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ABSTRACT 

Access to clean water for human use is a growing concern across the world 

with the ever-increasing human population. Treatment of wastewater to produce 

usable water is essential to meet future clean water demand. Separation and 

decontamination processes using membrane technologies have been implemented 

worldwide. Photocatalytic membrane is an emerging technology that is capable of 

simultaneously separating and degrading organic pollutants (e.g., humic acid (HA) and 

dyes) present in aqueous solution under UV-irradiation besides microorganism 

disinfection. In view of this, the main objective of this work is to fabricate and 

characterize a new type of nanocomposite nanofiber membrane by incorporating 

photocatalytic nanomaterials – titanium dioxide (TiO2) into a highly porous nanofiber 

made of UV-resistant polyetherimide (PEI). The nanofiber membrane was fabricated 

via an electrospinning method using a dope solution containing 15 wt% PEI dissolved 

in a mixed solvent of dimethylformamide (DMF)/n-methyl-2-pyrrolidone (NMP) with 

ratio of 2:8. The top surface of nanofiber membrane was further modified by coating 

it with different TiO2 concentration (0.2 and 0.6 wt%) using electrospraying method. 

The properties of the TiO2-modified PEI nanofiber membranes were then analysed 

using scanning electron microscope (SEM), water contact angle (WCA) goniometer 

and tensile strength machine. Results showed that 0.2 wt% TiO2-modified PEI 

nanofiber displayed better behaviour by reducing WCA of unmodified nanofiber from 

130.25° to 23.35° and improving water flux by 28%. Although the WCA of membrane 

was further reduced when a higher TiO2 amount (0.6 wt%) was used, the resultant 

nanofiber suffered from decreased ultimate strength and significant nanoparticles 

leaching. Using the best performing 0.2 wt% TiO2-modified PEI membrane, 

significant removal rate of Escherichia coli (99%) and humic acid (~80%) could be 

achieved along with 85% methylene blue degradation during photocatalytic process. 

The findings of this work provide an insight into the design of advanced 

nanocomposite nanofiber membrane for photocatalytic process. 
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ABSTRAK 

Akses kepada bekalan air bersih menjadi isu global di seluruh dunia dengan 

jumlah populasi penduduk manusia yang semakin meningkat. Rawatan air kumbahan 

untuk menghasilkan air bersih adalah sangat penting untuk menjamin bekalan air 

bersih di masa akan datang. Proses pengasingan dan dekontaminasi menggunakan 

teknologi membran telah dilaksanakan di serata dunia. Membran fotokatalitik 

merupakan suatu teknologi yang sedang berkembang dan berupaya mengasingkan dan 

memecahkan bahan pencemar organik (contohnya, asid humik (HA) dan pewarna) 

yang wujud di dalam cecair selain dapat membasmi mikroorganisma yang wujud 

dalam cecair tersebut. Sehubungan dengan itu, objektif utama kajian ini adalah untuk 

menghasilkan sejenis nanokomposit nanofiber membran yang baru dengan 

menggabungkan bahan nano fotokatalitik – titanium dioksida (TiO2), ke dalam 

nanofiber berongga, yang diperbuat daripada bahan tahan UV - polieterimida (PEI). 

Membran nanofiber dihasilkan daripada kaedah elektroputar dengan mencampurkan 

cecair yang mengandungi 15 wt% PEI bersama cecair campuran dimetilformamida 

(DMF)/n-metil-2-pirolidon (NMP) dengan nisbah 2:8. Permukaan membran nanofiber 

kemudiannya dilapiskan dengan kepekatan TiO2 yang berbeza (0.2 dan 0.6 wt%) 

menggunakan kaedah elektrosemburan. Kandungan TiO2 yang telah diubah suai ini 

kemudian dianalisis dengan menggunakan mikroskop pengimbas elektron (SEM), 

pengukur sudut sentuhan air (WCA) dan mesin pengukur tegangan. Kajian mendapati 

0.2 wt% TiO2 yang telah ditambah dengan PEI nanofiber adalah lebih baik dengan 

mengurangkan WCA nanofiber yang tidak diubah suai dari 130.25° ke 23.35° dan 

meningkatkan fluks air sehingga 28%. Walaupun WCA membran dapat dikurangkan 

apabila TiO2 yang tinggi (0.6 wt%) digunakan, kekuatan dan tegangan nanofiber 

tersebut telah berkurang dan partikel nano telah larut. Justeru itu, dengan 

menggunakan 0.2% TiO2, Escherichia coli (99%) dan asid humik (~80%) dapat 

disingkirkan dengan 85% degradasi metilin biru semasa proses fotokatalitik. 

