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ABSTRACT 

Polyaniline (PANI) has been applied in many fields nowadays. In this study, di-
rect ultrasonic irradiation, which means immersing the ultrasonic horn directly into the 
reaction solution, was used to polymerize polyaniline at frequency of 20 kHz, power of 
600W. The overall objective of this study was to synthesize PANI with nanostructure 
and high conductivity under direct ultrasonic irradiation. The effects of oxidant, viz., 
ammonium persulfate (APS) and dopant, viz., hydrochloric acid (HCl) concentration on 
the structure integrity, morphology, and electrical conductivity properties of the pre-
pared polyaniline were examined. As the molar ratio of APS to aniline varied from 0.1 
to 1.25, the conductivity of PANI samples reached a maximum of 0.24 S/cm at the ratio 
of 1. Characteristic peaks at 1558, 1477, 1296, and 1226 cm-1 corresponded to quinonoid 
ring stretching, benzenoid ring (B) stretching, C-N stretching of secondary aromatic 
amine, and C-N stretching in B-NH-B-NH-B unit showed in the Fourier transform in-
frared (FTIR) spectra, respectively. In the ultra violet-visible (UV-vis) spectra, the in-
tensity ratio of absorbance bands at 570-670 nm and 330-400, denoted as p-π* excitation 
of quinonoid segment and π-π* excitation of benzenoid part respectively, attained a zen-
ith at APS/aniline molar ratio of 1. The area percentage of three sharp, equal intensity, 
equal distant peaks at 7.02, 7.14, 7.27 assigned to ammonium protons reached a maxi-
mum at APS/aniline molar ratio of 1 in the nuclear magnetic resonance (NMR) spec-
troscopy. As the molar ratio of APS/aniline increased, four peaks at 2θ=8.7°, 14.8°, 19.9° 
and 25.2° appeared in the X-ray diffraction (XRD) spectroscopy, and the crystallinity 
achieved a maximum at the molar ratio of 1. Field emission scanning electron micros-
copy (FESEM) and high-resolution transmission electron microscopy (HRTEM) images 
showed vein-like structure, nanorods, nanofiber, bridge like structure and plate when 
APS/aniline molar ratio increased. Subsequently, the concentration of HCl was changed 
from 0.01 M to 2 M under the same preparation method with the optimized molar ratio 
of APS/aniline of 1. The conductivity of PANI samples increased with the increase of 
HCl concentration and reached a maximum of 0.5 S/cm at HCl concentration of 2 M. 
Characteristic peaks at 1554, 1480, 1287, and 1246 cm-1 corresponded to quinonoid ring 
stretching, benzenoid ring (B) stretching, C-N stretching of secondary aromatic amine, 
and C-N stretching in B-NH-B-NH-B unit showed in the FTIR spectra, respectively. In 
the UV-vis spectra, the intensity ratio of absorbance bands at 590-620 nm and 330-360, 
denoted as p-π* excitation of quinonoid segment and π-π* excitation of benzenoid part 
respectively, attained a zenith at HCl concentration of 2 M. The area percentage of three 
sharp, equal intensity, equal distant peaks at 7, 7.13, 7.26 assigned to ammonium protons 
reached a maximum at HCl concentration of 2 M in the NMR spectroscopy. As the HCl 
concentration increased, four peaks at 2θ=8.6°, 14.9°, 19.9° and 25.2° appeared in the 
XRD spectroscopy, and the crystallinity achieved a maximum at the concentration of 2 
M. FESEM images showed nanorods, nanostick, and petal-like structures when HCl 
concentration increased.   
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ABSTRAK  

