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ABSTRACT 

Depletion of fresh water sources seems to be concerning as a lot of factors 

lead to it such as population growth, urbanization, industrialization and climate 

change. Membrane technology seems to be the key to save the sources from 

continuingly depleting. This study was aimed to develop metal organic framework 

(MOF) based membrane for desalination process. Christian-Albrechts-University-1 

(CAU-1) is an excellent choice of MOF as it is water stable and can be utilized in 

desalination application. It was synthesized using solvothermal technique by 

differentiating the precursor concentration (0.05 M, 0.1 M, 0.5 M) and further post-

treatment process using methanol was carried out to remove guest molecules. The 

problem with CAU-1 is to produce defect-free layer on alumina support. 

Perfluorinated polymer (PF) layer need to be added to improve the surface as well as 

the permeation performances. Series of characterization and performance tests were 

conducted to evaluate the parameter effects. Field emission scanning electron 

microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray 

diffraction (XRD), atomic force microscopy (AFM) and contact angle were 

performed to achieve better understanding in changes that occur to CAU-1 

membrane properties. FESEM images showed that CAU-1 membrane was 

successfully produced on alumina hollow fiber support with thicknesses ranging 

from 1.3 – 2.7 µm. FTIR and XRD results showed that the presence of guest 

molecules does really gives significant effect to the CAU-1 framework. Guest 

molecules in CAU-1 framework interrupts the amine peak that should be presence in 

range 3500 – 3300 cm-1. The removal of guest molecules does help in defining the 

peak in XRD. Forward osmosis (FO) performance of untreated 0.5 M CAU-1 (M6) 

membrane manage to achieve water flux of 18 L m-2 h-1 and reverse solute of 0.0792 

kg m-2 h-1. The configuration of the FO process was changed by facing the active 

layer towards the draw solution. Results obtained were surprisingly different than it 

should be as it follows reverse osmosis concept. The water molecules flows from 

higher concentration gradient to lower concentration gradient. M6 membrane 

possesses flux value of 4.05 L m-2 h-1 and salt rejection of 75% for sodium chloride. 

The addition of PF layer does significantly improve the structural integrity of CAU-1 

framework as it heals micro-defect present in CAU-1. In FO performance, treated 0.5 

M CAU-1 (M5) membrane with PF layer showed the highest flux of 11.15 L m-2 h-1 

and the reverse solute of 0.00084 kg m-2 h-1. For the active layer facing draw process, 

M5 membrane with PF layer managed to get flux up to 5.16 L m-2 h-1 and salt 

rejection up to 95.98%. It can be concluded that the presence of guest molecules and 

addition of polymer layer can improve the performance of CAU-1 membrane.  
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ABSTRAK 

Pengurangan sumber air bersih menjadi perkara yang merisaukan kerana 

banyak faktor yang menjadi punca seperti contoh pertambahan populasi, 

pembandaran, pengilangan, dan perubahan cuaca. Teknologi membran menjadi kunci 

untuk menyelamatkan sumber ini daripada terus berkurang. Kajian ini dijalankan 

bertujuan untuk mewujudkan membran berasaskan kerangka logam organik (MOF) 

untuk proses penyahgaraman. Christian-Albrechts-University-1 (CAU-1) menjadi 

pilihan terbaik sebagai MOF memandangkan ia stabil di dalam air dan boleh 

digunakan untuk proses penyahgaraman. Ia disintesis melalui teknik pemanasan 

pelarut dengan membezakan kepekatan pemula (0.05 M, 0.1 M, 0.5 M) dan proses 

rawatan selanjutnya dijalankan menggunakan metanol untuk menyingkirkan molekul 

asing. Masalah yang dihadapi oleh CAU-1 ialah penghasilan lapisan yang sempurna 

di atas fiber alumina berongga. Lapisan polimer berfluorin (PF) perlu ditambah bagi 

penambahbaikan permukaan dan juga prestasi kebolehtelapan. Berberapa siri 

pencirian dan prestasi dijalankan untuk menilai kesan parameter. Mikroskop imbasan 

elektron pancaran medan (FESEM), spektroskopi infra merah transformasi Fourier 

(FTIR), pembelauan sinar-X (XRD), mikroskop daya atom (AFM) dan sudut sentuh 

dilaksanakan untuk mencapai pemahaman yang mendalam tentang perubahan yang 

berlaku pada membran CAU-1. Imej FESEM menunjukkan membran CAU-1 

berjaya dihasilkan di atas gentian berongga alumina dengan ketebalan di dalam julat 