Penemuan dan hasil daripada kajian ini dapat memberikan lebih pencerahan kepada 

rekabentuk membran nanokomposit nanofiber untuk proses fotokatalitik yang akan 

datang. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Fresh water scarcity is a strong issue already in an area of land affecting over 

one third of the world’s population. This problem is expected to double by 2050, and 

the overuse of natural freshwater resources in many countries is already showing signs 

of reaching unsustainable levels. This issue has been further complicated by rapid 

population growth and industrialization that demand large volumes of clean water 

resources. According to the World Health Organization (WHO) and the United 

Nations International Children's Emergency Fund (UNICEF), 2.1 billion population 

lack access to safe, readily available water at home (Program, 2014).  

The presence of some organic contaminants in water like humic substances can 

easily react with some types of disinfectants products like chlorine to form disinfection 

by-products (DBP) such as trihalomethanes (THMs) and haloacetic acid (HAAs) 

which are the most prevalent DBP. The concentration and formation of those DBPs is 

strongly dependant on raw water characterization, residual chlorine available in the 

water distribution system and an operational parameter (Zhou et al., 2014). Moreover, 

organic dyes like Methylene blue (MB), Methylene orange (MO) and Rhodamine B 

(RHB) (Zangeneh et al., 2015) are commonly found in wastewater, and they are 

considered to have significant environmental impacts owing to their toxicity to living 

aquatic organisms (Akpan and Hameed, 2009). 

In addition to organic contaminants, waterborne pathogenic microorganisms 

like Escherichia coli (E.coli) bacteria are widely spread in wastewater which causes 

many diseases to humans (Alrousan et al., 2009). However, the conventional 

wastewater treatment plants are not designed to remove emerging and related 

contaminants as there is no single technology that is suitable for removing all 
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contaminants. Additionally, Many of these compounds occur at different 

concentrations in natural water bodies (Arrubla et al., 2016; Gupta et al., 2016).  

Membrane technologies are a reliable technology and have been used for more 

than 50 years for water filtration. Membrane separation process is used for both pre 

and post water treatments. It also has a wide range of industrial (Cartwright, 2010), 

medical (Baker and Staff, 2000) and environmental applications (Khin et al., 2012).  

The separation process-based membrane technology is mainly dependent on the pore 

size of the fabricated membranes. According to the pore size, membranes can be 

classified into microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and 

reverse osmosis (RO) membranes as shown in Figure 1.1 (Khin et al., 2012; Baker and 

Staff, 2000). MF and UF membrane processes are based on size exclusion of the 

molecules. MF is used for the removal of submicron suspended materials which have 

molecular size in the range 0.01-1 μm including bacteria, algae and sediments in water 

pre-treatment applications. UF membranes have pore size ranges of 10-100 nm for the 

removal of dissolved organic matter, pathogens like viruses and proteins (Baker and 

Staff, 2000). 

Generally, the commercial membranes are classified as polymeric membranes 

and inorganic membranes. However, the polymeric membranes like polysulfone 

(PSF), polyvinylidene fluoride (PVDF) (Lee et al., 2016), polyvinylpyrrolidone (PVP) 

(Horikoshi et al., 2001), polyvinyl chloride (PVC) (Gesenhues, 2000), 

polybenzimidazole (PBI) (Kushwaha et al., 2014c) and polycarbonate (PC) 

(Geretovszky et al., 2002) are esteemed in water treatment plants. The key advantage 

of polymeric membranes is their high selectivity for water components at different 

sizes during the separation process, which depends on the method of fabrication (Lalia 

et al., 2013; Ray et al., 2016). Polymeric membranes are widely used as pre-treatment 

in water filtration as they have unique characteristics like thermal stability, heat 

resistant and high pH resistance compared to other commonly used membranes in 

filtration application (Frenot and Chronakis, 2003; Ray et al., 2016).  They have the 

advantages of low cost fabrication and salt rejection properties compared to inorganic 

membranes (Buonomenna and Golemme, 2012). Polyetherimide (PEI) polymer is 

possesses unique properties such as excellent thermal stability, chemical resistance to 
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a wide range of pH and excellent mechanical strength (Wang et al., 2016). It is mainly 

related to the strong chemical bonds and surface chemistry of PEI structure as it has 

bonds with high dissociation energy. 