Hari ini, polyaniline (PANI) telah banyak digunakan dalam pelbagai bidang. 
Kajian ini dilakukan dengan merendam sepenuhnya batang ultrasonik untuk 
memancarkan ultrasonik secara langsung ke dalam larutan tindak balas proses 
polimerisasi PANI dengan kekuatan 20 kHz dan kuasa 600 W. Objektif utama kajian ini 
adalah untuk menghasilkan PANI yang berstruktur nano serta nilai kekonduksian yang 
tinggi. Kajian terhadap kesan pengoksidaan ammonium persulfat (APS) dan dopan asid 
hidroklorik (HCl) pekat dijalankan terhadap sifat-sifat integriti struktur, morfologi, dan 
sifat kekonduksian elektrik PANI. Nisbah molar APS kepada aniline diubah dari 0.1 ke 
1.25 dan hasil kekonduksian PANI mencapai nilai maksimum pada 0.24 S/cm dengan 
nisbah 1. Kajian Spektrum Inframerah Transformasi Fourier (FTIR) pula menunjukkan 
pencirian puncak-puncak pada 1558, 1477, 1296, dan 1226 cm-1 dikaitkan dengan 
peregangan cincin quinonoid, peregangan cincin (B) benzenoid, peregangan C-N 
aromatik sekunder amina, dan peregangan C-N di unit B-NH-B-NH-B, masing-masing. 
Dalam Spektrum Ultra Violet-Visible (UV-vis), nisbah penyerapan intensiti ditunjukkan 
pada jalur 570-670 nm dan 330-400, ditandakan sebagai eksitasi p-π* segmen quinonoid 
dan eksitasi π-π* bahagian benzenoid, masing-masing didapati pada nisbah APS/aniline 
adalah 1. Berdasarkan keputusan spektroskopi Resonans Magnetik Nuklear (NMR), 
peratusan luas tiga puncak, intensiti yang sama, jarak intensiti yang sama pada 7.02, 
7.14 dan 7.27, masing masing dikaitkan kepada proton amonium mencapai nilai 
maksimum pada nisbah APS/aniline 1. Apabila nisbah molar APS/aniline ditingkatkan, 
empat puncak diperolehi pada 2θ = 8.7°, 14.8°, 19.9° dan 25.2° dalam spektroskopi 
difraksi Sinar X (XRD), dan nilai kristalitinya mencapai maksimum pada nisbah molar 
adalah 1. Mikroskop Pengimbasan Elektron Pelepasan Medan (FESEM) dan Mikroskop 
Elektron Bertransmisi Resapan Tinggi (HRTEM) menunjukkan struktur seperti vena, 
rod nano, serat nano, struktur seperti jambatan dan plat dilihat apabila nisbah 
APS/aniline molar berkurangan. Selanjutnya, kepekatan HCl diubah dari 0.01 M hingga 
2 M dengan kaedah penyediaan yang sama dengan menetapkan nisbah molar optimum 
APS/aniline adalah 1. Kekonduksian PANI meningkat dengan peningkatan kepekatan 
HCl dan mencapai nilai maksimum pada 0.5 S/cm apabila kepekatan adalah 2 M. 
Pencirian puncak-puncak adalah pada 1554, 1480, 1287 dan 1246 cm-1 ditunjukkan pada 
spektrum FTIR adalah cincin quinonoid, cincin benzenoid (B), peregangan C-N 
aromatik sekunder amina, dan peregangan C-N di unit B-NH-B-NH-B. Spektrum UV 
pula mendapati band penyerapan nisbah intensiti pada 590-620 nm dan 330-360, 
masing-masing dinamakan sebagai eksitasi p-π* segmen quinonoid dan eksitasi π-π* 
bahagian benzenoid masing-masing, mencapai kemuncak di kepekatan HCl sebanyak 2 
M. Daripada spectroskopi NMR, peratusan luas tiga puncak, intensiti yang sama, jarak 
puncak yang sama pada 7, 7.13 dan 7.26 yang dikaitkan dengan proton amonium telah 
mencapai nilai maksimum apabila kepekatan HCl 2 M. Dari hasil keputusan 
spektroskopi XRD, apabila kepekatan HCl meningkat, empat puncak diperolehi adalah 
pada 2θ = 8.6°, 14.9°, 19.9° dan 25.2°, dan nilai kristaliniti mencapai maksimum pada 
kepekatan 2 M. Gambar-gambar FESEM menunjukkan rod-rod nano, stick nano, dan 
struktur seperti kelopak bunga dilihat jelas apabila kepekatan HCl meningkat.  



 

viii 

TABLE OF CONTENTS 

                                     TITLE             PAGE 
 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES x 

LIST OF FIGURES xi 

LIST OF SYMBOLS xiii 

LIST OF ABBREVIATIONS xiv 

LIST OF APPENDICES xvi 

 INTRODUCTION 1 

1.1   Background of the Study 1 

1.2   Problem Statement 3 

1.3   Objective of the Study 3 

1.4   Scope of the Study 4 

 LITERATURE REVIEW 5 

2.1   Introduction of Polyaniline 5 

2.2   Polymerization of Polyaniline 8 

2.3   Influence of Reaction Parameters on PANI Synthesis 10 

2.4   Polymerization Assisted by Ultrasonic Irradiation 12 

2.5   Synthesis of PANI Using Ultrasonic Irradiation 15 

 METHODOLOGY 19 

3.1   Materials 19 

3.2   Research Design 19 



 

