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ABSTRACT 

 

This study focuses on the improvement of 4½ inches cemented monobore completion 

conceptual design through a detailed engineering analysis where it is one of the efforts 

to reduce well cost without jeopardizing safety and well integrity. A thorough planning 

on well completion design is imperative to ensure successful delivery of the well. In 

this research work, the initial plan was to develop overpressured K reservoir with 4½ 

inches tieback monobore completion. It is a proven concept which can deliver the well 

safely and without any well integrity issues. During the conceptual design planning in 

2013, the oil price was high at USD110/bbl and the tieback monobore well completion 

design was optimized to 4½ inches cemented monobore with lower cost to improve 

the project economics. When the detail design planning in 2016, the global oil price 

crash to USD30/bbl and high MYR vs. USD exchange rate was observed. There was 

a need to redesign the cemented monobore well to further reduce the overall well cost 

and improve the project economic of the well. The study also focused on collaborative 

well planning with multi-disciplinaries teams, selection of critical well completion 

equipment, and tubing stress analysis using WELLCATTM simulation program to 

improve the cemented monobore well design to lower the cost without jeopardizing 

safety and well integrity. The improved cemented monobore design has reduced the 

well casing schemes; from five casing schemes to four casing schemes through the 

collaborative well planning initiative. The selection of Weatherford multi-latch in 

plug, Welltec well annular barrier, and Halliburton SP cement-thru TRSV as critical 

well completion equipment for cement plug and accessories, and cement-thru packer 

have preserved the well safety and integrity. The 4½ inches, 12.6 ppf, 13Cr-L80, JFE 

BEAR tubing string and 9⅝ inches, 47 ppf, L80, JFE BEAR casing string satisfy the 

tubing load and the annular fluid expansion requirement from WELLCATTM 

simulation. 
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ABSTRAK 

 

Kajian ini tertumpu kepada kerja untuk menambah baik reka bentuk konsep 

pelengkapan monolubang tersimen bersaiz 4½ inci menerusi analisis terperinci 

kejuruteraan sebagai satu daripada usaha bagi mengurangkan kos telaga tanpa 

mengabaikan aspek keselamatan dan integritinya. Perancangan yang teliti tentang reka 

bentuk telaga adalah penting demi kebolehpengeluaran telaga terbabit. Dalam kajian ini, 

perancangan awal adalah untuk membangunkan reservoir K yang bertekanan tinggi 

menerusi pelengkapan monolubang rentetan ikat bersaiz 4½ inci. Konsep telaga itu jelas 

terbukti selamat dan bebas daripada permasalahan integriti. Ketika perancangan reka 

bentuk konsep itu pada tahun 2013, harga minyak mentah dunia adalah tinggi, iaitu 

USD110 setong, tetapi reka bentuk itu kemudiannya terpaksa dirombak kepada 

pelengkapan monolubang tersimen bagi mengurangkan kos demi kelestarian ekonomi 

projek. Ketika perancangan reka bentuk terperinci pada tahun 2016, berlaku kejatuhan 

teruk harga minyak dunia hingga ke paras USD30 setong serta kadar pertukaran wang 

asing MYR vs. USD yang tinggi. Berikutan itu, timbul keperluan untuk menilai semula 

konsep telaga monolubang tersimen bagi mengurangkan lagi kos keseluruhan telaga demi 

kelestarian ekonomi projek. Kajian ini turut memberikan tumpuan terhadap 

permuafakatan dengan pasukan berlatar belakang pelbagai disiplin, pemilihan peralatan 

kritikal pelengkapan telaga, dan analisis tegasan rentetan tetiub menerusi penyelaku 