 

Figure 1.1 The particles rejected by membrane as a function of pore size (Yoon 

2006) 

 

Different membrane fabrication methods have been reported in the literature 

including phase inversion, powder sintering, interfacial polymerization, film etching 

and stretching and electrospinning. These methods depend mainly on the polymer, 

structure or configuration of the membrane and application (Barth et al., 2000).  

However, there is an emerging interest towards using nanofibers membrane largely 

due to its high surface area, high porosity and tunable surface chemistry.  

Electrospinner overperformed other fabrication methods, as it a simple 

technique that applies electrostatic force to form nanofibers in nanometer size as 

several studies have mentioned that the average diameter of electrospun 

nanonanofibers ranges from 100 nm to 500 nm (Ray et al., 2016) and so nanofibers 

are consider to be microfiltration membranes. This technique has been extensively 

explored as the best and most simple method to prepare nanofibers from polymer 

solutions or melts with advanced applications in filtration, barrier membranes for 

energy storage and engineered tissue scaffold (Ma et al., 2009). Nanofiber membranes 

outclass other membranes because of the ease of production and cost-effectiveness, 

besides its simple setup. 
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Biofouling is the attachment and growth of microbial organisms, such as 

bacteria (Mohammad and Amin, 2013; Nguyen et al., 2012). This process may result 

in pore blocking, adsorption of hydrophobic particles and nonpolar solutes, gel layer 

formation and cake layer formation. In addition, scaling occurs when dissolved metal 

salts in the feed water precipitate on the membrane due to the increase of salt 

concentration exceeding the solubility limit. These obstacles lead to decline in 

rejection and net water flux. Therefore, the consequence of these problems is the short 

lifetime of the membrane and eventual replacement (Nguyen et al., 2012).  

Introduction of photocatalysis process can overcome this obstacle as it is based 

on the use of semiconductor metal oxides with a large band gap. These include zinc 

oxide (ZnO), titanium dioxide (TiO2), iron (III) oxide (α-Fe2O3) and zinc sulfide (ZnS). 

They were incorporated to enhance physical and chemical properties of the 

membranes. The nanomaterials can be defined as materials with at least one dimension 

in the nano-scale (1-100 nm) with defined structure. Compared to the chlorination and 

ozonation process, photocatalysis is a promising method for the removal of organic 

pollutants in water, and it is cost effective because its sustainable source is sunlight 

(Zhang et al., 2014a; Herrmann, 2005). Generally, there is an emerging interest toward 

the modification of the surface of membranes to ensure a good rejection of low weight 

solutes by pore size control and surface charge. 

The special characteristic of nanomaterials is that they exhibit a high surface 

area-to-volume ratio compared to bulk materials, which enhances the catalytic activity 

at nanoscale levels (Binns, 2010). In general, metal oxides is consist of either binary, 

ternary or quaternary compounds. Binary oxides are often wide band gap 

semiconductors that generate electron-hole pairs upon exposure to light irradiation 

(UV or visible light). The photo-generated e- - h+ pair then produces highly reactive 

oxidizing species (ROS) such as superoxide anions (O2
-·)and hydroxyl radicals (OH·) 

in water. 
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1.2 Problem Statement 

Photocatalytic membrane is an emerging technology that is capable of 

simultaneously separating and degrading organic pollutants present in the aqueous 

solution under UV irradiation (Ong et al., 2015). The presence of organic contaminants 

in water sources such as humic substances can easily react with disinfectant products 

like chlorine to form harmful DBPs, e.g., HAAs and THMs (Aseri et al., 2019). 

Moreover, waterborne pathogenic microorganisms like E.coli bacteria are widely 

spread and cannot be fully removed by filtration process using MF membranes only 

(Al-Ghafri et al., 2018).  