ix 

3.3   Preparation of Sample 20 

3.4   Characterization 22 

3.4.1 Structure Integrity Analysis 22 

3.4.2 Crystallinity Characterization 23 

3.4.3 Morphological Characterization 23 

3.4.4 Electrical Conductivity Measurement 24 

CHAPTER 4 RESULTS AND DISCUSSION 25 

4.1   Influence of APS/Aniline Molar Ratio on Polyaniline 25 

4.1.1 Electrical Conductivity Test 25 

4.1.2 Structure Integrity 26 

4.1.3 Crystallinity Characterization 32 

4.1.4 Morphology Observation 33 

4.2   Effect of HCl Concentration on Polyaniline 36 

4.2.1 Electrical Conductivity Measurement 36 

4.2.2 Structure Integrity 37 

4.2.3 Crystallinity Investigation 41 

4.2.4 Morphology Observation 42 

 CONCLUSION AND RECOMMENDATIONS 45 

5.1   Conclusion 45 

5.2   Recommendations 46 

REFERENCES  47 
 

 

 

 

 



 

x 

LIST OF TABLES 

TABLES NO.  TITLE  PAGE 

Table 2.1 Colors of PANI in different oxidation state 6 

Table 3.1 List of denotation to synthesize PANI with various 
APS/aniline molar ratio 20 

Table 3.2 List of denotation to synthesize PANI with various HCl 
concentration 20 

Table 4.1 UV-vis absorbance peaks of PANI synthesized at different 
APS/aniline ratio 29 

Table 4.2 Result of NMR analysis of PANI samples synthesized at 
different APS/aniline molar ratio and conductivity 32 

Table 4.3 Crystallinity degree of PANI synthesized at different 
APS/aniline molar ratio 33 

Table 4.4 Surface element analysis by EDX of PANI samples 
synthesized at different APS/aniline ratio 36 

Table 4.5 UV-vis peak analysis of PANI samples synthesized by 
varying HCl concentration 39 

Table 4.6 Result of NMR analysis of PANI samples synthesized at 
different HCl concentration and conductivity 41 

Table 4.7 Crystallinity degree of PANI samples synthesized at different 
HCl concentrations 42 

Table 4.8 Surface element analysis by EDX of PANI samples 
synthesized at different HCl concentration 44 

 

 

 

 

 



 

xi 

LIST OF FIGURES 

FIGURE NO.           TITLE          PAGE 

Figure 2.1 Structure of PANI at different oxidation state 5 

Figure 2.2 Process of protonic acid doping of emeraldine base (EB) and 
the structure of some acids 7 

Figure 2.3 Depiction of the mechanism of preparation of PANI (A-C) 
from aniline and (D-F) from aniline sulfate 9 

Figure 2.4 Mechanism of polymerization of PANI in HCl   12 

Figure 2.5 Size and size distribution of the PEDOT particles in the 
colloid dispersions made by (a) ultra-sonic irradiation and (b) 
traditional stirring. The insets were the digital pictures of the 
PEDOT colloid dispersions achieved by two techniques 13 

Figure 2.6 SEM images of PEDOT particles prepared through ultrasonic 
irradiation (a,b) and traditional stirring (c,d) 14 

Figure 2.7 TEM images of the ultrasonic irradiation assisted synthesis 
of PANI nanofibers with APS/ANI molar ratio of (a) 0.5, (b) 
1.0, (c) 1.5, (d) 2.0 and (e) 2.5. 16 

Figure 3.1 Process flow chart 19 

Figure 3.2 Schematic illustration of ultrasound technique for direct 
polymerization PANI 21 

Figure 4.1 The electrical conductivity of PANI samples synthesized at 
different APS/aniline ratio 26 

Figure 4.2 structure of phenazine-like PANI 26 

Figure 4.3 FTIR spectra of the PANI samples polymerized at different 
APS/aniline ratio 28 

Figure 4.4 UV-vis spectra of PANI synthesized by varying APS/aniline 
molar ratio 29 

Figure 4.5 NMR spectra of PANI samples synthesized at different 
APS/aniline ratio NMR spectra of PANI samples synthesized 
at different APS/aniline ratio: (a) overall characterization 
peaks (b) details of peaks between chemical shift 6-8 31 

Figure 4.6 XRD patterns of PANI samples polymerized by varying 
APS/aniline ratio 33 

Figure 4.7 FESEM and TEM images of PANI synthesized at different 
APS/aniline molar ratio: FESEM: (a) APS/aniline 0.1(inlet 



 

xii 

shows higher magnification of certain spot)  (b) APS/aniline 
0.3 (c) APS/aniline 0.5 (d) APS/aniline 1 (e) APS/aniline 1.25; 
TEM(f) APS/aniline 0.1 (g) APS/aniline 1 35 