1.3 – 2.7 µm. Keputusan FTIR dan XRD menunjukkan kehadiran molekul asing 

memberikan impak signifikan terhadap membran CAU-1. Molekul asing di dalam 

kerangka CAU-1 mengganggu kewujudan puncak amina yang sepatutnya hadir di 

dalam lingkungan 3500 – 3300 cm-1. Penyingkiran molekul asing membantu 

mengenal pasti puncak di dalam XRD. Osmosis hadapan (FO) untuk membran tidak 

dirawat 0.5 M CAU-1 (M6) berjaya untuk mencapai fluks air 18 L m-2 h-1 dan bahan 

fluks larut terbalik 0.0792 kg m-2 h-1. Konfigurasi proses FO ditukar dengan 

menghadapkan lapisan aktif terhadap larutan berkepekatan tinggi. Keputusan yang 

diperoleh adalah mengejutkan kerana ia berbeza daripada sepatutnya dan mengikut 

konsep osmosis songsang. Molekul air bergerak dari larutan berkepekatan tinggi 

kepada larutan berkepekatan rendah. Membran M6 mencatat nilai fluks 4.05 L m-2 h-

1 dan penolakan garam 75% untuk natrium klorida. Penambahan lapisan PF 

meningkatkan struktur berintegriti kerangka CAU-1 secara signifikan kerana ia 

memulihkan kecacatan mikro yang terdapat pada CAU-1. Di dalam prestasi FO, 

membran dirawat 0.5 M CAU-1 (M5) dengan lapisan PF menunjukkan fluks 

tertinggi 11.15 L m-2 h-1 dan bahan fluks larut terbalik 0.00084 kg m-2 h-1. Untuk 

lapisan aktif menghadap larutan berkepekatan tinggi, membran M5 dengan lapisan 

PF memperoleh fluks sehingga 5.16 L m-2 h-1 dan penolakan garam sebanyak 

95.98%. Ia boleh disimpulkan bahawa kehadiran molekul asing dan penambahan 

lapisan polimer mampu untuk meningkatkan prestasi membran CAU-1.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Fresh water supplies have been depleted due to various reasons, i.e. 

population growth, urbanization, industrialization and climate change [1–4]. Efforts 

have been focused on finding technologies to overcome the problem. In this context, 

seawater desalination using membrane technology has been regarded as the 

promising option for clean water supplies. Seawater is an unlimited water source that 

can accommodate the needs of growing global population [3]. In fact, this 

technology has been extensively used in the middle-east countries to produce clean 

water supply [5]. Seawater desalination technologies should enable 99.5% rejection 

of salt from seawater, as high sodium content can lead to body dehydration [6]. 

There are many conventional methods that have been used in the desalination 

application such as multi-effect distillation (MED) [7], mechanical vapour 

compression (MVC) [8], multi-stage flash (MSF) [9], solar distillation [10] and 

chemical approach such as ion-exchange desalination [11]. It has been known that 

these technologies are energy extensive [5]. High usage of energy will resulted in 

high cost expenditure, huge emission of greenhouse gases (GHG), disposal of brine 

concentration accumulated from the process and other environmental impact [12].  

A part of the aforementioned technologies, membrane technology has gained 

an interest for seawater desalination. Membranes are considered favourable for 

desalination because of its high efficiency, high selectivity, low energy consumption 

and ease of operation [1]. Typically, polymer materials are used in membranes 

production as they displays good rejection and good separation performance [13]. 