For the conventional membrane technology (e.g., NF and UF), its performance 

is negatively affected by fouling due to pore blockage, adsorption, cake layer 

formation and scaling. Moreover, biofouling caused by microorganisms is another 

main concern of conventional membrane applications (Mohammad and Amin, 2013). 

The consequences of these problems are a decline in net water flux and reduced 

membrane life span, leading to higher operating and maintenance costs (Singh, 2014).  

Although polymeric membranes are widely used in water/wastewater 

treatment plants to separate unwanted solutes/pollutants, these kinds of membranes are 

not suitable to be used as photocatalytic membrane process. This is mainly because 

there exist no catalysts within the membrane matrix. Furthermore, the polymeric 

materials used to manufacture commercial polymeric membranes are not UV-resistant 

and are very likely to suffer from severe degradation under UV light illumination, 

owing to the breakage of chemical bonds of polymeric materials such as methine, C-S 

and C-O groups (Kushwaha et al., 2014b; Rupiasih et al., 2013).  

In addition to the surface chemistry changes, alternation on the membrane 

microstructure and morphology upon UV light illumination could also take place 

which reduces membrane separation efficiency. Many studies have reported that the 

membranes made of polysulfone (PSF), polyvinylidene fluoride (PVDF) (Lee et al., 

2016), polyvinylpyrrolidone (PVP) (Horikoshi et al., 2001), polyvinyl chloride (PVC) 

(Gesenhues, 2000), polybenzimidazole (PBI) (Kushwaha et al., 2014c) and 
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polycarbonate (PC) (Geretovszky et al., 2002) suffered from severe degradation upon 

UV light exposure. Therefore, there is a need to consider using UV-resistant polymers 

like PEI for the fabrication of photocatalytic membranes. Besides being UV-resistant, 

PEI also shows unique properties such as good thermal stability, excellent chemical 

resistance to a wide range of pH, and excellent mechanical strength (Wang et al., 

2016). 

Modification processes of the polymeric membrane has emerging interest 

toward reducing fouling affinity of the membranes and controlling the pore sizes. 

Nanoparticles-blended membrane is famous way in membrane modifications,  

however, Rahimpour et al. studied the effect this way on photo-sensitisation efficiency 

and found that blending reduced efficiency due to the entrapment of NPs in random 

positions in the membrane shielded UV light penetration (Rahimpour et al., 2008). 

Therefore, coated method used in this work to overcome the drawback of the blended 

way.  

A literature search revealed that titanium dioxide (TiO2) is perhaps the most 

commonly reported photocatalyst, owing to its low price and commercial availability 

(Thiruvenkatachari et al., 2008). It acts as a semiconductor in water purification due 

to its high stability, nontoxic nature and high oxidizing potential (Nakamura et al., 

2004). It requires energy from UV light to excite electrons to produce hydroxyl 

radicals, which are the key to the photodegradation of organic pollutants 

(Noothongkaew et al., 2017a). 

Based on a thorough survey of literature, the photocatalytic behaviour of 

TiO2/PEI nanofibers has not been reported yet. This work addresses this issue and 

probes the formation of TiO2/PEI nanocomposite nanofibers. TiO2/PEI nanofibers are 

prepared by using Nanospinner, and their performance will be evaluated with respect 

to  photocatalytic activity against HA and MB dye, in addition to  E. coli disinfection.  
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1.3 Research Objectives  

In order to address the aforementioned problems, the main objectives of this 

work are: 

1. To investigate the establishment of nanocomposite nanofiber membranes by 

incorporating PEI membranes with mixed solvents at different concentration 

of TiO2 nanoparticles (NPs). 

2. To study the effect of TiO2 nanoparticles on PEI membranes surface, 

morphology, and chemical properties, aiming to enhance the membrane 

properties as well as performance. 

3. To investigate the performances of TiO2/PEI nanocomposite nanofiber 

membranes in degrading organic pollutant removal (MB and HA) and bacterial 

disinfection under UV irradiation. 

 

1.4 Scope of Work  

The performances of the resulting PEI ENMs incorporated with TiO2 are 

characterized with respect to water flux, contaminants rejection, bacteria removal and 

water flux recovery, in addition to the instrumental characterizations using an optical 

contact angle measuring instrument (WCA), Scanning Electron Microscopy (SEM), 

Energy-dispersive spectroscopy (EDS) and Fourier Transform Infrared (FTIR). 