Figure 4.8 Conductivity of PANI samples synthesized at different HCl 
concentrations 37 

Figure 4.9 FTIR spectra of PANI samples polymerized by varying HCl 
concentration 38 

Figure 4.10 UV-vis spectra of PANI samples synthesized at different HCl 
concentration 39 

Figure 4.11 NMR spectra of PANI samples synthesized at different HCl 
concentrations: (a)overall characterization peaks (b)details of 
peaks between chemical shift 6-8 40 

Figure 4.12 XRD patterns of PANI samples synthesized by changing HCl 
concentrations 42 

Figure 4.13 FESEM images of PANI synthesized at different HCl 
concentration: (a)HCl 0.01M (b) HCl 0.5M (c) HCl 1M (d) 
HCl 1.5M (e)(f) HCl 2M 43 

  



 

xiii 

LIST OF SYMBOLS 

°C -  Degree Celsius 

g/mol -  Gram per mol 

g/ml -  Gram per milliliter 

kHz -  Kilo herz 

mHz -  Mega herz 

nm -  Nanometer 

μm -  Millimeter 

rpm -  Revolution per minute 

S·cm-1 -  Siemens per centimeter 

wt.% -  Weight Percentage 

 

 

 

 

 

 

 



 

xiv 

LIST OF ABBREVIATIONS 

PANI -  Polyaniline 

EB  -  Emeraldine Base 

ES  -  Emeraldine Salt 

DBSA -  Dodecyl Benzene Sulfonic Acid 

CSA  -  Camphor Sulfonic Acid 

PTSA  -  P-toluene Sulfonic Acid 

NMP  -  N-methyl-2-pyrrolidone 

DMSO  -  Dimethyl Sulfoxide 

DMF  -  Dimethyl Formamide 

THF  -  Tetrahydrofuran 

CTAB  -  Cetyltrimethylammonium Bromide 

APS -  Ammonium Persulfate 

ANI -  Aniline 

EDOT -  3,4-ethylenedioxythiophene 

PEDOT -  Poly (3,4-ethylenedioxythiophene) 

PSS -  Poly (styrene sulfonate) 

DEG -  Diethylene Glycol  



 

xv 

FTIR -  Fourier Transform Infra-Red 

NMR -  Nuclear Magnetic Resonance 

FIB-SEM -  Focus ion Beam Scanning Electron Microscopy 

EDX -  Energy Dispersive X-ray Spectroscopy 

HRTEM -  High Resolution Transmission Electron Microscopy 

UV-Vis -  Ultra Violet-visible 

XRD -  X-ray Diffraction 

  



xvi 

LIST OF APPENDICES 

APPENDIX           TITLE   PAGE 

Appendix A   Calculation for Polyaniline Preparation   55   



 

 

  
 

 

INTRODUCTION 

1.1 Background of the Study 

Polyaniline (PANI), an intrinsically conducting polymer, has attracted much 

attention of scientists and engineers from all over the globe, ascribed to its extinctive 

electrical properties and facile preparation, as well as its excellent environment stabil-

ity. An electrical conductivity as high as 400 S/cm could be obtained for PANI in doped 

state (Le et al., 2017). Although there are some drawbacks for PANI, viz., inability to 

be processed by conventional methods and poor mechanical properties, it can still be 

used in many areas due to its excellent electrical and electrochemical properties, such 

as supercapacitors (Zhou et al., 2018), gas detection (Tanguy et al., 2018), and solar 

cells (Lee et al., 2017).   

PANI could be synthesized mainly by chemical oxidation polymerization 

(Kumar and Yadav, 2016) and electrochemical polymerization (Bhandari and Khastgir, 

2016). Among chemical oxidation synthesis, apart from traditional solution polymeri-

zation (Lin et al., 2017), several novel techniques have been employed to prepare PANI, 

such as, interfacial preparation (Zhang et al., 2019), and ultrasonic irradiation (Mohsin 

et al., 2019a). For conventional chemical polymerization method proceeded under me-

chanical stirring, it always takes a long time to get a polymer with comparatively high 

conductivity (Tang et al., 2013). Furthermore, a disappointing aggregate structure was 

usually obtained rather than nanosized particles (Casado et al., 2014). Compared with 

chemical oxidation, which is simple and could be employed in large-scale producing, 

electrochemical method confers PANI films with higher purity, nevertheless, the area 

of the product is confined in small size (Ezzati et al., 2018).  