However, some of the polymer membranes are suffering from low mechanical 

strength, thermal and chemical degradation, shorter lifespan and susceptible to bio-

fouling [14]. Recently, ceramic material has captured the attention of researchers and 
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industries due to its characteristics and sustainability. In comparison, ceramic 

membrane offers a number of advantages than polymeric membrane in fluid 

separation [15]. It provides thermal and chemical stability, good mechanical strength, 

higher life longevity and anti-swelling properties [16]. Although ceramic membrane 

shows exceptional characteristics, it shows ineffective performance in removing salt 

from seawater [16]. The performance of the ceramic membrane itself can be 

enhanced by embedding other materials onto the surface of the membrane. 

Microporous materials such as metal organic frameworks (MOFs) seems to be the 

most suitable candidate to improve the characteristic and performance of the ceramic 

membrane [17]. 

Recently, MOFs have gained considerable attention among researchers due to 

its vast functionality and great future progress. These materials are made up of 

organic ligand (linker) molecules, usually consists of phosphonate or carboxylate 

group, and inorganic metal or metal cluster such as aluminium [18], zinc [17], 

zirconium [19] or other type of metal. The characteristics of MOFs can possibly 

enhance the performance of ceramic membrane in term of seawater desalination [20]. 

Highly porous structure, tuneable pore size and functionality, large specific surface 

area and high thermal and chemical stability make MOF as a versatile framework 

structure [15–18]. These frameworks are considered special for its tuneable 

properties as the pore size and functionality of the MOFs are possible to be changed 

by applying isoreticular synthesis. The properties of the MOFs can be fine-tuned by 

post-synthetic modification applied to the established inorganic building blocks [21]. 

Regarding the potential progress of the MOFs, it has been utilize in varieties of 

application such as desalination [6], heavy metal removal [16], gas storage [24], 

photocatalytic [25] and many more applications yet to be discover. 

Even though MOF is considered as one of the versatile materials for 

separation application, producing a defect-free MOF surface is still a great challenge. 

One way to produce a defect free MOF is by applying polymer on MOF. Friebe et al. 

states that the presence of polymer on the MOF can either heal the micro-defect 

presence in MOF or interact with it [27]. Polymer can be explained as a long, 

repeating chains of monomers. It possess a unique properties as how they are bonded 
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together or what type of molecules that is bonded to the polymer. The organic 

structure of polymer eases the MOF to interact with certain kind of polymer. This is 

due to the presence of organic linker inside the MOF. It increases the compatibility 

between polymer and the MOF.  

1.2 Problem Statement 

CAU-1 is considered as one of the excellent materials in MOF study. There 

are several advantages of making CAU-1 as a desalination membrane. First, CAU-1 

is considered as water-stable materials which is great for desalination application. It 

possess robust coordination bonds which strengthen the framework when subjected 

to water molecules. Next, CAU-1 has small pore opening of 1 – 0.45 nm and small 

triangular gates of 0.3 – 0.4 nm to pass through the structures. This small opening 

leads to the selective permeation of water molecules while retaining the salts which 

have higher radii in ion sizes. It also possess large Langmuir surface area and high 

pore volume which fulfil the criteria for membrane selection. However, there were 

no study conducted on CAU-1 as a membrane for desalination application. Most of 

the study were subjected to gas separation applications and not as a membrane when 

dealing with CAU-1 MOF. This problem was tackled in this study by forming the 

CAU-1 as a membrane on alumina hollow fiber. Information on incorporating CAU-

1 MOF on alumina hollow fiber is scarce and works need to be done in order to 

produce functionalized membranes on alumina hollow fiber. 

Inorganic membrane and MOFs need to have compatibility in order for the 

MOFs to adhere well on the membrane surface. In this research, same material-based 

between MOF and ceramic membrane is used in order to increase compatibility 

between both materials. Aluminum is a type of element that has high abundance and 

easy to process. In term of MOF synthesizing, aluminum is selected because it can 

produced a highly porous and stable structure. The interconnection of aluminum-

centered octahedral enables the formation of plentiful single and dual dimensional 

inorganic sub-networks. The same charge number (+3) of the ceramic material 
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(alumina) and CAU-1 (Al-based MOF) increase the compatibility between both 

structures and the surface attachment will be significantly better.    