1. Fabricating PEI nanocomposite nanofiber membrane  

(a) Dissolving 10-20 wt% PEI polymer in a mixture of DMF/NMP solvents 

with different ratio (3:7, 2:8 and 1:9). 

(b) Optimizing the electrospinner parameters during fabrication process of 

nanocomposite ENMs by varying applied voltage (19.7-23.5 kV kV), 
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flow rate (0.8-1.2 mL/h), spinning distance (130-145 cm) and rotation 

speed of the drum (220 rpm) at fixed humidity (60 RH%). 

2. Fabricating TiO2/PEI nanocomposite nanofiber membrane 

a) Dissolving TiO2 NPs in a mixture of NMP:DMF at 8:2 weight ratio. 

b) Coating the PEI nanonanofibers with different percentages of TiO2 NPs 

(0.2 and 0.6 wt%) via electrospinner instrument under optimal spraying 

parameters. Spraying process was lasted for 6 h with a flow rate set at 

0.4 mL/h. Other electrospinning conditions remained the same as for PEI 

nanofiber fabrication, with a fixed voltage at 18.2 kV. 

3. Characterizing PEI and TiO2/PEI nanocomposite nanofiber membrane.  

(a) Characterizing TiO2/PEI ENMs by SEM, EDS, FTIR and WCA 

(b) Measuring the pure water flux (MF), HA flux and bacteria media flux 

using dead-end cell. 

4. Investigating the performance of TiO2/PEI nanofibers 

(a) Evaluating the performance of TiO2/PEI using dead-end cell mode at 

operated pressure < 0.5 bar in terms of water flux and flux recovery. 

(b) Studying the decontamination of organic pollution for 3 h using 10 μΜ 

MB as model of contaminant and applying UVA (365 nm) as a source of 

light illumination. 

(c) Studying the decontamination and rejection of HA (50 ppm). 

(d) Analysing the permeate samples of the fabricated membrane using UV-

vis spectrophotometer. 

(e) Investigating the inhabitation growth of E.coli bacteria by calculating the 

colony forming unit (CFU) and antifouling properties. 

(f) Studying the surface chemistry and degradation of the used membranes 

using FTIR 
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1.5 Significance of Research  

In this study, a new approach of photocatalysis-based membrane was 

established using newly developed TiO2/PEI nanofiber membrane. No work has been 

done on photocatalysis-based membrane using PEI electrospun nanofibers and UV as 

a source for photons.  Although membrane fouling tendency remains a major problem 

in polymeric membranes, photocatalysis process is potentially viable for solving 

critical environmental problems and it is often used for water treatment.  

There is a need to consider using UV-resistant polymers for the fabrication of 

photocatalytic membranes. One of the UV-resistant polymers that could be considered 

is PEI. The PEI polymeric electrospun nanofibers have attracted a great deal of 

attention by their special features and characteristics such as thermal stability, 

chemical and physical inertia, good mechanical strength and UV-resistance behaviour 

which has been used in a variety of applications 

Besides separating pollutants based on sieving mechanism, the nanofiber 

membrane developed in this work also act as host for the TiO2 photocatalysts to 

distribute. TiO2 overperform other nanoparticles such as ZnO in photocatalysis 

performance under UV light illumination because the photocatalytic activity of ZnO 

is lower due to photocorrosion which frequently occurs with the illumination of UV 

light (Zaghlool, 2011). A literature search revealed that TiO2 is perhaps the most 

commonly reported photocatalyst owing to its low price and commercial availability 

(Awazu et al., 2008; Thiruvenkatachari et al., 2008). 

 Another new approach in this research is coating the PEI nanofiber surface 

with TiO2 via electrospinner to solve the conventional blending problems that affect 

the efficiency of photocatalysis process. This approach could offer higher porosity and 

provide better water flux stability due to better hydrophilicity (Qiu et al., 2005). 

Moreover, the recent problems of the conventical methods of disinfection of bacteria 

can also be solved using the photocatalytic-based membrane technology. Hence, the 

membrane developed in this study not only remove the bacteria but also kill it by 

attacking cellular DNA of bacteria and make then disable (Sosnin et al., 2004). This 
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