking, which means it does 

not view the sectors such as water and energy sectors independently but takes 

the perspective that all the considered sectors should be governed together. 

Since studies using nexus theory is very new and need an in-depth research, 

this study will contribute towards the better understanding Water-Energy 

Nexus in identifying the optimal solution for system design. Till to date that 

this study has been conducted, there is no studies has been presented with 

similar method of identifying system capacities using Water-Energy Nexus 

principles. 

 

2. Contribution towards the advancement of numerical analysis; namely Pinch 

Analysis and cascade analysis. 

 

a) A new application of Pinch Analysis which inclusive of an integrated 

water-energy nexus system known as WENCA is developed. The 

methodology is capable to identify the optimal size of the operating units 

and optimal operation of the system studied. The system is subjected to 

the most optimum operation as well as worst-case scenario to ensure the 

system operates in a reliable mode at all condition. WENCA is developed 

based on ESCA that is capable to identify the optimal sizing of two 
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resources in a single loop. This is the main contribution of the study since 

ESCA is only able to identify only identify the capacity for a single 

resource i.e. energy storage system. 

 

b) This study also reveals the capability of the method to identify the system 

capacity taking account the changes of demand during seasonal changes. 

This feature will able the method to be used anywhere around the world 

provided that the demand data is available. 

 

3. Contribution towards the field of mathematical model by designing a 

resource-integrated system using MILP modelling. 

 

New MILP model is developed to design water and energy system that is 

considered as multi-resource targeting method. The model is capable to 

determine the optimal sizing of the water system and energy system to cater 

the specified demand. The objective of the model developed is to reveal the 

cost of the system that includes amortized investment cost and annual 

operation cost. 
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