Although MOF is considered as one of the great materials in separation 

process, fabricating defect-free MOFs on the surface of the ceramic membrane are 

relatively hard to achieve. Poor membrane substrate interaction is a typical issue 

facing by MOFs. Technique of implying MOFs onto the surface of the membrane 

need to be correctly done so that defect-free MOFs can be form along the ceramic 

support. If there are pin holes or cracks exists along the surface of the MOFs, the 

performance of the modified membrane will eventually disrupted and desired 

separation cannot be achieve. The additional layer of polymer will help to heal those 

micro-defect present on the MOF. Furthermore, the interaction between both MOF 

and polymer layer might give benefits to the performance of the membrane in terms 

of water flux and salt rejection. It will also help in controlling the pore flexibility of 

the MOF which influence the separation process.   

1.3 Objectives of Study 

The objectives of this research are as follows: 

1. To assess the deposition characteristics of CAU-1 MOF membrane on the 

outer surface of alumina hollow fiber.  

2. To evaluate the performance of CAU-1 MOF membrane under dead-end 

filtration, forward osmosis (FO) and reverse osmosis assisted sweeping 

liquid (ROASL). 

3. To study the interaction of polymer curable resin with CAU-1 MOF 

membrane for its physical characteristics and performances in FO and 

ROASL. 
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1.4 Scope of Study 

a) Scope of Objective 1 

 

I. Fabrication of thin layer CAU-1 MOF membrane using different synthesis 

concentration (0.05 M, 0.1 M, 0.5 M) on the outer surface of alumina hollow 

fibers using solvothermal synthesis method with synthesis time of 5h and 

temperature of 120°C. 

II. Removal of guest molecules inside the pore structure by stirring the 

membrane inside 100 ml methanol solution for 72 hours.   

III. Characterization of CAU-1 MOF membrane was conducted using field 

emission scanning electron microscopy (FESEM), Fourier transform 

infrared (FTIR), X-ray powder diffraction (XRD) and contact angle. 

 

b) Scope of Objective 2 

 

I. To evaluate the water permeation flux and solute rejection of CAU-1 MOF 

membrane using dead-end process.  

II. FO performance evaluation process was done on CAU-1 MOF membrane 

using the same variation and it was done using the FO setup.  

III. To investigate the effect of active layer position towards higher salt 

concentration solution using ROASL setup. 

IV. To measure two different salts (NaCl and MgSO4) in ROASL performance 

test to compare the significance of using two different draw solutions.  

 

c) Scope of Objective 3 

 

I. To study the effect of using perfluorinated polymer (PF) by incorporating it 

on the surface of selected CAU-1 MOF membrane (M3 and M5) via dip 

coating method. 

II. To characterized the composite CAU-1 membranes using FTIR, XRD, 

FESEM, contact angle and AFM. 
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III. To evaluate composite CAU-1 membranes performance using FO process 

and ROASL process. 

1.5 Significance of Study 

Recently, clean water shortage has been a severe global problem and fast 

action need to be taken to overcome this situation. Membrane technology seems to 

be the promising solution in encountering the water scarcity problem. This research 

is to provide alternative method for clean water production. Membrane-based 

seawater desalination can be used to produce drinkable clean water and avoid 

demand. Salts inside seawater need to be reduced or removed first in order for the 

water to be consumable. MOF membrane supported on alumina hollow fiber is 

expected to remove salt content from seawater does making it drinkable. This state of 

art can be used in water-stress area and it can give contribution towards the 

community.  

 

Conventional technologies have been used for decades in middle-east 

countries to desalinate seawater. It provides clean consumable water for industries, 

agriculture and community. Although these technologies help a lot in seawater 

desalination but the processes are energy-extensive and not environmental friendly. 

Seawater desalination based on membrane technology seems to be promising as it 

only consumes low energy usage, environmental friendly and low cost expenditure. 

This technology surely evades the environmental problem as no greenhouse gases 

(GHG) emission and the concentrated brine collected from the process will be 

release back to the sources. Besides, it also helps to build a greener environment and 

produce better human living. This is the first time ever CAU-1 MOF is used as 

membrane for desalination. Breakthrough discovery such as ROASL process was 

proposed to make membrane technological innovation. 
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