Reaction parameters are found to be a key role on the properties of PANI. Fang 

et al. (2018) found that lower ratio of oxidant ammonium persulfate (APS) to aniline 



 

2 

resulted in smoother surface and longer length of the nanofibers compared with those 

of the higher APS/aniline molar ratio. APS could attribute to a higher conductivity 

compared with potassium dichromate and iron (III) chloride (Fe3Cl) when it was em-

ployed to oxidize aniline (Blaha et al., 2017). Noby et al. (2019) reported different 

morphologies of PANI by varying concentration of hydrochloric acid (HCl), such as 

nanoflowers, nanotubes and nanofibers, when aniline was polymerized in a high-pres-

sure autoclave. In their work, PANI doped with HCl exhibited higher conductivity than 

that doped with sulfuric acid. The conductivity of PANI increased with the increasing 

of HCl concentration, and the maximum value (3.7S/cm) was reported with 5M HCl.  

Ultrasonic irradiation, has become immensely popular in promoting various 

reactions. In this method, reaction proceeds in microreactors, which are known as cav-

itation bubbles. There are direct and indirect ways to conduct ultrasonic irradiation, 

viz., ultrasonic probe and ultrasonic bath. Compared with ultrasonic bath, there is no 

reduction of the intensity of ultrasonic power when the probe is directly immersed into 

the reaction system (Capelo-Martinez, 2008).  

Exciting advantages have been exhibited by ultrasound method when it is ap-

plied to polymerization of PANI or PANI based composites. With the assistance of  

ultrasonic bath, PANI nanoparticles (Fukui et al., 2015), and PANI nanosticks with 

diameter of ca. 40 nm and aspect ratio higher than 3 (Ai and Jiang, 2011) were attained. 

While nanosized particles cannot be obtained facilely by conventional chemical meth-

ods, a template or typical process are generally needed in order to get nanostructures 

(Baker et al., 2017). PANI and PANI/starch blends prepared by ultrasonication demon-

strated higher conductivity compared with that resulted from magnetic stirring, ac-

cording to Mohsin et al. (2016). Compared with chemical oxidation method, this tech-

nique needs only short reaction period. Wang et al. (2014) obtained 1 dimensional 

nanostructures of PANI within 1 hour. Furthermore, it took only 30 minutes for Mohsin 

et al. (2019a) to polymerize PANI with a conductivity as high as 1.78 S/cm  through 

direct ultrasonic irradiation polymerization. Whereas, Kumar and Yadav (2016) syn-

thesized PANI by traditional chemical oxidation method after 4 hours of magnetic stir-

ring , and the same duration was applied in the work of Lin et al. (2017), as well, which 

was 3 times longer than that of Mohsin et al. (2019a). 
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1.2 Problem Statement 

Although some researchers have prepared PANI using ultrasonic irradiation, 

most of them fixed the oxidant and dopant concentrations. Furthermore, they had no 

concern of electrical conductivity test, and most of them applied indirect method, viz., 

ultrasonic bath (Ai and Jiang, 2011; Wang et al., 2014). In comparison with direct 

pathway, ultrasonic bath method does possess its drawbacks. The ultrasonic power 

could not be transferred effectively to the reaction system in ultrasonic bath, which 

results in a low intensity than expected (Capelo-Martinez, 2008).  

Jing et al. (2007) varied the molar ratio of APS/aniline and attained the highest 

conductivity at the ratio of 1 in ultrasonic bath. The nature and concentration of dopant 

acid were changed by Lu et al. (2006), in whose work nanotubes and nanofibers were 

formed at lower and higher acid concentration, respectively. However, the conductiv-

ities of the samples, which are of significant importance for conducting polymers, were 

not investigated by them. Furthermore, both of these papers applied ultrasonic bath 

method, in which the intensity will be reduced by the containers of the reaction solu-

tion. Fortunately, Mohsin et al. (2019) polymerized PANI nanoparticles by direct ul-

trasonic method, but they only investigated the influence of reaction time on the prop-

erties of PANI and kept other parameters constant. In their work, the concentration of 

HCl was kept as 1M, and the ratio of APS/aniline was fixed as 1:1.  

To date, no research has been done on the effect of HCl concentration and ratio 

of APS to aniline on the morphology and electrical conductivity of PANI synthesized 

by direct ultrasonic irradiation polymerization. Therefore, the effect of oxidant and 

dopant concentration in direct ultrasonic irradiated PANI is noteworthy to be deter-

mined thoroughly to obtain product with desired properties. 

1.3 Objective of the Study  

The overall objective of this study was to synthesize PANI with nanostructure 

and high conductivity under direct ultrasonic irradiation, and the specific objectives 

were as follows: 
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