WELLCATTM bagi meningkatkan kualiti reka bentuk telaga monolubang tersimen serta 

mengurangkan lagi kos tanpa menjejaskan keselamatan dan integriti telaga. Reka bentuk 

monolubang tersimen yang diperbaik berjaya mengurangkan bilangan rentetan 

selongsong; daripada lima rentetan selongsong kepada empat rentetan selongsong 

berikutan usaha permuafakatan terbabit. Pemilihan palam pelbagai selak Weatherford, 

sawar anulus telaga Welltec, dan TRSV simen lalu SP Halliburton sebagai peralatan 

kritikal pelengkapan telaga masing-masing untuk palam simen dan aksesori simen, dan 

penyendat simen lalu telah menjamin keselamatan dan integriti telaga. Hasil penyelakuan 

daripada WELLCATTM menunjukkan bahawa rentetan tetiub 4½ inci, 12.6 ppf, 13Cr-L80, 

JFE BEAR dan rentetan selongsong 9⅝ inci, 47 ppf, L80, JFE BEAR masing-masing telah 

memenuhi keperluan beban tetiub dan keperluan pengembangan cecair anulus.  
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CHAPTER 1 

 

 

 

INTRODUCTION  

 

 

1.1 Background 

 

Monobore completion design is a standard completion design for gas well in 

PETRONAS operations in Malaysia. Majority of the gas fields have been completed 

with 7 inches, 5½ inches and 4½ inches monobore completions. Monobore completion 

comprises a completion tubing which has a uniform internal diameter throughout its 

entire length (Simonds and Swan, 2000). A monobore completion design involves the 

installation of lower completion in the open-hole section and tie back the upper 

completion with the same tubing size as per the lower completion. It is also known as 

tieback monobore completion. 

  

Monobore completion can reduce well completion days and improve well 

economics compared to conventional completion (Mohammad and Maung, 2000). The 

monobore completion technology improves the project economics by reducing drilling 

and completion cost in relation to conventional completion (Mieres et al., 2015). 

Conventional completion is a cased hole completion design namely single completion, 

single selective completion, dual completion, and dual completion with selectivity. 

These types of completion are completed with 9⅝ inches casing or 7 inches casing 

with either 2⅜ inches, 2⅞ inches, or 3½ inches production tubing string with 

accessories such as sliding side door (SSD), landing nipple, production packer and 

subsurface safety valve (Mieres et al., 2015). 

 

A marginal gas field located in offshore Peninsular Malaysia. The development 

plan was to complete the K reservoir with 4½ inches monobore completion ― Besar 

well completion. K reservoir has high unconfined compressive strength (UCS) with 

no potential sand production issue. Lower completion proposed design was cemented 
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liner. Besar’s well completion design had been challenged to improve the economics 

of the well in the high oil price environment. Since the well has no sand production 

issue, cemented monobore design concept was proposed to further optimize the well 

completion design. 

 

In a cemented monobore completion design, the completion string is run and 

cemented straight into the reservoir open hole after the well has been drilled to cover 

the producing zone. It is a proven design that provides opportunity to reduce 

completion cost and improve well completion operation days without impacting safety 

and well integrity (Salahaldeen et al., 2015).  

 

This study focuses on detail engineering design of the first 4½ inches cemented 

monobore completion. The objective is to further improve the conceptual design at a 

lower cost without jeopardizing safety and well integrity. The areas of improvement 

comprise the well construction improvement, selection of the completion equipment, 

and tubing stress analysis to ensure the final design meets the design criteria. 

 

1.2 Problem Statement 

 

The initial plan was to develop overpressured K reservoir with 4½ inches 

tieback monobore completion. An offset well was completed with tieback monobore 

completion concept that had production hole cased with 9⅝ inches × 7 inches liner 

hanger tapered to 4½ inches liner and cemented for lower completion. The 4½ inches 

upper completion with 9⅝ inches production packer rated to ISO 14310 V0 was tied 

back to the lower completion as per Figure 1.1. The 9⅝ inches production packer rated 

to ISO 14310 V0 which was a gas tight packer acts as a double barrier against 

cemented liner hanger to prevent well integrity issues such as sustained casing pressure 

(SCP). The design had been successfully run and become a standard design in 

completing gas well. It is a proven concept such that it can deliver the well safely and 

without any well integrity issues.  
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Figure 1. 1 4½ inches tieback monobore (PETRONAS, 2012) 

 

 

The tieback monobore completion operation required the 4½ inches liner to be run into 

the open hole with a 9⅝ inches × 7 inches liner hanger and cemented as the lower 

completion. A dedicated wellbore clean out (WBCO) was needed to be run in hole 

(RIH) to clean the casing from the drilling mud and changed over to completion fluid. 

The 4½ inches upper completion would be run with 9⅝ inches production packer to 

complete the well (Taoutaou et al., 2007).  

 

In 2013, the oil price was high at USD110/bbl (Brent crude oil price). 

Contracted rig service rate, well completion equipment and completion related 
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Liner Hanger 

Production Liner 
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X Nipple 

Production Tubing 
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services were on the high side at the time of the design cost estimate. The high daily 

rig spread rate had a big impact on the number of well completion operation days to 

complete the well. Tieback monobore well completion design was challenged to be 

optimized and delivered with lower cost to improve the project economics. The 

optimized well design should not compromise safety and integrity of the well during 

the well construction and production life of the well. 

 

Cemented monobore has an advantage of optimizing the well completion 

design and operation days. The cemented monobore design concept was proposed for 

the well completion strategy as per Figure 1.2. The well construction design was with 

five casing schemes with 6 inches production hole. The 4½ inches tubing string would 

be run and cemented in place after drilling the production zone. Besar’s economic 

evaluation passed the threshold value for all scenarios except for the low price 

scenario. 

 

The global oil price crashed to USD30/bbl (Brent crude oil price) and high 

MYR vs USD exchange rate ware seen in 2016. Figure 1.3 shows five years oil price 

trend from 2013 to 2018. A study conducted by Havard Business School shows that 

USD50/bbl oil price puts some producing countries under considerable stress as they 

struggle with less oil revenue in their national budgets (Hartmaan & Sam, 2016). There 

was a need to redesign the cemented monobore well to further reduce the overall well 

cost and improve the project economic of the well. 
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Figure 1. 2 Planned 4½ inches cemented monobore (PETRONAS, 2013) 
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Figure 1. 3 Five years global oil price trend (Infomine, 2018) 
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1.3      Objectives 

 

The objective of this study is to conduct a detail engineering design of 4½ 

inches cemented monobore completion from conceptual design at a lower cost without 

sacrificing well safety and integrity. 

 

1.4 Hypotheses 

 

The hypotheses of this study are as follow:   

 

(1) An improved cemented monobore design may produce hydrocarbon without 

sacrificing well integrity.  

(2) The improved design may further reduce the overall well construction cost of 

cemented monobore design. 

(3) The cemented monobore design may improve project economics especially for 

marginal fields. 

 

1.5 Research Scope 

 

The scope of this research work are as follow: 

 

(1) Perform collaborative well planning to design the well cemented monobore 

well. Multidiscipline input from geology, subsurface, production technology 

and wells team.  

(2) Selection of well completion equipment for cemented monobore completion.  

(3) Tubing stress analysis using Landmark WELLCATTM design with multiple 

scenario during the life of the well. 
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1.6  Significance of study 

 

The success of the detailed design planning of the well would results in the 

success of the first cemented monobore well in PETRONAS. 

 

1.7  Chapter Summary 

 

Cemented monobore has an advantage over tieback monobore in terms of 

number of well completion days. Oil price crash from USD110/day in 2013 to 

USD30/day in 2016 required cemented monobore to be redesigned to reduce the well 

cost. The objective of the study is to improve the conceptual design of cemented 

monobore established in 2013 in terms of detail engineering design of the 4½ inches 

cemented monobore completion. The aim is to deliver an improved cemented 

monobore well which meets the design standard as per PETRONAS standard at a 

lower cost without jeopardizing safety and well integrity. The research scope involve 

collaborative well planning, selection of well completion equipment, and tubing stress 

analysis. This study has the significant impact on the success of the first cemented 

monobore well in PETRONAS. 
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